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Abstract

Predictions for on-demand transportation services are oftentimes motivated by the possibil-
ity to enhance operational efficiency. For example, bike-sharing demand prediction aids in
relocation planning. However, the prediction accuracy is usually evaluated with standard
metrics such as the root-mean-squared-error (RMSE), which fall short in assessing the
value of predictions for downstream tasks. Since standard metrics treat spatial locations
independently, they disregard the costs stemming from the spatial displacement of the
predicted demand, such as relocation costs. We put forward Optimal Transport (OT) as a
spatial evaluation metric and loss function to bridge the gap between prediction and opti-
mization in transport applications. The proposed framework, GeOT, evaluates prediction
models by quantifying the transport costs associated with their prediction errors. Through
case studies on bike sharing data, we show that 1) OT better captures spatial costs than
existing metrics, 2) OT enhances comparability across spatial and temporal scales, and
3) using OT as a loss function effectively reduces spatial costs. The method is broadly
applicable to spatiotemporal prediction tasks, and we provide an open-source Python
package for seamless adoption (https://github.com/mie-lab/geospatialOT)
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1 Introduction

The transport sector accounts for 20% of CO2-emissions worldwide (Statista, 2023) and
thus plays a key role in climate action. One possible avenue to reducing emissions is the
adoption of on-demand services such as (autonomous) car sharing, which was shown to
effectively reduce car ownership (Mishra et al., 2015; Martin and Shaheen, 2011; Liao et al.,
2020). There are two main research avenues to improving on-demand transport services:
Prediction (Nguyen et al., 2018), e.g., estimating the number of shared cars/bicycles that
will be picked up in the next hour, and optimization, e.g., computing the most efficient
way to re-distribute bikes/cars. Importantly, good predictions only lead to a reduction of
emissions if the system is optimized with respect to the predicted demand.

Meanwhile, machine learning (ML) research in geographic information sciences (GIS)
or transportation usually treats prediction as a standalone problem, ignoring its role
in downstream tasks (Yan and Wang, 2022). Consider the example of forecasting bike
sharing demand per hour and per station. Usually, a time series prediction model such
as an LSTM is trained on the data and the prediction quality is evaluated via the mean
squared error (MSE) or mean absolute percentage error (MAPE) (Hulot et al., 2018;
Brahimi et al., 2022; Shin et al., 2020; Ma and Faye, 2022), since evaluating the resulting
CO2-efficiency or business costs is cumbersome. Crucially, such metrics only quantify
the error per time step and station, but ignore the spatial distribution of residuals and
their implications in a production setting involving relocation costs. Critically, these costs
depend on the distance between erroneous predictions and can be viewed either as a
resource relocation or as a user relocation that is necessary due to prediction errors.

We propose to leverage Optimal Transport (OT) to approximate and minimize relocation
costs and thereby the involved emissions. OT provides methods to measure the disparity
between two (probability) distributions, which can be leveraged as an evaluation framework
comparing the real and predicted spatial distribution in any spatiotemporal prediction
task, such as estimating bike sharing demand, traffic congestion or charging station
occupancy. Moreover, we demonstrate how the relocation costs can be directly minimized
with an OT-based loss function. Our framework, named GeOT, is based on partial
OT (Guittet, 2002; Piccoli and Rossi, 2014; Maas et al., 2015) and provides important
tools to researchers and industry working with spatiotemporal data to achieve actual
advances in resource management and operational efficiency with ML methods.
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2 Methods

