Adaptive Transportation Systems with a Holistic Representation of Supply and Demand

Bilge Atasoy

b.atasoy@tudelft.nl

14 May 2025

Adaptive Transportation Systems

The idea behind

How to develop these capabilities?

Use the right resources at the right time at the right place!

Operations Research: (Dynamic and predictive) optimization Behavioral Modeling: Supply-demand interactions

Learning: Model-based & Adaptive learning

ADAPTIVE TRANSPORTATION & LOGISTICS

Application Areas

Mobility

Last-mile delivery

City Logistics

Inland waterways

Intermodal transport

Case for today: Intermodal transport / Synchromodal transport

Plan for today

- Choice-based service network design and pricing
 - Tactical level: service network design mode choice
 - Optimization and behavioral modeling
- Model-assisted reinforcement learning for synchromodal transport
 - Operational level: routing, replanning (+ mode choice)
 - Optimization and learning (+ behavioral modeling)
- Inverse optimization and beyond...

Choice-Driven Service Network Design and Pricing (CD-SNDP)

PhD work of

Adrien Nicolet

Nicolet, A. and B. Atasoy. "A choice-driven service network design and pricing including heterogeneous behaviors." Transportation Research Part E: Logistics and Transportation Review 191 (2024)

Challenge

- Very complex system
 - Many ports/terminals
 - Involves different countries
 - 3 different transport modes
 - Many operators with various objectives
 - Numerous shippers exhibiting different behavior
 - Relationships between these actors

Notation

Sets:		
\mathcal{N}	Set of terminals (indices: <i>i</i> , <i>j</i>)	1
\mathcal{A}	Set of arcs (i, j)	
ĸ	Set of vehicle types (index: k)	
S	Set of potential services (index: s)	
\mathcal{L}_{s}	Set of legs of service $s \in S$ (index: l_s)	
\mathcal{L}_s \mathcal{H}	Set of competing alternatives (index: h)	
Л	Set of competing alternatives (index. <i>n</i>)	5
Parameters:		
V_k	Number of vehicles of type k in the operator's fleet	
Q_k	Capacity of vehicle type k [TEUs]	
W_{sk}	Maximum number of cycles of service s that can be performed by vehicle type k	
cFIX	Fixed cost of operating service s with vehicle type $k \in []$	
$c_{sk}^{\mathrm{FIX}} \ c_{ijsk}^{\mathrm{VAR}}$	Variable cost of transport between <i>i</i> and <i>j</i> with service <i>s</i> and vehicle type $k \in [\text{TEU}]$	
δ_{ijl_s}	Dummy parameter equal to 1 if container traveling from i to j uses service leg l_s , 0 otherwise	Paris
D_{ij}	Aggregated transport demand of shippers between <i>i</i> and <i>j</i> [TEUs]	
$U_{ij}^{\check{O}}$	Utility of using the operator's services between i and j	
U^{h}_{ij}	Utility of using competing alternative h between i and j	
Variables:		
v_{sk}	Number of vehicles of type k assigned to service s by the operator	
f_{sk}	Frequency of service s operated with vehicle type k	
<i>p</i> _{ij}	Price charged by the operator to shippers wanting to transport goods from <i>i</i> to $j \in /\text{TEU}$	\prec
x_{ijsk}	Cargo volume using service s operated with vehicle type k between i and j [TEUs]	Lu
_h	Cargo volume using competing alternative h between i and i [TEUa]	

 z_{ij}^h Cargo volume using competing alternative *h* between *i* and *j* [TEUs]

