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• Integrate Lagrangian and Eulerian observations to reconstruct trajectories.
• Calibrate time-varying short-term shockwave speeds using the two types of data.
• Reconstruct trajectories for non-connected vehicles based on shockwave theory.
• Optimize trajectories by adding vehicle dynamics for better energy estimation.
• Evaluation on real-world datasets shows excellent performances from several aspects.
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A B S T R A C T
Inference of detailed vehicle trajectories is crucial for applications such as traffic flow modeling,
energy consumption estimation, and traffic flow optimization. Static sensors can provide only
aggregated information, posing challenges in reconstructing individual vehicle trajectories.
Shockwave theory is used to reproduce oscillations that occur between sensors. However, as
the emerging of connected vehicles grows, probe data offers significant opportunities for more
precise trajectory reconstruction. Existing methods rely on Eulerian observations (e.g., data from
static sensors) and Lagrangian observations (e.g., data from probe vehicles) incorporating shock-
wave theory and car-following modeling. Despite these advancements, a prevalent issue lies in
the static assignment of shockwave speed, which may not be able to reflect the traffic oscillations
in a short time period caused by varying response times and vehicle dynamics. Moreover, energy
consumption estimation is largely ignored. In response, this paper proposes a novel framework
that integrates Eulerian and Lagrangian observations for trajectory reconstruction. The approach
introduces a calibration algorithm for time-varying shockwave speed. The calibrated shockwave
speed of the CV is then utilized for trajectory reconstruction of other non-connected vehicles
based on shockwave theory. Additionaly, vehicle and driver dynamics are introduced to optimize
the trajectory and estimate energy consumption. The proposed method is evaluated using real-
world datasets, demonstrating superior performance in terms of trajectory accuracy, reproducing
traffic oscillations, and estimating energy consumption.

1. Introduction
Vehicle trajectory information with a high sampling frequency plays a key role in many domains, including but

not limited to traffic flow modeling, energy consumption estimation, and traffic flow optimization (Daganzo, 1997;
Zhang, Chen, Wang, Zheng and Wu, 2022; Li, Jiang, He, Chen and Zhou, 2020; Guo, Li and (Jeff) Ban, 2019; Fiori,
Arcidiacono, Fontaras, Makridis, Mattas, Marzano, Thiel and Ciuffo, 2019; He, Makridis, Fontaras, Mattas, Xu and
Ciuffo, 2020). Collecting such granular information requires either a dense network of roadside sensors or transmission
of location data from every individual vehicles. However, both approaches are financially and laboriously burdensome
and maybe even infeasible in practice. In light of these constraints, it is crucial but challenging to infer the complete
set of trajectories given limited sensing data rather than observing all of them directly. Thus, accurate reconstruction
of trajectories with a minimal amount of Lagrangian observations provides a clear and significant contribution toward
mixed traffic conditions.

Some methods are tailored to reconstruct trajectories using fixed sensors, including loop detectors, video cameras,
radars, etc., which are deployed at a fixed location on the roadside to detect passing vehicles. This type of sensing data
typically provides the information at an aggregated level, such as vehicle counts, average speed, and instantaneous
velocities of passing vehicles, which is known as Eulerian observation. The data can be adopted to analyze and optimize
the traffic flow from macroscopic views (Kachroo, Ozbay and Hobeika, 2001; Wang, Daamen, Hoogendoorn and van
Arem, 2011), estimate travel time (Coifman, 2002), and reconstruct trajectory (Coifman, 2002; van Lint and van der
Zijpp, 2003; Lint, 2010). The shockwave theory is usually applied to this type of data to infer vehicles’ trajectory, given
that the traffic state along the shockwave is the same. Conventionally, the traffic state is assumed to propagate in the
traffic flow at a fixed speed, referred to as the shockwave speed. Although the value of shockwave speed is constant on
average over a long time period, the fact is that the traffic state may not propagate at the same speed in the short time
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period due to the existence of varying response times and vehicle dynamics (Makridis, Leclercq, Ciuffo, Fontaras and
Mattas, 2020), leading to sub-optimal reconstructed trajectories.

With the deployment of connected vehicles (CVs), mobile sensing data from CVs that report location information
through vehicular networks, termed Lagrangian observation, largely contributes to trajectory reconstruction. The
collected trajectory data includes temporal and spatial data of these CVs, providing a rich information to analyze human
driving behaviors (Makridis, Anesiadou, Mattas, Fontaras and Ciuffo, 2023; Suarez, Makridis, Anesiadou, Komnos,
Ciuffo and Fontaras, 2022; Wang, Wei and Chen, 2020), estimate fundamental diagram (FD) (Seo, Kawasaki, Kusakabe
and Asakura, 2019; Li, Chen, Zhou, Xie and Laval, 2022), and reconstruct the trajectory of vehicles (Montanino and
Punzo, 2015; Yao, Liu, Jiang, Tang and Ran; Makridis and Kouvelas, 2023). The trajectory of the CVs can be enhanced
with a high accuracy using the collected data through interpolation curves (Sun, Wu, Chu, Xie, Liu and Li), particle
filters (Wei, Wang and Chen, 2021), maximum likelihood estimation (Hao, Boriboonsomsin, Wu and Barth, 2014),
etc. The trajectory of non-connected vehicles (NCVs) is inferred by essentially replicating the trajectory of CVs based
on Newells model, when the shockwave/backward speed in the model is a constant value (Montanino and Punzo,
2015; Yao et al.). However, such a manner may not be able to characterize realistic traffic scenarios, given the inherent
variability in vehicle and driver dynamics, as previously discussed.

To overcome the above challenges of separately using Lagrangian or Eulerian observations, more attention is
attracted to integrating both for reconstructing trajectories. Specifically, most of the methods (Deng, Cao, Ren, Ma
and Zhu, 2023; Chen, Yin, Qin, Tang, Wang and Sun, 2022a; Mehran, Kuwahara and Naznin, 2012) are developed
by deriving some reference points or candidate trajectories using one type of data and then optimizing them using the
other type of data. Although the performance has been largely improved by the above hybrid methods, the following
issues still need to be addressed. (1) Prevalent models often adhere to a fixed shockwave speed (Chen et al., 2022a;
Mehran et al., 2012), while in reality, it has been observed to vary (Sakhare, Li and Bullock, 2023; Lei, Wang, Lu
and Sun, 2014). A constant value of shockwave speed implies that independently of the current traffic conditions or
disturbances the propagation of oscillations follows a consistent pattern which is unrealistic (Makridis et al., 2020). (2)
Efforts to optimize time-varying shockwave speeds, as seen in (Deng et al., 2023), encounter limitations when there
are fewer than two vehicles affected by the same shockwave. (3) Reconstructed trajectories can capture traffic flow
dynamics but they are still unreliable for energy consumption estimations where a realistic distribution of observed
accelerations is essential (Apostolakis, Makridis, Kouvelas and Ampountolas, 2023). (4) Calibration of car-following
models for simulation will not be feasible when instantaneous vehicle dynamics are not realistic (Ciuffo, Makridis,
Toledo and Fontaras, 2018; He, Montanino, Mattas, Punzo and Ciuffo, 2022; Zheng, Makridis, Kouvelas, Jiang and
Jia, 2023).

