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Adaptive Transportation Systems
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Short-term Behavior
e.g., route choice

Operational Decisions
e.g., routing
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Application Areas

Mobility City Logistics Inland waterways




Case for today: Intermodal transport
/ Synchromodal transport
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Plan for today

= Choice-based service network design and pricing
= Tactical level: service network design — mode choice
= Optimization and behavioral modeling
= Model-assisted reinforcement learning for synchromodal transport
= QOperational level: routing, replanning (+ mode choice)
= Optimization and learning (+ behavioral modeling)

= Inverse optimization and beyond...



Choice-Driven Service Network Design and
Pricing (CD-SNDP)

PhD work of

Adrien Nicolet
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Mode/Carrier Choice IntermOdal transport

(Utility Maximization) Profit, Market Share
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Challenge

@ | Q B Very complex system

= Many ports/terminals

= |Involves different countries
= 3 different transport modes
@ Many operators with various

r@ﬂ@@ p: . objectives

+ = Numerous shippers exhibiting
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Notation

X
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Set of terminals (indices: i, j)

Set of arcs (i, j)

Set of vehicle types (index: k)

Set of potential services (index: s)

Set of legs of service s € S (index: /)
Set of competing alternatives (index: h)

Hanover

Bidefeld
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Parameters: Lille
V, Number of vehicles of type k in the operator’s fleet e
0, Capacity of vehicle type k [TEUs]
W, Maximum number of cycles of service s that can be performed by vehicle type k

& Fixed cost of operating service s with vehicle type k [€] : Ma@.—‘m
iy Variable cost of transport between i and j with service s and vehicle type k [€/TEU] Saarbrucken 4
Siji. Dummy parameter equal to 1 if container traveling from i to j uses service leg /,, 0 otherwise Pans ¥ ghmgﬂn
D;; Aggregated transport demand of shippers between i and j [TEUs] Q

w Utility of using the operator’s services between i and j ,7
U,.'j’. Utility of using competing alternative 4 between i and j g
Variables: Pyt
Vg Number of vehicles of type k assigned to service s by the operator
Lo Frequency of service s operated with vehicle type k UL
Pij Price charged by the operator to shippers wanting to transport goods from i to j [€/TEU]
Xijsk Cargo volume using service s operated with vehicle type k between i and j [TEUs] LL
zh Cargo volume using competing alternative 4 between i and j [TEUs]
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Potential Services
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_ profit maximization

eet size

Cycle time feasibility
Available capacity

OD included in service

LL utility maximization
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Satisfied demand



Utility functions
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Nicolet A, Negenborn RR, Atasoy B, “A logit mixture model estimating the heterogeneous mode choice preferences of shippers based on
aggregate data”, 2022, IEEE Open Journal of Intelligent Transportation Systems, 3:650—661.



Demand simulation

= Expected profits are computed using the knowledge on the utility function

= ldea: simulate demand response to the proposed services and prices using
heterogenous population, using Mixed logit model .

= For each OD pair, generate a population of 1000 shippers (i.e. perform
1000 draws Of :BC,INTER and 8)

= Compute their utilities based on proposed services and prices

= Allocate containers (divided equally among the shippers) to the alternative
with maximum utility

= At the end, compute the resulting modal shares and actual profits of the
operator

[1] Nicolet A, Negenborn RR, Atasoy B, “A logit mixture model estimating the heterogeneous mode choice preferences of shippers based on
aggregate data”, 2022, IEEE Open Journal of Intelligent Transportation Systems, 3:650-661.