Potential Services

Formulation

$\max_{v,f,p,x,z} \sum_{(i,j)\in\mathcal{A}} \sum_{s\in\mathcal{S}} \sum_{k\in\mathcal{K}} p_{ij} x_{ijsk} - \sum_{s\in\mathcal{S}} p_{ij} x_{ijsk} - \sum_{s\in\mathcal{S}} p_{ij} x_{ijsk} - p_{ij} x_$	$\sum_{k=1}^{\mathrm{FIX}} f_{sk} - \sum_{(i,j)\in\mathcal{A}} \sum_{s\in\mathcal{S}} \sum_{k\in\mathcal{K}} c_{ijsk}^{\mathrm{VAR}} x_{ijsk}$	UL profit maximization
s.t. $\sum_{s \in S} v_{sk} \leq V_k$	$\forall k \in \mathcal{K}$	Fleet size
$f_{sk} \leq W_{sk}v_{sk}$	$\forall s \in \mathcal{S}, \ \forall k \in \mathcal{K}$	Cycle time feasibility
$\sum_{(i,j)\in\mathcal{A}} \delta_{ijl_s} x_{ijsk} \leq Q_k f_{sk}$	$\forall l_s \in \mathcal{L}_s, \ \forall s \in \mathcal{S}, \ \forall k \in \mathcal{K}$	Available capacity
$x_{ijsk} \leq \sum \delta_{ijl_s} D_{ij}$	$\forall (i,j) \in \mathcal{A}, \ \forall s \in \mathcal{S}, \ \forall k \in \mathcal{K}$	OD included in service
$p_{ij} \ge 0$	$\forall (i,j) \in \mathcal{A}$	
$v_{sk} \in \mathbb{N}$	$\forall s \in \mathcal{S}, \ \forall k \in \mathcal{K}$	
$p_{ij} \ge 0$ $v_{sk} \in \mathbb{N}$ $f_{sk} \in \mathbb{N}$	$\forall s \in \mathcal{S}, \ \forall k \in \mathcal{K}$	

where x and z solve:

$$\begin{aligned} \max_{x,z} \quad & \sum_{(i,j)\in\mathcal{A}} \left(\sum_{s\in\mathcal{S}} \sum_{k\in\mathcal{K}} U_{ij} x_{ijsk} + \sum_{h\in\mathcal{H}} U_{ij}^h z_{ij}^h \right) \\ \text{s.t.} \quad & \sum_{s\in\mathcal{S}} \sum_{k\in\mathcal{K}} x_{ijsk} + \sum_{h\in\mathcal{H}} z_{ij}^h = D_{ij} \\ x_{ijsk} \ge 0 \\ z_{ij}^h \ge 0 \end{aligned}$$

 $\begin{aligned} \forall (i,j) \in \mathcal{A} \\ \forall (i,j) \in \mathcal{A}, \ \forall s \in \mathcal{S}, \ \forall k \in \mathcal{K} \\ \forall (i,j) \in \mathcal{A}, \ \forall h \in \mathcal{H} \end{aligned}$

LL utility maximization

Utility functions

$$\begin{split} U_{ijr}^{O} &= \alpha^{\text{IWT}} + \beta_{a}^{\text{Inter}} a_{ij}^{\text{IWT}} + \beta_{q}^{\text{IWT}} q_{ij} + \beta_{c}^{\text{Inter},r} (p_{ij} + \text{VoT}t_{ij}^{\text{IWT}}) + \beta_{f}^{\text{Inter}} f_{ij} + \epsilon_{ijr}^{O} \\ U_{ijr}^{h=\text{IWT}} &= \alpha^{\text{IWT}} + \beta_{a}^{\text{Inter}} a_{ij}^{\text{IWT}} + \beta_{q}^{\text{IWT}} q_{ij} + \beta_{c}^{\text{Inter},r} (p_{ij}^{\text{IWT}} + \text{VoT}t_{ij}^{\text{IWT}}) + \beta_{f}^{\text{Inter}} f_{ij}^{\text{IWT}} + \epsilon_{ijr}^{\text{IWT}} \\ U_{ijr}^{h=\text{Rail}} &= \alpha^{\text{Rail}} + \beta_{a}^{\text{Inter}} a_{ij}^{\text{Rail}} + \beta_{c}^{\text{Inter},r} (p_{ij}^{\text{Rail}} + \text{VoT}t_{ij}^{\text{Rail}}) + \beta_{f}^{\text{Inter}} f_{ij}^{\text{Rail}} + \epsilon_{ijr}^{\text{Rail}} \\ U_{ijr}^{h=\text{Road}} &= \alpha^{\text{Road}} + \beta_{a}^{\text{Road}} a_{ij}^{\text{Road}} + \beta_{c}^{\text{Road}} (p_{ij}^{\text{Road}} + \text{VoT}t_{ij}^{\text{Road}}) + \epsilon_{ijr}^{\text{Road}} \end{split}$$