Optimal transport (OT) is a mathematical framework for comparing probability distribu-
tions (Santambrogio, 2015) and has recently become increasingly influential in the field
of machine learning (Peyré et al., 2019). Solving an OT problem involves finding the
most cost-effective way to transport a source distribution µ to a target distribution ν.
In this work, we investigate the use of this distance as an evaluation metric and loss
function for geospatial prediction problems. Let x1, . . .xn be the spatial locations, and let
o = (o1, . . . ,on) be the true observations and ô = (ô1, . . . , ôn) the predicted observations
at these locations. For instance, oi could represent the demand for shared bicycles at
the i-th bike sharing station, located at xi. For geospatial data, the locations x are
usually two-dimensional, x ∈ R2. The source and target distribution, µ and ν, are set
to the discrete distribution of predicted spatial observations, µ = ∑n

i=1 ôiδxi
, and of the

true observations ν = ∑
n
i=1 oiδxi

. Additionally, let c ∶ Rd × Rd → R be a cost function,
s.t. c(xi,xj) measures the cost of moving a unit of mass from location xi to location xj.
C ∶= [c(xi,xj)]1≤i≤n ∈ Rn×n is called the cost matrix. The goal of OT is to transport µ

onto ν through a coupling matrix T ∈ U(p,q) ∶= {T ∈ Rn×n+ ∣ T1n = o, T⊺1n = ô} while
minimizing the cost of transportation quantified by c. Here, Tij denotes the amount of
mass transported from xi to xj. In sum, OT aims to solve the following optimization
problem minT∈U(p,q)∑

n,n
i,j=1TijCij ⇔ minT∈U(p,q)⟨T,C⟩ where ⟨⋅, ⋅⟩ denotes the Frobenius

inner product. A solution T⋆ to this linear programming problem, which always exists, is
called an OT coupling. We define the geospatial Optimal Transport (GeOT) error as the
c-Wasserstein distance between the true and predicted distribution:

Wgeo
c (µ, ν) = min

T∈U(p,q)
⟨T,C⟩ =

n,n

∑
i,j=1

T⋆ijCij. (1)

This value translates to the minimal cost necessary to align the predicted with the true
spatial distribution of observations. In other words, Wgeo

c (µ, ν) measures the total spatial
costs to “undo” errors of the predictive model. For a visual explanation, see Figure 1.

2.1 Partial Optimal Transport

The standard OT formulation assumes equal total mass in both distributions, which is
unrealistic in our case without normalization. Partial OT was introduced to address mass
imbalance by assigning explicit costs to untransported mass using methods like “dummy
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Figure 1: Quantifying spatial costs with Optimal Transport. Given a cost matrix C defined
between location pairs, prediction errors are measured in terms of the minimal transport
costs required to align the predictions with the true observations. In the example, a mass
of 90 must be transported from location 1 to location 3 with cost 5, leading to an OT
error of 450.

points”(Chapel et al., 2020), “dustbin”(Sarlin et al., 2020), or “waste vectors” (Guittet,
2002). Following Chapel et al. (2020), we add a dummy location xn+1 in both source and
target measures. The mass at this dummy point is set to zero or the total mass difference
(∣∑n

i=1 oi −∑
n
i=1 ôi∣) respectively, dependent on whether the source or target distribution

has larger mass. Formally, let s = min(∑
n
i=1 oi,∑

n
i=1 ôi), and we define on+1 = ∑n

i=0 ôi − s,
and ôn+1 = ∑n

i=0 oi − s. For example, if the sum of observations over all locations is 10
(∑n

i=1 oi = 10), and the predicted total is 12, we add a dummy location with on+1 = 2 and
ôn+1 = 0. We denote the adapted measures including the dummy points as µ̃ and ν̃, which
now have equal mass by design. The cost matrix is adapted to penalize the overshooting
mass with a fixed cost ϕ:

C̃(ϕ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c11 . . . c1n ϕ

. . . ⋱ . . . . . .

cn1 . . . cnn ϕ

ϕ . . . ϕ ϕ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

As Chapel et al. (2020) show, partial OT corresponds to solving balanced OT on µ̃, ν̃ and
C̃. Thus, we define:

Wgeo
c,ϕ =Wc̃(µ̃, ν̃) with µ̃ =

n+1
∑
i=1

ôiδxi
, ν̃ =

n+1
∑
i=1

oiδxi
and C̃ as the cost matrix (2)

The solution yields a transportation matrix that contains the flow of mass between
locations, as well as the outflow or inflow dependent on the total mass difference. In
our evaluation framework, Wgeo

c,ϕ combines the total prediction error and the spatial
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distributional error, with ϕ controlling their emphasis: Higher ϕ puts more weight on the
total error ∑n

i=1 oi −∑
n
i=1 ôi, while lower ϕ highlights the distributional error.