To this end, we design a new hybrid method based on the trajectories of a limited number of CVs and the
instantaneous speed of vehicles collected by a loop detector. Specifically, to address the issues associated with fixed
shockwave speed, we propose an innovative algorithm to calibrate the time-varying shockwave speed using Lagrangian
and Eulerian observations. Given the calibrated shockwave speed, we develop an algorithm to reconstruct the reference
points for NCVs. Moreover, to fill the gap in energy consumption estimation, we apply a vehicle movement model,
that accounts for vehicle and driver dynamics, to optimize the reference points and generate the final trajectory of
NCVs. In this paper, we mainly focus on highway scenarios without considering the disturbance of traffic signals and
intersections. Our main contributions are summarized as follows.

• We propose a new algorithm to calibrate the time-varying shockwave speed using the fixed sensor data and
mobile sensor data. Specifically, our calibration algorithm is designed based on shockwave theory-compliant
trajectory reconstruction methods. The algorithm aims to determine time-varying shockwave speed values that
minimize the error between the reconstructed trajectory and the ground truth. We design and implement a Monte
Carlo sampling-based method to achieve the aforementioned goal.

• We then design a trajectory reconstruction method using the time-varying shockwave speed and the data collected
by fixed sensors. Each CV is considered as a leading vehicle, and our objective is to reconstruct the trajectory of
the following vehicle of the CV. We derive reference points for the following vehicle using the CV’s calibrated
results according to shockwave theory. These reference points are further optimized to reconstruct the trajectory,
which is achieved by applying the microsimulation free-flow acceleration model (MFC) to fulfill the constraint
of vehicle and driver dynamics.
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• We evaluate and validate our method using real-world datasets. We compare with several baseline models
in terms of time headway accuracy, speed accuracy, fuel consumption accuracy, CO2 emission accuracy, and
the capability of reproducing traffic oscillations. The experiment results show that our method achieves better
performance compared with other baseline models, especially in the case of a low CV penetration rate.

• We further introduce the concept of a reconstructed spatial-temporal area to assess the contribution of CVs with
different average speeds. Our findings reveal that a lower average speed can contribute more to reconstructing a
larger spatial-temporal area. Moreover, we explore the relationship between the amount of required information
for calibration and the average speed of the CV. The results show that the average speed does not affect the
amount of required information.

The paper is organized as follows. In Section 2, we review the literature on trajectory reconstruction and shockwave
speed estimation. We first clarify the background and formulate the problem in Section 3. We then present the basic
shockwave theory-based method and our method for calibrating time-varying shockwave speed in Section 4. The
reconstruction process, including deriving reference points and reconstructing trajectory, is elaborated on in Section 5.
We then show the experiment results of our method compared with baseline models in Section 6. In Section 7, we
further analyze the contribution of CVs in reconstructing trajectories and the amount of required information for
calibrating time-varying shockwave speed. We finally conclude our paper and discuss the future work in Section 8.

2. Literature Review
Trajectory reconstruction has been studied for decades using different types of data and methods. The data from

fixed sensors is largely used to reconstruct trajectories based on FIFO and shockwave theory. In recent years, the
trajectory of some connected vehicles has also been widely applied to improve the reconstruction accuracy, which
is regarded as the data from mobile sensors. In the rest of the section, we mainly review the literature about different
trajectory reconstruction methods. Moreover, as most of the methods including ours are based on the shockwave theory,
where the shockwave speed is one of the most important parameters, we also review the literature on shockwave speed
estimation.
2.1. Trajectory Reconstruction

The method of trajectory reconstruction is mainly differentiated based on the type of data it leverages.
Fixed sensors like loop detectors are very common in modern cities but they provide flow and potentially speed

measurements at specific locations. Given the arrival time and velocity of vehicles collected by a fixed loop detector,
(Coifman, 2002) firstly proposed to reconstruct the trajectory using the shockwave theory. Specifically, the vehicle’s
trajectory is reconstructed by concatenating the collected velocity of the following vehicles under the assumption that
the velocity dissipates along the road at a shockwave speed. (van Lint and van der Zijpp, 2003; Lint, 2010) proposed to
use data from multiple loop detectors. (van Lint and van der Zijpp, 2003) Compared with (Coifman, 2002), (van Lint
and van der Zijpp, 2003) developed a method to calculate the linear velocity instead of applying the collected velocities
as constant values to reconstruct the trajectories. (Lint, 2010) proposed filtered inverse speed-based (FISB) to construct
a speed map for the reconstructed spatial-temporal space. The free flow and congestion are separately considered to
estimate the speed of individual vehicles and further reconstruct trajectories.

The second type is the data from mobile sensors. Usually, this type of data is reported by the individual CVs. One of
the objectives of using this type of data is to reconstruct the trajectory of CVs since the frequency of the reported data
from CVs may be too low to get enough information. Thus, many probabilistic methods are proposed to improve the
resolution of the trajectory (Hao et al., 2014; Wan, Vahidi and Luckow, 2016; Wei et al., 2021). Moreover, trajectory
reconstruction of NCVs is also one of the objectives. Usually, the historical trajectory of NCVs is reconstructed by
replicating the trajectory of CVs using Newell-based models (Montanino and Punzo, 2015; Yao et al.). Besides, a huge
amount of effort is made to reconstruct the future trajectory of the vehicle with the machine learning techniques (Liu,
Mao, Fang, Zhu and Meng, 2021). In the rest of this paper, we mainly discuss reconstructing the fully sampled historical
trajectory of NCVs.