Case study

- NUMEGEN

ANDERNACH

MAINZ

LUDWIGS-
HAFEN
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NOVIMOVE

9 nodes network:

« 24 M8 vessels of cap. 180 TEUs
18 M11 vessels of cap. 300 TEUs
* Operational time: 120h/week

» Transport demand inputs from NOVIMOVE project []
- Cost and time estimation from existing model [

[1] Majoor |, et al., “D.2.2: Novimove transport model architecture and data collection”, 2021, Technical report, NOVIMOVE.
[2] Shobayo P, et al., “Conceptual development of the logistics chain flow of container transport within the Rhine-Alpine corridor”, 2021,

European Transport Conference (ETC), 1-17.


https://novimove.eu/
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Limitations

= Full information of the IWT operator
= About their competitors

= About the specification of shipper utilities (even though the exact coefficients
are not known)

= Exogenous and fixed competition
= No reaction to IWT operator services and prices



Competition concept

A / o Each operator
Start > Set p,f for each operator solves CD-SNDP
Create the set @ = 0 based on [j-r(ﬁ, f}

L 4

Simulation of
shippers to obtain
Dl DQ DR-:::ad DRa,il
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Results on the Rotterdam-Duisburg OD pair
Each operator has: Starting assumption

* 24 small vessels
* 18 big vessels .

p
30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 |
Profit outcomes
5 || 0.05 0.04 0.03 | 1 1 1 1 1 1 1
f20|| 0.00 0.05 0.05 0.05 0.03 1 1 1 1 1
35 _ 0.21 0.09 0.05 0.05 0.05 0.03 1 1 1

Final prices (Operator 1' Operator 2)

5 |[133' 130 146" 143 134", 13D| 2860 283'0 2840 284'0 2840 2840 2840

f 20 ID'D 97 127"\125 138135 137" 134 134 13D 2880 2840 2840 2840 2840
35 -\- 80\78 10097 127125 138135 137" 134 134", 130(288" 0 284" 0 284\ 0

Final frequenmea [Dperamr 1' Operator 2)

5| 35\35 35\35 35\35 | 35\0 35\0 35\0 35\0 35\0 35\0 35\0

f20| 35\35 "@8\85" 35'35 35'35 3535 | 35\0 35\0 35\0 35\0 35\0
35 -\- 3535 3535 3535 3535 35'35 3535 (350 35\0 35\0

Final IWT share

51| 68% 66%  66% | 28%  28%  28% @ 28% 28% 28% 28%

f2o|| 5% | 68% @ 67%  68% 66% | 28% 28% 28% 28% 28% [ (%
35| 0% 9%  T5%  68%  67T%  68%  66% | 28% 28% 28%

19




Information level

Each operator has:
» 24 small vessels
* 18 big vessels

) ffég IWT operator 2
P Limited| Full |
Profit outcomes

TWT tor 1 Limited 0.05 0.05
operator Full 1 0.06 Asymmetry of

Final prices information is reducing
Limited|| 127\ 125 164\ 164 the overall market share

Full 152\0 127127
Final frequencies
Limited|| 3535 3535
Full 35\0  35\35
Final IWT share
Limited|| 68% 619%
Full 50% 689

IWT operator 1

IWT operator 1

IWT operator 1




Conclusions & Future Work

= Competition concept to address the limitations of CD-SNDP
= Reaction of competitor and imperfect information

= Equilibrium solution highly depends on the assumptions

= Need of careful validation

= Inclusion of more players =» a more realistic agent-based framework

= Inclusion of dynamic pricing, e.g., due to water level-changes
= Consideration of Revenue Management



A Model-Assisted Reinforcement Learning for
Synchromodal Transport

Earlier PhD students

PhD work of

Yimeng Zhang Wenjing Guo Rie Larsen
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Introduction

Transshipment
between multiple
transport modes

Multiple types of
services (fixed and
flexible services)
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Introduction

Service time
uncertainty at
the terminals

Learn from
experience online

RL takes action when
1t 1s mature

i

Model-assisted
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Truck  Intermodal
station  terminal
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Unchosen barge/ uncertainty due
d Delay

Chosen barge/
train/truck service train/truck service to unexpeécte
event

Reinforcement Learning (RL):

learn from the experience and adjust the routes and schedules to
avoid delay when unexpected events happen.