2.2 OT-based loss function based on Sinkhorn divergences

A natural progression for the OT error is its integration into the training of neural networks
as a spatial loss function. However, Wc is non-differentiable with respect to its inputs,
impeding its direct use as a loss function. One way to alleviate these challenges is to
rely on entropic regularization (Cuturi, 2013). Introducing H(T) = ∑

n,m
i,j=1Tij log(Tij) and

ε > 0, the Entropic OT problem between µ and ν is defined as

Wc,ε(µ, ν) = min
T∈U(o,ô)

⟨T,C⟩ − εH(T). (3)

Sinkhorn’s algorithm provides an iterative approach for finding a unique solution to the
dual formulation of (3). By Danskin’s Theorem, the uniqueness of the solution guarantees
the differentiability of Wc,ε(µ, ν) with respect to its inputs, allowing its use as a loss
function. To correct biases in this loss function it was proposed to center the Entropic
OT objective (Genevay et al., 2018; Feydy et al., 2019; Pooladian et al., 2022), defining
the Sinkhorn divergence as follows:

Sc,ε(µ, ν) =Wc,ε(µ, ν) −
1
2(Wc,ε(µ,µ) +Wc,ε(ν, ν)) (4)

In practice, we use the implementation provided in the geomloss package (Feydy et al.,
2019), which employs the Sinkhorn algorithm.

3 Results

The GeOT framework is applicable to a wide range of application; basically all spatial
prediction problems where the spatial distribution of the errors matter. As a real-
world example of a spatio-temporal forecasting problem, we utilize bike sharing demand
prediction in the following. In this case, W geo

c can be interpreted as bike or user relocations
that are necessary due to prediction errors. A public dataset is available from the BIXI
bike sharing service in Montreal. The number of bike pickups at 458 stations is aggregated
by hour and by station, following Hulot et al. (2018). A state-of-the-art time series
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prediction model, N-HiTS (Challu et al., 2022), is trained to predict the demand for the
next five hours at any time point. The predictions are evaluated on a hundred time points
from the test data period. For details on data preprocessing and model training, see
Appendix A.

3.1 Evaluating bike sharing demand prediction with OT

First, we demonstrate the computation of the OT error using one example of bike-sharing
demand predictions, for a single point in time. For visualization purposes, we subsample
one third of the stations. Figure 2 shows the spatial distribution of the residuals at
these stations, highlighting, for example, a few stations with significantly underestimated
demand (big purple circles) or an overestimation of bike-sharing demand in the bottom-left
(orange points). Calculating the OT error involves computing T∗, the optimal transport
matrix. We apply partial OT with ϕ = 0, essentially computing the difference between
both distributions without penalizing the total difference of their masses. The arrows in
Figure 2 illustrate all nonzero cells of T∗, representing all required redistribution of mass
to align the predictions with the true observations. The length of the arrows corresponds
to the transport cost, since C was set to the Euclidean distance between stations. In this
example, most errors can be balanced out between neighboring stations, resulting in mass
being relocated over short distances from prediction to ground truth. It is worth noting
that a few errors are not balanced out since they are ignored through partial OT (see
orange point in the bottom-left). The total spatial error corresponds to the sum of all
arrow lengths when ϕ = 0, here Wgeo

c,0 = ∑
n
i,j=1 C̃ijT∗ij = 58.91.