$$f_{ij}$$
 corresponds to the term $\sum_{s \in S} \sum_{k \in \mathcal{K}} \phi_{ijs} f_{sk}$

Nicolet A, Negenborn RR, Atasoy B, "A logit mixture model estimating the heterogeneous mode choice preferences of shippers based on aggregate data", 2022, *IEEE Open Journal of Intelligent Transportation Systems*, 3:650–661.

Demand simulation

- Expected profits are computed using the knowledge on the utility function
- Idea: simulate demand response to the proposed services and prices using heterogenous population, using Mixed logit model ^[1].
 - For each OD pair, generate a population of 1000 shippers (i.e. perform 1000 draws of $\beta_{\rm c,INTER}$ and ε)
 - Compute their utilities based on proposed services and prices
 - Allocate containers (divided equally among the shippers) to the alternative with maximum utility
 - At the end, compute the resulting modal shares and actual profits of the operator

9 nodes network:

- 24 M8 vessels of cap. 180 TEUs
- 18 M11 vessels of cap. 300 TEUs
- Operational time: 120h/week
- Transport demand inputs from NOVIMOVE project ^[1]
- Cost and time estimation from existing model ^[2]

[1] Majoor I, et al., "D.2.2: Novimove transport model architecture and data collection", 2021, *Technical report*, NOVIMOVE.
 [2] Shobayo P, et al., "Conceptual development of the logistics chain flow of container transport within the Rhine-Alpine corridor", 2021, *European Transport Conference (ETC)*, 1–17.

Limitations

- Full information of the IWT operator
 - About their competitors
 - About the specification of shipper utilities (even though the exact coefficients are not known)
- Exogenous and fixed competition
 - No reaction to IWT operator services and prices

Competition concept

Results on the Rotterdam-Duisburg OD pairEach operator has:Starting assumption

- 24 small vessels
- 18 big vessels

sseis						\hat{p}					
		30	60	90	120	150	180	210	240	270	300
	Profit outcomes										
5		0.05	0.04	0.03	1	1	1	1	1	1	1
$\hat{f} 2$	0	0.09	0.05	0.05	0.05	0.03	1	1	1	1	1
3	5	-	0.21	0.09	0.05	0.05	0.05	0.03	1	1	1
				Fina	l prices (Operator	1\Opera	ator 2)			
5		$133 \\ 130$	146 (143)	$134 \backslash 130$	$286 \setminus 0$	$283 \setminus 0$	$284 \setminus 0$	$284 \setminus 0$	$284 \setminus 0$	$284 \setminus 0$	$284 \setminus 0$
$\hat{f} 2$	0	100 97	$127 \backslash 125$	$138 \backslash 135$	137 (134)	134 (130)	$288 \setminus 0$	$284 \setminus 0$	$284 \setminus 0$	$284 \setminus 0$	$284 \setminus 0$
3	5	-\-	$80 \setminus 78$	$100 \ 97$	$127 \backslash 125$	$138 \backslash 135$	$137 \ 134$	134 130	$288 \setminus 0$	$284 \setminus 0$	$284 \setminus 0$
				Final fr	requencie	s (Opera	tor 1\Op	erator 2))		
5		$35 \backslash 35$	$35 \backslash 35$	$35 \backslash 35$	$35 \setminus 0$	$35 \setminus 0$	$35 \setminus 0$	$35 \setminus 0$	$35 \setminus 0$	$35 \setminus 0$	$35 \setminus 0$
$\hat{f} 2$	0	$35 \ 35$	$35 \backslash 35$	$35 \backslash 35$	$35 \backslash 35$	35 35	$35 \setminus 0$	$35 \setminus 0$	$35 \setminus 0$	$35 \setminus 0$	$35 \setminus 0$
3	5	-\-	$35 \backslash 35$	$35 \backslash 35$	$35 \backslash 35$	$35 \backslash 35$	$35 \backslash 35$	$35 \backslash 35$	$35 \setminus 0$	$35 \setminus 0$	$35 \setminus 0$
Final IWT share											
5		68%	66%	66%	28%	28%	28%	28%	28%	28%	28%
$\hat{f} 2$	0	75%	68%	67%	68%	66%	28%	28%	28%	28%	28%
3	5	0%	79%	75%	68%	67%	68%	66%	28%	28%	28%