Environment
Modeling framework (schedules under |«
uncertainty)
= Initial transport plan by ALNS ¥ fbu_ild
roviac l
When there is a disturbance / disruption: :'"'"p“ghg_glg_ ALNS |82 ] action
- |dentify the set of affected requests v T
. state | |reward 1 guide
= Take action
—»| Reinforcement

- (Benchmark) Waiting strategy —>
- (Benchmark) Average duration strategy

Learning agent

- RL strategy - when mature enough
= Rewards are provided by ALNS

Zhang, Y., Guo, W., Negenborn, R. R., & Atasoy, B. (2022). Synchromodal transport planning with flexible services:
Mathematical model and heuristic algorithm. Transportation Research Part C: Emerging Technologies, 140, 103711.



RL methodology

= RL learns how to replan, rather than the distribution of unexpected events
= State: current time, passed terminals, travel time between terminals, delay tolerance
= Action:
= Removal phase: removal or waiting
= |Insertion phase: insertion or not
« Reward: 1 if the right action is taken, O otherwise
= Right action :
= the action is removal/not-insert and there is delay when the event finishes
= the action is waiting/insertion and there is no delay when the event finishes



RL methodology
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European Gateway Services (EGS) network in the Rhine-Alpine corridor:

* 3 terminals in the Port of Rotterdam
* 7 1inland terminals in The Netherlands, Belgium, and Germany
* atotal of 116 services: 49 barges, 33 trains, and 34 truck services

tested with 5, 10, 20, 30, 50, and 100 shipment requests



Case study
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Duration of unexpected events (h)
m— [p,0] = [80, 1] == [y,0]=[40,1] = [uyc]=[5,1]

Scenarios

* Disturbances - Severe disturbances — Disruptions
(distributions are not known to RL)

» Different terminals with different types of events

* Each terminal has multiple types of events



Case study

Results with one type of event per terminal

= The delay of RL strategy is better than the
benchmarks

= 80% of the time better than both

= 20% of the time better than only one
= Average improvement in delay:

= 54% wrt waiting

« 10% wrt average duration

140
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Delay (h)
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150 A1

Delay (h)

50 1
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| m waiting
v average duration
e RL
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v = n " =
4
<
5 10 20 30 50 100
Number of requests
(c) severe disturbances with medium variations ([40,20])
u m waiting
v average duration
e RL
|
a
|
[ ]
[ |
v v
v
v ) 4
5 10 20 30 50 100

Number of requests

(d) disruptions ([80,1])



Case study

With the possibility of multiple events at a given
terminal

= RL is enriched with severity label information

Severity levels of events:

= Level 1: duration < 20

= Level 2: duration € (20, 40]
= Level 3: duration € (40, 60]
= Level 4: duration € (60, 80]
= Level 5: duration € (80, 100]
= Level 6: duration > 100

Average reward
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Six events without severity levels
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1000 5000 10000
Training iterations

(d) Six events with severity levels



1.0

0.8 1

Average reward

0.2 1

0.0

Case study

= Average improvement in delay:

= 53% wrt waiting
= 29% wrt average duration

o
[o)]
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' L ]
v
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] v
(] [ -
n v
m waiting
v average duration
RL
5 10 20 30 50 100

(b) six events [5, 1], [80, 5], [40, 5], [5, 1],

[40, 20], [80, 40]

Delay (h)

Note: the total training time needed can
change from 1-2 hours to 48 hours across
different instances/scenarios

Other transport performance metrics

= Average cost savings of 44%

= Average waiting time reduction of 25%
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v average duration
RL
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5 10 20 30 50 100
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(b) six events [5, 1], [80, 5], [40, 5], [5, 1], [40, 20], [80, 40]



Ongoing & Future Work

= Different reward functions

= Continuous functions reflecting better the cost

= Different types of uncertainty

= Travel time uncertainty, demand uncertainty

= Decentralized decision making

= Considering different actors (LSPs, operators...)
= Incorporation of behavior



Integrated Synchromodal Transport Planning
and Preference Learning

= = Shippers Shippers
preferences

i

O O

®
Requests Transport  //7g\
d @ ﬁ solutions CQD

Preference learning

y
4,
T ",

FAv s

A Freight Forwarder ‘
E‘fi ™ Informed
decisions

Mingjia He, ETH
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References (intermodal / synchromodal transport)
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= Guo, W, Zhang, Y., Li, W., Negenbom, R. R., & Atasoy, B. (2024). Augmented Lagrangian relaxation-based coordinated approach for global
synchromodal transport planning with multiple operators. Transportation Research Part E: Logistics and Transportation Review, 185, 103535.