To interpret this error, assume that relocating one bicycle over one kilometer costs $5.
W geo

c,0 represents the total relocation kilometers required to match the real bike-sharing
demand with the predicted supply (apart from their total difference). Thus, the error of
this prediction model would cost the bike-sharing service 58.91 ⋅$5 = $294.55 if they needed
to fully rebalance their supply to meet future demand. The GeOT framework’s output
could be integrated into more complex analysis tools specific to the company, such as
considering the option of collecting and redistributing multiple bicycles simultaneously.

A major strength of OT is its flexibility to incorporate any arbitrary cost function, without
requirements on the function’s smoothness or other properties. This enables tailored
application-specific analyses, such as using map-matched distances or monetary costs.
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Figure 2: Transport map as computed with the GeOT framework. The goodness of the
prediction is measured in terms of the relocation costs necessary to align the predictions
with the real observations. Here, the difference between real and predicted bike sharing
demand is shown, where mass is transported from bike sharing stations with overestimated
demand (orange) to stations where the demand was underestimated (purple). In the
example, the total spatial costs are rather low since most errors are balanced out with
nearby points.
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Station
Correct
Prediction > GT
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Low error
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3.2 Comparability across scales

Research on spatio-temporal data oftentimes aggregates data across both space and time,
leading to incomparable outcomes due to the Modifiable Areal Unit Problem (MAUP).
The choice of aggregation size and method influences results, as observed in various
analytical (Gehlke and Biehl, 1934; Buzzelli, 2020) and predictive studies (Smolak et al.,
2021; Smith et al., 2014). We argue that OT allows to compare results across scales
and between different aggregation methods. Intuitively, aggregating the data in space
decreases the error, since the clustered observations are less noisy. On the other hand,
the utility of the predictions is lower when they are not available on a fine-grained per-
location level. In the following, we demonstrate how the GeOT framework can quantify
this trade-off for the bike sharing data. In bike sharing research, there is indeed a
lack of comparability of previous work due to different aggregation schemes, ranging
from single-station prediction (Yang et al., 2016; Qiao et al., 2021) to various clustering
schemes (Hulot et al., 2018; Shir et al., 2023; Li and Zheng, 2020). To capture this variety,
we also aggregate the bike sharing data with several methods, namely 1) grouping by

7



GeOT - Geospatial Optimal Transport April 28, 2025

sociological or housing district1, 2) clustering with the KMeans algorithm (varying k),
and 3) clustering with hierarchical (Agglomerative) clustering using different cutoffs. The
bike sharing demand of a cluster is the sum of the demand of all its associated stations.
One model is trained per configuration, where again the N-HiTS time series prediction
model is used. The results are evaluated on the same test time points as before.

As illustrated in Figure 3, we consider three evaluation methods: cluster-level comparison,
evaluation of clustered predictions against point observations, and point-level errors.
Cluster-level MSE, the standard approach taken in related work, decreases with more
clusters (see Figure 3A) because each cluster contains fewer observations, typically resulting
in lower errors. The OT error2 offers a different perspective as it accounts for distances
between cluster centers, which increase when fewer clusters are used. Moreover, OT
enables comparisons between cluster-predictions and station-level observations, as shown
in Figure 3 (green). In bike-sharing, for instance, cluster centers can be viewed as
distribution hubs, and the OT error quantifies transport costs for redistributing bikes
from hubs to stations. In this case, the OT error decreases with higher granularity (see
Figure 3B), because it must redistribute the mass from the cluster centers to individual
stations, which are further away from the hub if the cluster is larger. This insight enables
balancing operational costs of additional hubs against reduced transport costs – an analysis
not possible with the MSE, which can only compare samples of the same size. One way to
account for the clusters in the MSE is normalizing the prediction error by the cluster size
(see dotted line in Figure 3B). In this case we can observe that larger clusters seem are
easier to predict, probably because they exhibit more regular patterns. Finally, point-level
errors (Figure 3C) are computed by allocating cluster predictions to stations based on
their relative demand in the training set. The trends are similar but more pronounced
than in Figure 3A. The MSE declines with the granularity, whereas the OT error balances
accuracy with spatial granularity and achieves a minimum at 150 clusters found with
Agglomerative clustering. In summary, the GeOT framework provides a refined evaluation
across scales, capturing both absolute errors and their operational implications. When
models are trained at multiple scales, the GeOT framework helps to select the optimal
scale and aggregation method for each use case.