The third one is to integrate the data from both fixed sensors and mobile sensors. More and more researchers focus
on leveraging these two types of data to improve overall accuracy. Specifically, (Mehran et al., 2012) proposed a data
fusion framework to reconstruct the trajectories at signalized intersections based on the kinematic wave theory and
variational solution of (Daganzo, 2005a,b). The temporal-spatial space of the trajectory is represented as a cumulative
: Preprint submitted to Elsevier Page 3 of 18



surface in a three-dimensional space. The data collected by the loop detector is the height of the cumulative surface at
the specific temporal-spatial point. The trajectory of the CV is interpreted as a contour on the surface of cumulative
curves. The other trajectories can be reproduced based on the estimation of this surface. Based on (Mehran et al.,
2012), (Chen, Yin, Tang, Tian and Sun, 2022b) designed a new framework, which classifies the temporal-spatial space
into four regions and applies a Particle Filter-based fusion method to estimate the trajectory of vehicles at signalized
intersections. (Rey, Jin and Ritchie, 2019; Deng et al., 2023) proposed to estimate the trajectory of vehicles on multi-
lane roads based on the data from multiple loop detectors and CVs. A new variable of a vehicle’s order is defined
to represent its cumulative flows at different times and locations. (Chen et al., 2022a) designed a new framework to
integrate both micro and macro models. The macro models based on shockwave theory aim to generate the velocity
contour map, which includes the reference velocity. The micro model produces several candidate trajectories according
to the trajectory of CVs. The final trajectories are optimized using the velocity contour map and candidate trajectories.
All of the above methods are implemented based on wave theory, where the shockwave speed is one of the most
important parameters.

The main issue of the above methods is that the value of the shockwave speed is usually set as a constant value, which
implies homogeneous vehicle and driver dynamics in the traffic flow. However, it is unrealistic according to the real-
world observations (Makridis et al., 2020). Moreover, the reconstructed trajectory is derived through a mathematical
formulation or connecting several reference points directly, which may not satisfy the vehicle dynamics and can not be
used for estimating energy consumption.
2.2. Shockwave Speed Estimation

As mentioned above, shockwave speed estimation plays a key role in reconstructing individual vehicle trajectories.
Shockwave speed is an important parameter in describing the traffic flow. Many researchers have proposed different
methods to estimate the value of shockwave speed in actual traffic. (Seo et al., 2019) performs a linear regression
between the flow and density for each pair of probe vehicles to estimate the shockwave speed. The final shockwave speed
is the mean of all the regression results. (Mehran et al., 2012) estimates the shockwave speed using the maximum flow,
jam density, and free flow speed, which is largely determined by the road infrastructure. (Anuar and Cetin, 2017; Deng
et al., 2023) locate the inflection point in the congested state and calculate the shockwave speed for each shockwave.
Although (Deng et al., 2023) estimate different shockwave speeds for different periods to reconstruct the trajectories,
it requires the trajectory of at least two CVs in the same shockwave to estimate the shockwave speed, which largely
limits the performance with a lower penetration rate of CVs.

In summary, the trajectory reconstruction based on shockwave theory using fixed sensor and mobile sensor data
has been widely studied. However, the challenges, including estimating and applying dynamic shockwave speeds,
still remain unsolved. Moreover, the evaluation of the reconstructed trajectory usually focuses on the accuracy of the
trajectory and largely ignores the energy aspects.

3. Background and Problem Formulation
We mainly consider the two following types of data to reconstruct the trajectories. The first one contains the arrival

time and instantaneous speed of vehicles, collected by a fixed sensor deployed at the start of a road segment. The
second one includes the trajectory of CVs, which are distributed randomly in the traffic flow at a lower penetration
rate. As shown in Fig. 1, the fixed sensor is deployed at the start point of the road, and the blue vehicles are CVs. The
objective is to use the above data to reconstruct the trajectories of other vehicles, namely, the black ones in Fig. 1.

Denote 𝑡𝑖 and 𝑣𝑖 as the arrival time and instantaneous speed of 𝑖𝑡ℎ vehicle, respectively, which is collected by the
fixed sensor at position 𝑥0. Denote Π𝑖 = {𝑥𝜏𝑖 , 𝜏 ∈ [𝑡𝑖, 𝑇 ]} as the trajectory of 𝑖𝑡ℎ vehicle, where 𝑥𝜏𝑖 is the longitudinal
position of 𝑖𝑡ℎ vehicle at time 𝜏 and 𝑇 is the end time of the trajectory. Denote 𝐼 as the union of all vehicles and 𝐽 as the
union of all CVs, where 𝐽 ⊂ 𝐼 and |𝐽 | < |𝐼|. The problem of reconstructing the unknown trajectories is formulated
as Eq. 1.

Π𝑖 = 𝑓 (Π𝐽 , 𝑡𝐼 , 𝑣𝐼 ), where 𝑖 ∈ 𝐼 & 𝑖 ∉ 𝐽 . (1)
We aim to derive the function 𝑓 (⋅) to reconstruct {Π𝑖, 𝑖 ∈ 𝐼 & 𝑖 ∉ 𝐽} given Π𝐽 , 𝑡𝐼 , and 𝑣𝐼 .
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Figure 1: Illustration of the loop detector’s information and connected vehicles’ information.

4. Time-varying Shockwave Speed
The shockwave theory is the basis for reconstructing trajectories using different sources of data. Current methods

usually assume a constant value for the parameter shockwave speed, which is not capable of handling dynamic and real
traffic scenarios (Sakhare et al., 2023; Lei et al., 2014). To address this issue, we propose to calibrate the time-varying
shockwave speed for trajectory reconstruction using the data from a double loop detector and CVs. In the rest of the
section, we first introduce the preliminaries of shockwave theory and trajectory reconstruction. We then present our
algorithm to calibrate the time-varying shockwave speed values on the basis of the shockwave theory.
4.1. Basics of Shockwave Theory

The traffic shockwave is caused by some disturbances and propagates backward to the following vehicles, which
is firstly proposed by Lighthill, Whitham and Richards (LWR) (Lighthill and Whitham, 1955). LWR model describes
the relation between flow and density, which vary with location and time as shown in Eq. 2.

𝜕k(𝑥, 𝑡)
𝜕𝑡

+
𝜕q(𝑥, 𝑡)
𝜕𝑥

= 0, (2)
where k(𝑥, 𝑡) is the density and q(𝑥, 𝑡) is the flow at location 𝑥 and time 𝑡. Eq. 2 can be further rewritten as Eq. 3.

1
𝑤

𝜕q(𝑥, 𝑡)
𝜕𝑡

+
𝜕q(𝑥, 𝑡)
𝜕𝑥

= 0, (3)

where 𝑤 = 𝜕q
𝜕k is the shockwave speed.

