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Strategic Decisions
e.g., network design 

Tactical Decisions
e.g., fleet deployment 

Operational Decisions
e.g., routing

Supply

Long-term Behavior
e.g., supplier choice

Mid-term Behavior
e.g., carrier choice

Short-term Behavior
e.g., route choice

Demand

: Adaptive learning

Adaptive Transportation Systems

Supply-demand 
interactions

years

weeks, months

minutes,hours

ADAPT-OR 2



How to develop these capabilities?

New 
distribution 

center? 

delays

Use 
waterways? 

Re-allocate 
the fleet? 

increased costs

Daily experience 

time slot choice 

Trends in the long 

run, e.g., adoption

Change the service?

Service choice Delay vs 
higher price?

Holistic 
approach 

The idea behind
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Operations Research: 
(Dynamic and predictive) 

optimization   

Learning:
Model-based & 

Adaptive learning 

Behavioral Modeling: 
Supply-demand 

interactions       

Use the right resources at the right time at the right place!



Application Areas
Mobility

Last-mile delivery 

City Logistics Inland waterways

Intermodal transport
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Transport 

demand

Transport 

supply

Case for today: Intermodal transport
/ Synchromodal transport 
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Plan for today

▪ Choice-based service network design and pricing 

▪ Tactical level: service network design – mode choice

▪ Optimization and behavioral modeling 

▪ Model-assisted reinforcement learning for synchromodal transport

▪ Operational level: routing, replanning (+ mode choice)

▪ Optimization and learning (+ behavioral modeling)

▪ Inverse optimization and beyond… 
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Choice-Driven Service Network Design and 
Pricing (CD-SNDP)

PhD work of

Adrien Nicolet

Nicolet, A. and B. Atasoy. "A choice-driven service network design and pricing including heterogeneous 

behaviors." Transportation Research Part E: Logistics and Transportation Review 191 (2024)



Transport 

demand

Transport 

supply

Intermodal transport

Service Network Design (& Pricing)Price, Itinerary, Frequency

Mode/Carrier Choice 

(Utility Maximization) Profit, Market Share



Challenge

▪ Very complex system

▪ Many ports/terminals

▪ Involves different countries

▪ 3 different transport modes

▪ Many operators with various 
objectives

▪ Numerous shippers exhibiting 
different behavior

▪ Relationships between these 
actors
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Notation
RTM DUI BON

RTM

DUI

BON

1. RTM DUI

2. RTM BON
3. DUI BON
4. RTM DUI BON 

Potential Services

UL

LL

11



Formulation

UL profit maximization

Fleet size
Cycle time feasibility
Available capacity

OD included in service

LL utility maximization

Satisfied demand
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Utility functions

Nicolet A, Negenborn RR, Atasoy B, “A logit mixture model estimating the heterogeneous mode choice preferences of shippers ba sed on 

aggregate data”, 2022, IEEE Open Journal of Intelligent Transportation Systems, 3:650–661. 13



▪ Expected profits are computed using the knowledge on the utility function

▪ Idea: simulate demand response to the proposed services and prices using 
heterogenous population, using Mixed logit model [1].

▪ For each OD pair, generate a population of 1000 shippers (i.e. perform 
1000 draws of 𝛽c,INTER and 𝜀)

▪ Compute their utilities based on proposed services and prices

▪ Allocate containers (divided equally among the shippers) to the alternative 

with maximum utility

▪ At the end, compute the resulting modal shares and actual profits of the 
operator

Demand simulation

[1] Nicolet A, Negenborn RR, Atasoy B, “A logit mixture model estimating the heterogeneous mode choice preferences of shippers based on 

aggregate data”, 2022, IEEE Open Journal of Intelligent Transportation Systems, 3:650–661.
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Case study

9 nodes network:
• 24 M8 vessels of cap. 180 TEUs

• 18 M11 vessels of cap. 300 TEUs

• Operational time: 120h/week

• Transport demand inputs from NOVIMOVE project [1]

• Cost and time estimation from existing model [2]

[1] Majoor I, et al., “D.2.2: Novimove transport model architecture and data collection”, 2021, Technical report, NOVIMOVE.