1sociological districts from https://www.donneesquebec.ca/recherche/dataset/
vmtl-quartiers-sociologiques and housing districts according to https://www.donneesquebec.
ca/recherche/dataset/vmtl-quartiers

2Here, we use Wgeo
c,ϕ with ϕ equivalent to the 10%-quantile of C, to model realistic business costs that

arise mainly from redistribution but partly from a general over- or underestimation of bike sharing
demand.
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Figure 3: Comparing the prediction quality with MSE and OT error across spatial
aggregation scales and clustering techniques. The MSE simply indicates higher errors for
bigger clusters (A), or lower station-wise error with more data aggregation (B). Optimal
Transport allows for asymmetric cost matrices (green) to compute the costs for transporting
from prediction-clusters to the ground-truth-points (B). In addition, OT takes into account
the distances between clusters, providing a refined perspective on the optimal aggregation
scale (A and C).
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3.3 Training models with an OT-based loss function

To demonstrate the effectiveness of the OT-based loss function (see subsection 2.2), we
train the N-HiTS model with the Sinkhorn divergence as the loss function and compare
to a standard MSE loss. The trained models are evaluated on test data in terms of the
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Figure 4: Training with the Sinkhorn loss (an OT-based loss function) can effectively
reduce the OT error between predictions and ground truth. This comes at minor increase
of the MSE.
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MSE and the balanced OT error (ϕ = 0). The cost matrix C was set to the Euclidean
distance between stations in km. Figure 4 demonstrates that the OT error W geo can be
reduced when training with the Sinkhorn loss. This comes at a minor increase of the MSE,
compared to training with a standard MSE loss. Thus, this experiment shows promising
evidence that training with the Sinkhorn loss can improve the spatial distribution of the
predictions.

4 Conclusion

This paper proposes to evaluate spatio-temporal predictions with Optimal Transport,
highlighting its capacity to reflect reductions in operational costs within predictive methods.
Our experiments demonstrate the value of OT for evaluating and training prediction
models. The proposed framework is generally applicable to any prediction problem where
the spatial distribution of the errors matters. A notable limitation is the computational
demand of computing the OT distance and the Sinkhorn loss, particularly in cases involving
numerous locations. The potential of OT in GIS and transportation extends further, such
as its extension to the temporal dimension considering relocation across space and time.
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A Data and preprocessing

The bike sharing dataset was downloaded from Kaggle3 and restricted to the period from
15th of April to 15th of November 2014, since the service is closed in winter, leading
to large gaps in the time series across years. Only stations with missing coordinates or
maintenance stations were removed.

We train an established time series prediction model, N-HiTS (Challu et al., 2022),
implemented in the darts library (Herzen et al., 2022). The model was chosen since it
outperformed other common approaches such as Exponential Smoothing, LightGBM (Ke
et al., 2017) or XGBoost in our initial experiments.

The model is trained for 100 epochs with early stopping. The learning rate was set to 1e−5.
The time series was treated as multivariate data with one variable per bike sharing station
or charging station. A lag of 24 is used to learn daily patterns, and the hour and weekday
are provided as past covariates. The number of stacks in the N-HiTS model was set to 3.
The number of output time steps corresponds to our forecast horizon of five time steps.
For evaluation, we draw 100 samples from the test data (last 10% of the time series) and
predict the next five time steps based on the respectively preceding time series, without
re-training the model. For further implementation details, we refer to our source code.

3https://www.kaggle.com/datasets/aubertsigouin/biximtl
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