Following by LWR, Newell (Newell, 1993) proposed a triangular fundamental diagram (FD) as Eq. 4.

q(k) =

{

𝑣𝑓k, k ≤ k𝑚
𝑤(k𝑗 − k), k > k𝑚

(4)

where 𝑣𝑓 is the free flow speed, k𝑚 is the road capacity, and k𝑗 is the jam density. The triangle FD is shown as Fig. 2(a).
The traffic states propagate among vehicles at the same speed on the same leg of the triangle, namely, 𝑣𝑓 for the free
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Figure 2: Trajectory reconstruction based on shockwave theory.

flow and 𝑤 for the congested flow. According to Eq. 4 and Fig. 2(a), the traffic states are the same in one shockwave,
which makes traffic states predictable given the partial traffic state in the shockwave. The most important parameter to
derive the traffic states is the shockwave speed, indicating how fast the traffic state of the leading vehicle is passed to
the following ones.
4.2. Trajectory Reconstruction Based on Shockwave Theory

According to (Coifman, 2002), the trajectory of vehicles can be reconstructed given the arrival time and
instantaneous speed of their following vehicles detected by the loop detector. Based on the above assumptions that
the traffic state along the shockwave is the same, the trajectory of a vehicle is reconstructed by concatenating the
trajectory segment of its following vehicles, as shown in Fig. 2(b). Specifically, the trajectory segment of the following
vehicle can be derived using the detected instantaneous speed of the vehicle. Then, these trajectory segments can be
further concatenated following the shockwave propagation direction to construct the trajectory of the leading vehicle.

To simplify the reconstruction process, the reconstructed trajectory of each vehicle contains multiple line segments
and each one is represented as a linear function in the temporal-spatial space, denoted as 𝑔𝜏𝑘𝑖 (𝜏), where 𝑖 is the number
of the vehicle and 𝑘 is the 𝑘𝑡ℎ following vehicle of vehicle 𝑖. As shown in Eq. 5, the slope of 𝑔𝜏𝑘𝑖 (𝜏) is 𝑣𝑖+𝑘, namely,
the speed of 𝑘𝑡ℎ following vehicle given the subject leading vehicle 𝑖, and 𝑥̂𝜏𝑖 is the reconstructed trajectory point of
vehicle 𝑖 at time 𝜏. Moreover, the shockwave propagation line that represents the propagation of speed 𝑣𝑖+𝑘 is also
modeled as a linear function ℎ𝜏𝑘𝑖 (𝜏) with slope −𝑤, as shown in Eq. 6. The notations are illustrated in Fig. 3 for easy
understanding.

𝑔𝜏𝑘𝑖 (𝜏) =

{

𝑣𝑖𝜏 + (𝑥0 − 𝑣𝑖𝑡𝑖), 𝑘 = 0

𝑣𝑖+𝑘𝜏 + (𝑥̂𝜏𝑘−1𝑖 − 𝑣𝑖+𝑘𝜏𝑘−1), 𝑘 > 0
(5)

ℎ𝜏𝑘𝑖 (𝜏) = −𝑤𝜏 + (𝑥0 +𝑤𝑡𝑖+𝑘+1). (6)
As mentioned above, the arrival time and instantaneous speed of vehicles at a fixed location 𝑥0 are known. For

obtaining the first trajectory segment of vehicle 𝑖, i.e., 𝑘 = 0, we calculate (𝜏0, 𝑥̂
𝜏0
𝑖 ) which is the point of intersection

of 𝑔𝜏0𝑖 (𝜏) and ℎ𝜏0𝑖 (𝜏). Thus, the first trajectory segment of vehicle 𝑖 is the line from point (𝑡𝑖, 𝑥0) to (𝜏0, 𝑥̂
𝜏0
𝑖 ). Given

(𝜏0, 𝑥̂
𝜏0
𝑖 ), 𝑣𝑖+1, 𝑤, and (𝑡𝑖+2, 𝑥0), we can obtain 𝑔𝜏1𝑖 (𝜏) and ℎ𝜏1𝑖 (𝜏) so that the second trajectory segment is the line from

(𝜏0, 𝑥̂
𝜏0
𝑖 ) to (𝜏1, 𝑥̂

𝜏1
𝑖 ). As such, (𝜏𝑘, 𝑥̂𝜏𝑘𝑖 ), 𝑔𝜏𝑘𝑖 (𝜏), ℎ𝜏𝑘𝑖 (𝜏) can be further derived to complete the trajectory of vehicle 𝑖

by repeating the above procedures. In the rest of the paper, the process of calculating the 𝑘𝑡ℎ trajectory segment is
abbreviated as reconstruction step 𝑘.
4.3. Calibration Algorithm

Several studies in the literature discuss the estimation of shockwave speed (Seo et al., 2019; Deng et al., 2023).
Some of them have proved that the value should not be fixed (Deng et al., 2023; Anuar and Cetin, 2017). However,
: Preprint submitted to Elsevier Page 6 of 18



Algorithm 1 Time-varying Shockwave Speed Calibration
Input: Arrival time {𝑡𝑖, 𝑖 ∈ 𝐼} and speed {𝑣𝑖, 𝑖 ∈ 𝐼} collected by loop detector, trajectory of CVs {Π𝑗 , 𝑗 ∈ 𝐽}, upper

bound and lower bound of shockwave speed [𝑤𝑢𝑏, 𝑤𝑙𝑏], number of samples 𝑁 , accept thresholds 𝜖, maximum
iterations 𝑀

Output: Time-varying shockwave speed of CVs {𝑊𝑗 , 𝑗 ∈ 𝐽}, where 𝑊𝑗 = {𝑤𝜏𝑘
𝑗 , 𝑘 ∈ [0, 1, 2, ..., 𝑘𝑒𝑛𝑑]}

1: for 𝑗 ∈  do
2: 𝐷 = {(𝑡𝑖, 𝑣𝑖),∀𝑡𝑖 > 𝑡𝑗}
3: Sort 𝐷 in ascending order of 𝑡𝑖
4: 𝑘 = 0
5: for (𝑡𝑖, 𝑣𝑖) ∈ 𝐷 do do
6: 𝑖𝑡𝑒𝑟 = 0
7: while True do
8: Sample 𝑁 samples from uniform distribution 𝑈 (𝑤𝑢𝑏, 𝑤𝑙𝑏)
9: Using the samples 𝐰 = {𝑤𝑛, 𝑛 ∈ [1, 2, ..., 𝑁]}𝜏𝑘𝑗 to derive 𝑔𝜏𝑘𝑗 (𝜏) and ℎ̃𝜏𝑘𝑗 (𝜏,𝑤𝑛)