77%

Information level

Each operator has:

- 24 small vessels
- 18 big vessels

	. 0	
•	$\hat{f} = 20$	
٠	$\hat{p} = 60$	

		IWT operator 2			
		Limited	Full		
	'	Profit outcomes			
IWT encenter 1	Limited	0.05	0.05		
IWT operator 1	Full	1	0.06		
		Final prices			
IWT operator 1	Limited	127 (125)	$164 \ 164$		
IWT operator 1	Full	$152 \backslash 0$	$127 \backslash 127$		
		Final frequencies			
IWT operator 1	Limited	$35 \backslash 35$	$35 \backslash 35$		
IWI operator I	Full		$35 \backslash 35$		
Final IWT share					
IWT operator 1	Limited	68%	61%		
IWT operator 1	Full	50%	68%		

Asymmetry of information is reducing the overall market share

Conclusions & Future Work

- Competition concept to address the limitations of CD-SNDP
 - Reaction of competitor and imperfect information
- Equilibrium solution highly depends on the assumptions
 - Need of careful validation
- Inclusion of more players -> a more realistic agent-based framework
- Inclusion of dynamic pricing, e.g., due to water level changes
- Consideration of Revenue Management

A Model-Assisted Reinforcement Learning for Synchromodal Transport

PhD work of

Yimeng Zhang

Earlier PhD students

Wenjing Guo

Rie Larsen

Zhang, Y., Negenborn, R.R., & Atasoy, B. (2023). Synchromodal freight transport re-planning under service time uncertainty: An online model-assisted reinforcement learning. *Transportation Research Part C: Emerging Technologies*, *156*

Introduction

Transshipment between multiple transport modes

Multiple types of services (fixed and flexible services)

Introduction

Service time uncertainty at the terminals

Reinforcement Learning (RL):

learn from the experience and adjust the routes and schedules to avoid delay when unexpected events happen.

Modeling framework

- Initial transport plan by ALNS
 When there is a disturbance / disruption:
- Identify the set of affected requests
- Take action
 - (Benchmark) Waiting strategy
 - (Benchmark) Average duration strategy
 - RL strategy when mature enough
- Rewards are provided by ALNS

RL methodology

- RL learns how to replan, rather than the distribution of unexpected events
- State: current time, passed terminals, travel time between terminals, delay tolerance
- Action:
 - Removal phase: removal or waiting
 - Insertion phase: insertion or not
- Reward: 1 if the right action is taken, 0 otherwise
 - Right action :
 - the action is removal/not-insert and there is delay when the event finishes
 - the action is waiting/insertion and there is no delay when the event finishes

RL methodology

27

European Gateway Services (EGS) network in the Rhine-Alpine corridor:

- 3 terminals in the Port of Rotterdam
- 7 inland terminals in The Netherlands, Belgium, and Germany
- a total of 116 services: 49 barges, 33 trains, and 34 truck services
- tested with 5, 10, 20, 30, 50, and 100 shipment requests

Scenarios

- Disturbances Severe disturbances Disruptions (*distributions are not known to RL*)
- Different terminals with different types of events
- Each terminal has multiple types of events

Results with one type of event per terminal

- The delay of RL strategy is better than the benchmarks
 - 80% of the time better than both
 - 20% of the time better than only one
- Average improvement in delay:
 - 54% wrt waiting
 - 10% wrt average duration

(c) severe disturbances with medium variations ([40,20])

With the possibility of multiple events at a given terminal

RL is enriched with severity label information

Severity levels of events:

- Level 1: duration ≤ 20
- Level 2: duration \in (20, 40]
- Level 3: duration \in (40, 60]
- Level 4: duration \in (60, 80]
- Level 5: duration \in (80, 100]
- Level 6: duration > 100

(c) Six events without severity levels

- Average improvement in delay:
 - 53% wrt waiting
 - 29% wrt average duration

(b) six events [5, 1], [80, 5], [40, 5], [5, 1], [40, 20], [80, 40]

Note: the total training time needed can change from 1-2 hours to 48 hours across different instances/scenarios

Other transport performance metrics

- Average cost savings of 44%
- Average waiting time reduction of 25%

(b) six events [5, 1], [80, 5], [40, 5], [5, 1], [40, 20], [80, 40]

Ongoing & Future Work

- Different reward functions
 - Continuous functions reflecting better the cost
- Different types of uncertainty
 - Travel time uncertainty, demand uncertainty
- Decentralized decision making
 - Considering different actors (LSPs, operators...)
- Incorporation of behavior

Integrated Synchromodal Transport Planning and Preference Learning

In collaboration with

Mingjia He, ETH

Yimeng Zhang, TU Delft

He, M., Zhang, Y. & Atasoy, B. (2025) Integrated Synchromodal Transport Planning and Preference Learning. *Transportation Research Record*

References (intermodal / synchromodal transport)

- Zhang, Y., Tan, X., Gan, M., Liu, X., & Atasoy, B. (2025). Operational synchromodal transport planning methodologies: Review and roadmap. *Transportation Research Part E: Logistics and Transportation Review*, *194*, 103915.
- He, M., Zhang, Y. & Atasoy, B. (2025) Integrated Synchromodal Transport Planning and Preference Learning. *Transportation Research Record*
- Zhang, Y., Negenborn, R.R., & Atasoy, B. (2023). Synchromodal freight transport re-planning under service time uncertainty: An online modelassisted reinforcement learning. *Transportation Research Part C: Emerging Technologies*, 156
- Nicolet, A. and B. Atasoy. (2024) A choice-driven service network design and pricing including heterogeneous behaviors. Transportation Research Part E: Logistics and Transportation Review 191
- Guo, W., Zhang, Y., Li, W., Negenborn, R. R., & Atasoy, B. (2024). Augmented Lagrangian relaxation-based coordinated approach for global synchromodal transport planning with multiple operators. *Transportation Research Part E: Logistics and Transportation Review*, *185*, 103535.
- Larsen, R. B., Guo, W., & Atasoy, B. (2023). A real-time synchromodal framework with co-planning for routing of containers and vehicles. *Transportation Research Part C: Emerging Technologies*, 157, 104412.
- Larsen, R. B., Negenborn, R. R., & Atasoy, B. (2023). A learning-based co-planning method with truck and container routing for improved barge departure times. *Annals of Operations Research*, 1-31.
- Guo, W., Atasoy, B., & Negenborn, R. R. (2022). Global synchromodal shipment matching problem with dynamic and stochastic travel times: A reinforcement learning approach. *Annals of Operations Research*, 1-32.
- Zhang, Y., Guo, W., Negenborn, R. R., & Atasoy, B. (2022). Synchromodal transport planning with flexible services: Mathematical model and heuristic algorithm. *Transportation Research Part C: Emerging Technologies*, 140(jul), 103711.
- Nicolet A, Negenborn R., Atasoy B., (2022) A logit mixture model estimating the heterogeneous mode choice preferences of shippers based on aggregate data, IEEE Open Journal of Intelligent Transportation Systems, 3:650–661.
- Larsen, R., Atasoy, B., Negenborn, R. (2021). Model predictive control for simultaneous planning of container and vehicle routes. *European Journal of Control* 57, 273–283.
- Guo, W., Atasoy, B., Beelaerts van Blokland, W., & Negenborn, R. R. (2020). A dynamic shipment matching problem in hinterland synchromodal transportation. Decision Support Systems