[2] Shobayo P, et al., “Conceptual development of the logistics chain flow of container transport within the Rhine -Alpine corridor”, 2021,

European Transport Conference (ETC), 1–17.

https://novimove.eu

https://novimove.eu/


Results

Modal 

shares

IWT
44%

(100%)

37%

(39%)

40%

(42%)
38%

Road
44%

(0%)

50%

(51%)

49%

(47%)
55%

Rail
12%

(0%)

13%

(10%)

11%

(11%)
7%



▪ Full information of the IWT operator

▪ About their competitors

▪ About the specification of shipper utilities (even though the exact coefficients 
are not known)

▪ Exogenous and fixed competition

▪ No reaction to IWT operator services and prices

Limitations
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Competition concept
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Results on the Rotterdam-Duisburg OD pair
Starting assumption

77%

Each operator has:

• 24 small vessels

• 18 big vessels
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Information level
Each operator has:

• 24 small vessels

• 18 big vessels

• መ𝑓 = 20
• Ƹ𝑝 = 60

20

Asymmetry of 
information is reducing 
the overall market share 



▪ Competition concept to address the limitations of CD-SNDP

▪ Reaction of competitor and imperfect information

▪ Equilibrium solution highly depends on the assumptions

▪ Need of careful validation

▪ Inclusion of more players       a more realistic agent-based framework

▪ Inclusion of dynamic pricing, e.g., due to water level changes

▪ Consideration of Revenue Management

Conclusions & Future Work
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A Model-Assisted Reinforcement Learning for 
Synchromodal Transport

PhD work of

Yimeng Zhang

Zhang, Y., Negenborn, R.R., & Atasoy, B. (2023). Synchromodal freight transport re-planning under 

service time uncertainty: An online model-assisted reinforcement learning.

Transportation Research Part C: Emerging Technologies, 156

Rie LarsenWenjing Guo

Earlier PhD students



Introduction

Transshipment 

between multiple 

transport modes

Multiple types of 

services (fixed and 

flexible services)
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Introduction

Reinforcement Learning (RL): 

learn from the experience and adjust the routes and schedules to 

avoid delay when unexpected events happen.

Service time 

uncertainty at 

the terminals
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Modeling framework 

Zhang, Y., Guo, W., Negenborn, R. R., & Atasoy, B. (2022). Synchromodal transport planning with flexible services: 

Mathematical model and heuristic algorithm. Transportation Research Part C: Emerging Technologies, 140, 103711.

▪ Initial transport plan by ALNS

When there is a disturbance / disruption: 

▪ Identify the set of affected requests

▪ Take action

- (Benchmark) Waiting strategy 

- (Benchmark) Average duration strategy 

- RL strategy  - when mature enough 

▪ Rewards are provided by ALNS
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RL methodology 
▪ RL learns how to replan, rather than the distribution of unexpected events

▪ State: current time, passed terminals, travel time between terminals, delay tolerance

▪ Action: 

▪ Removal phase: removal or waiting

▪ Insertion phase: insertion or not  

▪ Reward: 1 if the right action is taken, 0 otherwise

▪ Right action :

▪ the action is removal/not-insert and there is delay when the event finishes

▪ the action is waiting/insertion and there is no delay when the event finishes
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RL methodology
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Case study 

European Gateway Services (EGS) network in the Rhine-Alpine corridor:

• 3 terminals in the Port of Rotterdam

• 7 inland terminals in The Netherlands, Belgium, and Germany

• a total of 116 services: 49 barges, 33 trains, and 34 truck services

• tested with 5, 10, 20, 30, 50, and 100 shipment requests
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Case study

Scenarios 

• Disturbances - Severe disturbances – Disruptions 

(distributions are not known to RL)

• Different terminals with different types of events

• Each terminal has multiple types of events 
29



Case study 

Results with one type of event per terminal 

▪ The delay of RL strategy is better than the 
benchmarks 

▪ 80% of the time better than both 

▪ 20% of the time better than only one 

▪ Average improvement in delay:

▪ 54% wrt waiting 

▪ 10% wrt average duration 
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Case study 

With the possibility of multiple events at a given 
terminal 

▪ RL is enriched with severity label information 

Severity levels of events:

▪ Level 1: duration ≤ 20

▪ Level 2: duration ∈ (20, 40]

▪ Level 3: duration ∈ (40, 60]

▪ Level 4: duration ∈ (60, 80]

▪ Level 5: duration ∈ (80, 100]

▪ Level 6: duration > 100
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Case study 

▪ Average improvement in delay:

▪ 53% wrt waiting 

▪ 29% wrt average duration 

Other transport performance metrics

▪ Average cost savings of 44%

▪ Average waiting time reduction of 25%

Note: the total training time needed can 

change from 1-2 hours to 48 hours across 

different instances/scenarios 
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▪ Different reward functions

▪ Continuous functions reflecting better the cost  

▪ Different types of uncertainty

▪ Travel time uncertainty, demand uncertainty 

▪ Decentralized decision making 

▪ Considering different actors (LSPs, operators…)

▪ Incorporation of behavior 

Ongoing & Future Work
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Integrated Synchromodal Transport Planning 
and Preference Learning

In collaboration with 

Mingjia He, ETH

He, M., Zhang, Y. & Atasoy, B. (2025) Integrated Synchromodal Transport Planning and Preference 

Learning. Transportation Research Record

Yimeng Zhang, TU Delft

Revealed

preferences
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Strategic Decisions
e.g., network design 

Operational Decisions
e.g., routing

Supply

Tactical Decisions
e.g., fleet deployment 

Long-term Behavior
e.g., supplier choice

Short-term Behavior
e.g., route choice

Demand

Mid-term Behavior
e.g., carrier choice

: Adaptive learning

Adaptive Transportation Systems

Supply-demand 
interactions



Some interesting questions

Having information from earlier realizations of the operations…

• Can we learn the cost of reliability (to be incorporated already at 
the tactical level)?

• Can we embed learning in the decision making directly, where 
the underlying models for user behavior and transport system 
characteristics are embedded? 

• Can we better quantify the trade-off between the cost of delays 
for example and the cost of embedding buffers upfront? 

Can optimization + learning also help to handle the complexity of 
choice-based optimization? 
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Inverse Optimization 

in collaboration with:

Pedro Zattoni Scroccaro Peyman Mohajerin Esfahani



Inverse Optimization 
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Inverse Optimization

Given a signal (input), the expert computes its
response (output) by optimizing an unknown cost
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Supervised learning point of view
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Supervised learning point of view
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Supervised learning point of view
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Supervised learning point of view
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Inverse Optimization Overview 
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Routing Problems
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Inverse Optimization for Routing Problems

Learner

Expert
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Inverse Optimization for Routing Problems

Learner

Expert

Demands
Set of customers
Time-windows

…
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Inverse Optimization for Routing Problems

Learner

Expert

Demands
Set of customers
Time-windows

…
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Inverse Optimization for Routing Problems

Learner

Expert

Demands
Set of customers
Time-windows

…
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Inverse Optimization for Routing Problems

Learner

Expert

Demands
Set of customers
Time-windows

…
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Simple CVRP example

Expert (CVRP)

Demands

▪ Gradient descent
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Learning Algorithm
Expert
route
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Learning Algorithm
Expert
route
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Learning Algorithm
Expert
route

Route difference
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Learning Algorithm
Expert
route

Route difference
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Learning Algorithm
Expert
route

Route difference
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Learning Algorithm
Expert
route

Route difference
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Dynamic Routing Problems
Learn How to Dispatch or Postpone
• Dataset of historical examples

• Approach: model the problem as a prize-collecting DVRP* and apply our IO method

*Baty, Jungel, Klein, Parmentier, Schiffer (2023)

Optimal prizes   →   dynamic routes = best routes in hindsight
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IO for Dynamic VRPS

Learner

Expert
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IO for Dynamic VRPS

Learner

Expert

Optimal in
hindsight DVRP
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IO for Dynamic VRPS

Expert

Prize-collecting
DVRP Learned prizes as a function of the features

Optimal in
hindsight DVRP

-
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Successful tests 

Last-Mile Routing 
Challenge (2021)
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Generic Theory

Routing

problems

Open-source

Python code

https://github.com/pedroszattoni/invopt
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