10: Calculate the point of intersection (𝜏𝑘, 𝑥̂
𝜏𝑘
𝑗 )𝑤𝑛

= 𝑔𝜏𝑘𝑗 (𝜏)⊗ ℎ̃𝜏𝑘𝑗 (𝜏,𝑤𝑛)
11: Measure errors err = {||(𝜏𝑘, 𝑥̂

𝜏𝑘
𝑗 )𝑤𝑛

, (𝜏𝑘, 𝑥
𝜏𝑘
𝑗 )||, 𝑛 ∈ [1, 2, ..., 𝑁]}

12: 𝑤∗ = argmin𝑤 err
13: if min(err) < 𝜖 then
14: 𝑤𝜏𝑘

𝑗 = 𝑤∗

15: break
16: else if (𝑥̂𝜏𝑘𝑗 )𝑤∗ < 𝑥𝜏𝑘𝑗 then
17: Increase 𝑣𝑖
18: else if (𝑥̂𝜏𝑘𝑗 )𝑤∗ > 𝑥𝜏𝑘𝑗 then
19: Decrease 𝑣𝑖
20: end if
21: 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
22: if 𝑖𝑡𝑒𝑟 > 𝑀 then
23: 𝑤𝜏𝑘

𝑗 = 𝑤∗

24: break
25: end if
26: end while
27: 𝑘 = 𝑘 + 1
28: end for
29: end for

the shockwave speed in Coifman’s method and its variants is set as a constant value, which may lead to sub-optimal
results. This motivated this work to calibrate time-varying shockwave speed values.

Besides the loop detector data, the trajectory data reported by CVs is leveraged to achieve this goal. The objective
of calibration is to find the optimal shockwave speed value 𝑤𝜏𝑘

𝑗 for CV 𝑗 at reconstruction step 𝑘, which minimizes
the error between the ground truth trajectory and the reconstructed one, as shown in Fig. 3. The objective function is
formulated as Eq. 7.

𝑤𝜏𝑘
𝑗 = argmin

𝑤
||𝑔𝜏𝑘𝑗 (𝜏)⊗ ℎ̃𝜏𝑘𝑗 (𝜏), (𝜏𝑘, 𝑥

𝜏𝑘
𝑗 )||, (7)

where the operation ⊗ is to calculate the point of intersection, ||⋅, ⋅|| is the distance between two points, and ℎ̃𝜏𝑘𝑗 (𝜏) is
the time-varying variant of Eq. 6. Specifically, the time-varying shockwave line function is illustrated in Eq. 8.

ℎ̃𝜏𝑘𝑗 (𝜏) = −𝑤𝜏𝑘
𝑗 𝜏 + (𝑥0 +𝑤𝜏𝑘

𝑗 𝑡𝑗+𝑘+1). (8)
The optimization problem in Eq. 7 can not be solved explicitly since the ground truth trajectory can not be

represented using the enclosed mathematical formulation so that the point (𝜏𝑘, 𝑥𝜏𝑘𝑗 ) can not be determined before
: Preprint submitted to Elsevier Page 7 of 18
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Figure 3: Process of shockwave speed calibration.

knowing ℎ̃𝜏𝑘𝑗 (𝜏) and 𝑔𝜏𝑘𝑗 (𝜏). However, the slope −𝑤𝜏𝑘
𝑗 of ℎ̃𝜏𝑘𝑗 (𝜏) is the unknown parameter to be optimized. Namely,

(𝜏𝑘, 𝑥
𝜏𝑘
𝑗 ) is indeterminate leading that 𝑤𝜏𝑘

𝑗 in Eq. 7 can not be solved explicitly. Thus, we propose to solve this problem
through the Monte Carlo sampling-based method. Specifically, for each reconstruction step 𝑘, we generate 𝑁 samples
of 𝑤𝜏𝑘

𝑗 , denoted as {𝑤𝑛, 𝑛 ∈ [1, 2, ..., 𝑁]}𝜏𝑘𝑗 . For each sampled value 𝑤𝑛 of 𝑤𝜏𝑘
𝑗 , we then calculate the point of

intersection between the trajectory line 𝑔𝜏𝑘𝑗 (𝜏) and the shockwave line ℎ̃𝜏𝑘𝑗 (𝜏,𝑤𝑛). Given the point of intersection,
we can derive the error between the point of intersection and the corresponding point on the ground truth trajectory,
denoted as {𝑒𝑟𝑟𝑛, 𝑛 ∈ [1, 2, ..., 𝑁]} corresponding to {𝑤𝑛, 𝑛 ∈ [1, 2, ..., 𝑁]}𝜏𝑘𝑗 , respectively. Note that considering
the reconstructed trajectory may have a longer travel time than the ground truth, we calculate the time difference
under the same position between the ground truth point and the point of intersection. The error in the temporal
dimension is independent of speed, which is better than the one in the spatial dimension for optimization. Given
{𝑒𝑟𝑟𝑛, 𝑛 ∈ [1, 2, ..., 𝑁]}, the minimal error is compared with a pre-defined threshold 𝜖. The corresponding 𝑤𝑛 is kept
for the reconstruction step 𝑘 if the above minimal error is smaller than 𝜖.

time

di
st

an
ce

ground truth trajectory
reconstructed trajectory
using adjusted speed

original speed
adjusted speed

reconstructed trajectory
using original speed

Figure 4: Adjust the speed collected by the loop detector.

However, as the value of 𝑤𝜏𝑘
𝑗 is bounded by an upper and a lower bound, it could be possible that there is no such

𝑤𝑛 that can achieve such a small error. To solve this problem, we optimize the value of both 𝑤𝜏𝑘
𝑗 and 𝑣𝑗+𝑘. Translating

the speed of the following vehicle to reconstruct the trajectory of the leading vehicle can be modeled as a quantification
of the impact of the leading vehicle on the following ones. Nonetheless, the stochasticity of such impacts can not be
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ignored, leading to the aforementioned challenge of solving the optimal 𝑤𝜏𝑘
𝑗 . Thus, to well handle the stochasticity, we

adjust the speed of the following vehicles to approximate the ground truth trajectory, as illustrated in Fig. 4. Specifically,
we compare the point of intersection (𝜏𝑘, 𝑥̂

𝜏𝑘
𝑗 ) with minimal error and the point (𝜏𝑘, 𝑥𝜏𝑘𝑗 ) on the ground truth trajectory,

when the minimal error can not satisfy the threshold 𝜖. The value of 𝑣𝑗+𝑘 is increased/decreased if the reconstructed
point is at the rear/front position of the ground truth point, as shown in Fig. 4. The pseudo-code of the algorithm is
illustrated in Algorithm 1.