= Larsen, R. B., Guo, W., & Atasoy, B. (2023). A real-time synchromodal framework with co-planning for routing of containers and
vehicles. Transportation Research Part C: Emerging Technologies, 157, 104412.

= Larsen, R. B.,, Negenborn, R. R., & Atasoy, B. (2023). A learning-based co-planning method with truck and container routing for improved barge
departure times. Annals of Operations Research, 1-31.
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Historical/Real-time Data
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Some interesting questions

Having information from earlier realizations of the operations...

« Can we learn the cost of reliability (to be incorporated already at
the tactical level)?

« Can we embed learning in the decision making directly, where
the underlying models for user behavior and transport system
characteristics are embedded?

« Can we better quantify the trade-off between the cost of delays
for example and the cost of embedding buffers upfront?

Can optimization + Iearning also help to handle the complexity of
choice-based optimization”



Inverse Optimization

in collaboration with:

Pedro Zattoni Scroccaro Peyman Mohajerin Esfahani
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Inverse Optimization
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Inverse Optimization

Given a signal (input), the expert computes its
response (output) by optimizing an unknown cost

T
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Supervised learning point of view

S 4[ Black-box ]—
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Supervised learning point of view
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Supervised learning point of view

S > Black-box .
> < — ((z,h(3))
. h(-) > h(8)
" \ y —

\ Loss function

Hypothesis function
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Supervised learning point of view

* F(5,z) is the unknown cost of the expert

]
TUDelft

s

_|:_

Expert

7

arg min F(s, x
ngX(EE) ( )

~

J

s

"

/
arg min Fp($,x)

reX(s)

>

Learner

- 6('%! ;{;0(§))

44



Inverse Optimization Overview

« Training dataset: {(51,21),...,(Sn,Zn)}

 Choose hyphothesis space: {Fy | ¢ € O}

N

)o@, (3))

1=1

: 1
* Optimize loss: min KR(0) N
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Routing Problems
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Inverse Optimization for Routing Problems

Expert
4 )
5 arg min F($,x)
xeX(S)
G J
(" )
arg min Fy(s,x)
x€eX(8)
G J

Learner

]
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Inverse Optimization for Routing Problems

Expert
(" )
Demands
Set of customers > arg miq F(§,:l?) T
Time-windows reX(3)
. J
(" )
arg min Fy(s,x . 3
eX(5) (5,2) zo(8)
. J

Learner
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Inverse Optimization for Routing Problems

Demands
Set of customers
Time-windows
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Expert
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Inverse Optimization for Routing Problems

/ Unkown weights

Demands
Set of customers
Time-windows
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Inverse Optimization for Routing Problems

Demands
Set of customers
Time-windows

]
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Expert
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J arg min E E 0754
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Simple CVRP example

Demands ——

= Gradient descent

pli+il = gl —
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Dynamic Routing Problems
Learn How to Dispatch or Postpone

» Dataset of historical examples

* Approach: model the problem as a prize-collecting DVRP* and apply our IO method

Optimal prizes - dynamic routes = best routes in hindsight

Dynamic routes Best routes in hindsight
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*Baty, Jungel, Klein, Parmentier, Schiffer (2023)



I0 for Dynamic VRPS
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I0 for Dynamic VRPS
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I0 for Dynamic VRPS
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Successful tests

Last-Mile Routing
am a;on Challenge (2021)
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