Some interesting questions

Having information from earlier realizations of the operations...

- Can we learn the cost of reliability (to be incorporated already at the tactical level)?
- Can we embed learning in the decision making directly, where the underlying models for user behavior and transport system characteristics are embedded?
- Can we better quantify the trade-off between the cost of delays for example and the cost of embedding buffers upfront?

Can optimization + learning also help to handle the complexity of choice-based optimization?

Inverse Optimization

in collaboration with:

Pedro Zattoni Scroccaro Peyman Mohajerin Esfahani

Inverse Optimization

Inverse Optimization

Given a signal (input), the expert computes its response (output) by optimizing an unknown cost

 $\hat{x} = \arg\min_{x \in \mathbb{X}(\hat{s})} F(\hat{s}, x)$

$$\hat{s} \longrightarrow Black-box \rightarrow \hat{x}$$

• $F(\hat{s}, x)$ is the unknown cost of the expert

Inverse Optimization Overview

• Training dataset: $\{(\hat{s}_1, \hat{x}_1), \dots, (\hat{s}_N, \hat{x}_N)\}$

• Choose hyphothesis space: $\{F_{\theta} \mid \theta \in \Theta\}$

• Optimize loss:
$$\min_{\theta \in \Theta} \kappa \mathcal{R}(\theta) + \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{x}, x_{\theta}(\hat{s}))$$

Routing Problems

Simple CVRP example

Learning Algorithm

Learning Algorithm

Learning Algorithm

Expert Learning Algorithm route $\operatorname{CVRP}(\theta^{[0]})$ $heta^{[1]}$ Route difference **T**UDelft

Expert Learning Algorithm route $\theta^{[2]}$ $\operatorname{CVRP}(\theta^{[2]})$ Route difference • • ٠

Dynamic Routing Problems Learn How to Dispatch or Postpone

- Dataset of historical examples
- <u>Approach</u>: model the problem as a prize-collecting DVRP* and apply our IO method

Optimal prizes \rightarrow dynamic routes = best routes in hindsight

Dynamic routes

Best routes in hindsight

*Baty, Jungel, Klein, Parmentier, Schiffer (2023)

59

IO for Dynamic VRPS

IO for Dynamic VRPS

IO for Dynamic VRPS

Successful tests

References

Generic Theory

 Zattoni Scroccaro, Atasoy, and Mohajerin Esfahani, "Learning in Inverse Optimization: Incenter Cost, Augmented Suboptimality Loss, and Algorithms", Published Online in Operations Research, 2024

Routing problems

Open-source

Python code

- Zattoni Scroccaro, van Beek, Mohajerin Esfahani and Atasoy (2025), "Inverse Optimization for Routing Problems", Transportation Science, 59(2): 301-321.
- Zattoni Scroccaro, "InvOpt: Inverse Optimization with Python", <u>https://github.com/pedroszattoni/invopt</u>, 2023

Operations Research: (Dynamic and predictive) optimization Behavioral Modeling: Supply-demand interactions

Learning: Model-based & Adaptive learning

TUDelft

ADAPTIVE TRANSPORTATION & LOGISTICS