5. Trajectory Reconstruction using Time-varying Shockwave Speed
Given the calibrated time-varying shockwave speed of the CV, we regard the CV as a leading vehicle to reconstruct

the reference points for the NCVs which are the following vehicles of the CV. The reconstruction process is designed
based on the method introduced in Section 4.2. However, simply connecting these reference points leads to a harsh
trajectory, which can not fulfill the vehicle dynamics and thus can not be used to estimate energy consumption. Hence,
we propose to design and apply a trajectory reconstruction method to filter the reference points and generate the final
trajectory. In the rest of this section, we introduce the process of reconstructing the reference points and optimizing
the reference points to reconstruct the final trajectory.
5.1. Reference Points Reconstruction

With the calibrated time-varying shockwave speed, it is simple to reconstruct the trajectory of CVs according to
the process in Section 4.2. However, the trajectory reconstruction of other NCVs remains unsolved. To this end, we
propose to reconstruct the reference points of these NCVs using the calibrated shockwave speed under the assumption
that the shockwave speed does not change in a short time period.

Given the calibrated time-varying shockwave speed, which is denoted as {𝑤𝜏𝑘
𝑗 , 𝑘 ∈ [0, 1, ..., 𝑘𝑒𝑛𝑑], 𝑗 ∈ 𝐽}, the

representation of the shockwave line in Eq. 6 is rewritten as Eq. 8. The reference points of CVs can be reconstructed
according to the procedures in Section 4.2 using the calibrated shockwave speed, Eq. 5, and Eq. 8. Considering that
the traffic conditions do not change dramatically in a short time period, we use the calibrated shockwave speed of the
closest leading CV for the NCVs to reconstruct their reference points. Specifically, for 𝑗𝑡ℎ CV with calibrated time-
varying shockwave speed, each shockwave speed value 𝑤𝜏𝑘

𝑗 is paired with 𝑣𝑗+𝑘 the speed of 𝑘𝑡ℎ following vehicle,
where the CV is considered as the leading vehicle. Thus, the reference points of 𝑘𝑡ℎ following vehicle of the CV can
be reconstructed through calculating the points of intersection {ℎ̃𝜏𝑚𝑗+𝑘(𝜏,𝑤

𝜏𝑘+𝑚
𝑗 ) ⊗ 𝑔𝜏𝑚𝑗+𝑘(𝜏), 𝑚 ∈ [0, 1, ..., 𝑘𝑒𝑛𝑑 − 𝑘]},

as shown in Fig. 5. The stochasticity of the impact of the leading vehicle on the following ones through shockwave
propagation is reflected by sampling 𝑣̃𝑗+𝑘+𝑚 from Gaussian distribution with mean 𝑣𝑗+𝑘+𝑚 and pre-defined variance
𝜎2 to derive 𝑔𝜏𝑚𝑗+𝑘(𝜏). After calculating the point of intersection (𝑥̂𝜏

′
𝑚
𝑗+𝑘, 𝜏

′
𝑚), we need to validate it by comparing the

position and time with the existing reference point (𝜏𝑚′−1, 𝑥̂
𝜏𝑚′−1
𝑗+𝑘 ). This new reference point is added to reconstruct the

trajectory if the position and time of this new point are greater than the existing point of the previous time step. The
reconstruction process of reference points is presented in Algorithm 2.

time

di
st

an
ce

Ground truth trajectory of CV
Reconstructed trajectory of CV
Instantaneous speed of NCV

Reconstructed trajectory of NCV
Shockwave line

Reference points of NCV

Figure 5: Trajectory reconstruction of other non-connected vehicles.
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Algorithm 2 Reference Point Reconstruction for NCVs
Input: Arrival time {𝑡𝑗+𝑘, 𝑡𝑗+𝑘+1, ..., 𝑡𝑗+𝑘𝑒𝑛𝑑} and speed {𝑣𝑗+𝑘, 𝑣𝑗+𝑘+1, ..., 𝑣𝑗+𝑘𝑒𝑛𝑑} of the (𝑗+𝑘)𝑡ℎ to (𝑗+𝑘𝑒𝑛𝑑)𝑡ℎ NCVs,

the calibrated shockwave speed of 𝑗𝑡ℎ CV {𝑤𝜏0
𝑗 , 𝑤𝜏1

𝑗 , ..., 𝑤𝜏𝜅
𝑗 , ..., 𝑤

𝜏𝑘𝑒𝑛𝑑
𝑗 }, 𝑗𝑡ℎ CV is the closest leading CV for its

following 1𝑠𝑡 to 𝜅𝑡ℎ NCVs, the location of loop detector 𝑥0, standard deviation 𝜎
Output: Reconstructed trajectory of (𝑗 + 𝑘)𝑡ℎ NCV, where 𝑘 ≤ 𝜅
1: Π𝑗+𝑘 = {(𝑡𝑗+𝑘, 𝑥0)}
2: for 𝑚 = 𝑘 ∶ 𝜅 do
3: Sample 𝑣̃𝑗+𝑚 from Gaussian distribution 𝑁(𝑣𝑗+𝑚, 𝜎2)
4: Derive ℎ̃𝜏𝑚−𝑘𝑗+𝑘 (𝜏) using Eq. 8 and 𝑤𝜏𝑚

𝑗
5: Derive 𝑔𝜏𝑚−𝑘𝑗+𝑘 (𝜏) using Eq. 5 and 𝑣̃𝑗+𝑚
6: Calculate the point of intersection (𝜏𝑚−𝑘, 𝑥̂

𝜏𝑚−𝑘
𝑗+𝑘 ) = ℎ̃𝜏𝑚−𝑘𝑗+𝑘 (𝜏)⊗ 𝑔𝜏𝑚−𝑘𝑗+𝑘 (𝜏)

7: if 𝜏𝑚−𝑘 > 𝜏𝑚−𝑘−1 and 𝑥̂𝜏𝑚−𝑘𝑗+𝑘 > 𝑥̂𝜏𝑚−𝑘−1𝑗+𝑘 then
8: Append (𝜏𝑚−𝑘, 𝑥̂

𝜏𝑚−𝑘
𝑗+𝑘 ) in Π𝑗+𝑘

9: end if
10: end for

5.2. Trajectory Reconstruction
Although the above reference points can be connected directly to produce the final trajectory of the vehicle, the

trajectory is not realistic since it does not consider vehicle or driver dynamics. Moreover, the energy consumption
estimated using such a trajectory is not reliable either. To this end, we propose a further step to reconstruct the trajectory
using the reference points. The reconstructed trajectory is constrained by the vehicle and driver dynamics for a more
realistic trajectory and better energy estimation.

We apply a vehicle movement model to introduce vehicle and driver dynamics simultaneously. We choose the
microsimulation free-flow acceleration model (MFC) (Makridis, Fontaras, Ciuffo and Mattas, 2019) as the vehicle
movement model. MFC is developed to capture the vehicle acceleration dynamics accurately and consistently. The
driver dynamics are also considered in MFC by introducing the driver style parameter. MFC takes the desired speed as
input to simulate the acceleration behaviors given the driver style and vehicle’s physical parameters, such as the mass
of the vehicle, the maximum tractive force of the vehicle, etc. As such, we consider the speed of the reference points
as the desired speed and input to the MFC to obtain the acceleration behaviors. Specifically, the desired speed is first
enhanced by the interpolation method to increase the frequency. The interpolated desired speed is then input to the
MFC to derive acceleration behaviors, which are further used to reconstruct the final trajectory and speed.

6. Experiments
To evaluate the performance of our proposed trajectory reconstruction method, we conduct the following

experiments: (1) comparison with several SOTA baseline models in terms of trajectory reconstruction accuracy and
energy consumption accuracy; (2) evaluation of the capability of capturing the traffic oscillation; (3) exploration the
relationship between the accuracy of reconstructed trajectory and the penetration rate of CVs The details are elaborated
in the rest of this section.
6.1. Data Preprocessing

We use the HighD (Krajewski, Bock, Kloeker and Eckstein, 2018) and NGSIM (Federal Highway Administration,
2007, 2006) datasets to evaluate our method, which are collected on the highways of Germany and the US, respectively.
They include the trajectory of vehicles of several minutes and in multiple lanes. We first separate each dataset into
several sub-datasets according to lanes. Namely, the trajectory of vehicles on the same lane is formed as a new sub-
dataset. Moreover, since our method is based on shockwave speed theory, we only use the sub-dataset that exists
shockwave to evaluate the performance of our method. Only the car-following vehicles are kept without considering
lane-change ones. The trajectories of some of the selected sub-dataset are shown in Fig. 6. We assume that a loop
detector is deployed at the start position of the road segment, as shown in Fig. 1. We collect the velocity of all of the
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Figure 6: Examples of extracted trajectory data.

Model
Metric Penetration rate 5%

Time headway (s) Speed (m/s) Fuel consumption (L/100km)
avg. std. avg. std. avg. std.

Coifman 5.61 - 3.86 - 0.37 -
Macro-micro 3.82 0.27 2.86 0.19 0.32 0.06

Ours with polynomial 2.65 0.17 2.74 0.18 0.65 0.06
Ours with MFC 2.64 0.19 2.65 0.17 0.23 0.02

Model
Metric Penetration rate 10%

Time headway (s) Speed (m/s) Fuel consumption (L/100km)
avg. std. avg. std. avg. std.

Coifman 5.61 - 3.86 - 0.37 -
Macro-micro 2.27 0.13 2.70 0.06 0.28 0.03

Ours with polynomial 2.24 0.11 2.74 0.11 0.66 0.03
Ours with MFC 2.19 0.11 2.61 0.10 0.21 0.01

Model
Metric Penetration rate 15%

Time headway (s) Speed (m/s) Fuel consumption (L/100km)
avg. std. avg. std. avg. std.

Coifman 5.61 - 3.86 - 0.37 -
Macro-micro 1.72 0.12 2.15 0.07 0.24 0.02

Ours with polynomial 2.07 0.08 2.71 0.06 0.63 0.02
Ours with MFC 2.01 0.10 2.59 0.07 0.21 0.01

Table 1
Comparison of MAE of time headway, fuel consumption, and CO2 among our model with different trajectory reconstruction
methods and baseline models.

vehicles that pass the loop detector. Some of the vehicles are defined as CVs with known trajectories, which are the
blue ones in Fig. 1.
6.2. Accuracy Comparison

To assess the performance of our method, we choose the following baseline models: (1) Coifman’s method (Coif-
man, 2002) ; (2) macro–micro model (Chen et al., 2022a). We follow the values of parameters as mentioned in (Chen
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(a) Time headway MAE. (b) Speed MAE.

(c) Fuel consumption MAE. (d) CO2 emission MAE.

Figure 7: Accuracy comparison of time headway, fuel consumption, and CO2 emission among baseline models and ours.

et al., 2022a) to reproduce the reconstruction results. Additionally, we also conduct an ablation study on the selection of
trajectory reconstruction method. Besides the aforementioned trajectory reconstruction in 5.2, we apply a polynomial
reconstruction method for comparison. Specifically, the reference points are reconstructed using a 5-degree polynomial
optimized by least-square regression. We use mean absolute error (MAE) on time headway and speed to measure the
accuracy of the reconstructed trajectory. To estimate the energy consumption and emission, we apply the simplified
fuel consumption model (Makridis et al., 2019) and CO2 emission model, which is publicly available 1 and is based on
CO2MPAS (European Commission, a) model, developed by the European Commission. We compare the total amount
of energy consumed on the same travel length between our model and the ground truth trajectory.

Moreover, we set different penetration rates, 5%, 10%, and 15%, to explore its impact on the accuracy. To achieve
5% and 10% penetration rates, we randomly select one vehicle as the CV with a known trajectory every twenty or ten
vehicles, respectively. For 15% penetration rate, we randomly select three vehicles as the CVs with known trajectory
every twenty vehicles. For different penetration rates, we run 50 times and the CVs are selected randomly every time.
As we have no information about the vehicle dynamics from the dataset, we randomly select an average vehicle model
of European Class C (European Commission, b) to estimate fuel consumption and CO2 emissions.

The comparison results of two baseline models and our model with different reconstruction methods are shown in
Tab. 1 and violin plot as Fig. 7. In terms of time headway accuracy, ours with both polynomial and MFC reconstruction
methods perform much better than the baseline models when the penetration rate is low, i.e., 5% in our experiment.
When the penetration rate increases to 10%, our model still has better performance than the baseline models. Although

1https://pypi.org/project/co2mpas-driver/
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the macro-micro model achieves 14% higher performance than ours in average value while the penetration rate is 15%,
our model has a more stable performance. In terms of speed accuracy, the performance is similar as the one of time
headway. In terms of fuel consumption and CO2 emissions, we only list the detailed value of fuel consumption since
CO2 has a linear relationship with fuel consumption. Our model with MFC reconstruction method achieves a higher
accuracy than the baseline models under all of the penetration rates. Besides the average value, it also provides a more
stable performance than others. Moreover, we analyze the reason for the higher error of the polynomial reconstruction
method. The fuel consumption of the reconstructed trajectory is always lower than the one of the ground truth trajectory,
which implies that the trajectory may be over-smooth to lose some randomness existing in the ground truth trajectory.
The randomness may largely affect the performance in terms of energy consumption. In summary, our model has a
better performance, especially when the CV penetration rate is low.

Intersection area

Spectrum of Ground Truth Trajectories and Reconstructed Trajectories

Figure 8: Evaluation metric for reproducing traffic oscillation.

6.3. Traffic Oscillation Reproduction
In this part, we evaluate the capability of the proposed methodology in reproducing observed traffic oscillations. To

characterize the traffic oscillations, we use the frequency and amplitude of the velocity sequence since the velocity can
well reflect empirical observations according to (Makridis et al., 2020). To this end, we apply the efficient Fast Fourier
Transform (FFT) on the velocity sequence to get the frequency domain information. We use one of the subdatasets to
illustrate the results. As shown in Fig. 9, Fig. 9.(b) is the spectrum of Fig. 9.(a), which is expressed using frequency
and amplitude. Specifically, except for the dominant peak amplitude, the existence of other peak amplitudes implies
multiple traffic oscillations (Makridis et al., 2020). We apply FFT to the reconstructed trajectory of Coifman’s method,
macro-micro method, and ours with MFC reconstruction. The reconstructed trajectory and the corresponding Fourier
spectrum are shown in Fig. 9.(c)-(h), respectively. Comparing Fig. 9.(b), (d), (f), and (h), our model has the most
similar peak frequency and amplitude as the one of ground truth, which indicates that our reconstruction method can
successfully reproduce the traffic oscillations.

Moreover, considering that the connected vehicles are selected randomly in the above evaluation experiments, the
spectrum may be affected by the selection of connected vehicles. Thus, we introduce a new metric to quantify the
capability of traffic oscillation reproduction. Specifically, we calculate the intersection area between the spectrum of
ground trajectories and reconstructed trajectories. The method of calculating the intersection area is shown in Fig. 8.
Then, we use the ratio of the intersection area on the whole area of the reconstructed spectrum to measure the quality of
the reconstructed trajectories in terms of reproducing traffic oscillation. The ratio of Coifman’s method is 77.20%. The
mean and standard deviation value of the ratio achieved by macro-micro model is 63.90% and 1.01%, respectively. For
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our model with MFC reconstruction method, we achieve 88.61% and 1.41%, in terms of mean and standard deviation
value of the ratio. Thus, compared with other baseline models, our model is the most capable one to reproduce the
traffic oscillations.

(a) (b)

(f)

(g) (h)

(c)

(e)

(d)

Figure 9: The Fourier Spectrum of ground truth data and reconstructed data. (a) Ground truth trajectories. (b) Fourier
spectrum of ground truth. (c) Reconstructed trajectories by Coifman’s method. (d) Fourier spectrum of reconstructed
trajectories of Coifman’s method. (e) Reconstructed trajectories by macro-micro method, where the CV penetration rate is
10% and the black line is the trajectory of CV. (f) Fourier spectrum of reconstructed trajectories of macro-micro method.
(g) Reconstructed trajectories by our method with MFC reconstruction, where the CV penetration rate is 10% and the
black line is the trajectory of CV. (h) Fourier spectrum of reconstructed trajectories of our method.
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7. Discussion
As the above experimental results illustrate that the accuracy of the reconstructed trajectory is affected by the

characteristics of the CVs’ trajectory. To well measure the contribution of different CVs, we propose a new metric
to evaluate the contribution of the CV to trajectory reconstruction, which is spatial-temporal area coverage. Further
analysis is conducted to measure the amount of information required to calibrate different CVs. By evaluating these
two proposed metrics, we can identify the most critical and informative CV.
7.1. Spatial-Temporal Area Reconstruction

Considering that the trajectory of the vehicles that are farther from the CV can not be fully recovered due to the
limited number of calibrated shockwave speed values, we propose to reconstruct a spatial-temporal (ST) area instead
of a set of complete trajectories. Given a set of calibrated shockwave speed values for a CV, the covered ST area of
this CV is defined as the area enclosed by the reconstructed trajectory of the CV and the last shockwave line that can
contribute to recovering the trajectory of other NCVs, as shown in Fig. 10(a). Note that the trajectory of an NCV is
considered as reconstruction completion when the reconstructed segment is more than 80% of the whole journey. The
larger of this area represents that knowing the trajectory of this CV can contribute more to trajectory reconstruction.

(a) An example of the reconstructed ST area. The unit
of ST area is feet⋅s.

(b) Relationship between the average speed of the CV and its reconstructed
spatial-temporal area. The unit of y-axis is feet⋅s and x-axis is feet/s.

Figure 10: Analysis of the reconstructed spatial-temporal area of CVs.

Given the above definition, we explore the relationship between the average speed of the CV and its covered ST area.
We calibrate the time-varying shockwave speed for all vehicles. The results are shown in Fig. 10(b), which indicates
that the CV with a smaller average speed can cover more ST area and contribute more to reconstructing the trajectory
of its following vehicles.
7.2. Information Amount Requirement for Calibration

As introduced in the previous sections and experiments, the collected data, including arrival time and speed of
following vehicles, is required to calibrate the time-vary shockwave speed values of the leading CV. However, for
different CVs, they need different amount of data for calibration. We define the number of following vehicles’ speed
that are used to calibrate the shockwave speed of the CV as the information amount required for calibrating the time-
varying shockwave speed. As shown in Fig. 11, there is no significant relationship between the average speed of the CV
and its required amount of information. Thus, the selection of a CV has little impact on the efficiency and effectiveness
in terms of the data requirement.
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Figure 11: Relationship between the average speed of CVs and the required amount of data for shockwave calibration.

8. Conclusion and Future Work
In conclusion, our proposed framework presents a comprehensive solution to the challenges in reconstructing

vehicle trajectories using a combination of fixed and connected vehicle sensor data. The integration of fixed sensor
information and connected vehicle data enables a more accurate and robust trajectory reconstruction process.
The introduced calibration algorithm for time-varying shockwave speed further enhances precision, addressing the
limitations of existing methods. Moreover, the vehicle dynamics are considered while reconstructing the trajectory
for better energy estimation. Through real-world evaluations, our method consistently outperforms baseline models,
demonstrating its effectiveness across various traffic conditions, especially in scenarios with a low penetration rate of
CVs. The concept of a reconstructed ST area and information amount requirement provide valuable insights into the
contribution and effectiveness of CVs with different average speeds, enriching our understanding of the reconstruction
process. This work not only advances the field of trajectory reconstruction but also lays the foundation for more accurate
modeling and optimization in traffic flow management and related domains.

In future work, we plan to apply our method to traffic scenarios with signals and intersections to measure the queue
length of intersections. Moreover, we will explore and build the relationship between the time-varying shockwave speed
and traffic data collected by a loop detector using deep learning methods. As such, we can reconstruct the trajectories
without knowing any CV trajectory, which can significantly enlarge the application scenarios and mitigate the reliance
on the existence of CVs.
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