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Figure 1: Trajectory Forecasting in JRDB-Traj dataset. The top figure displays the RGB image from the robot’s
perspective, while the bottom figure shows the corresponding 3D point cloud. Solid lines indicate the observed past
trajectories and dots represent the ground-truth future trajectories.

ABSTRACT

Predicting future trajectories is critical in autonomous driving, especially in preventing accidents
involving humans, where a predictive agent’s ability to anticipate in advance is of utmost impor-
tance. Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and
navigation, face challenges in real-world scenarios, often due to the isolation of model components.
To address this, we introduce a novel dataset for end-to-end trajectory forecasting, facilitating the
evaluation of models in scenarios involving less-than-ideal preceding modules such as tracking. This
dataset, an extension of the JRDB dataset, provides comprehensive data, including the locations of all
agents, scene images, and point clouds, all from the robot’s perspective. The objective is to predict
the future positions of agents relative to the robot using raw sensory input data. It bridges the gap
between isolated models and practical applications, promoting a deeper understanding of navigation
dynamics. Additionally, we introduce a novel metric for assessing trajectory forecasting models
in real-world scenarios where ground-truth identities are inaccessible, addressing issues related to
undetected or over-detected agents. Researchers are encouraged to use our benchmark for model
evaluation and benchmarking. The leaderboard and code are publicly available.
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1 Introduction

The ability to predict future events is widely regarded as a fundamental aspect of intelligence [3]. This predictive
capability assumes paramount significance in the context of autonomous driving, where precise predictions play a
pivotal role in preventing accidents involving humans. A predictive agent possesses the foresight to anticipate the agents’
actions few seconds in advance, enabling it to make informed decisions about when to stop or proceed safely. Trajectory
forecasting models are aimed at predicting the future positions of agents based on a sequence of past observed locations.
These models have been used in socially-aware robotics [4], autonomous vehicles [16], and navigation [9].

With the successful development of deep learning, autonomous driving algorithms have undergone a significant
transformation, involving a complex series of interconnected tasks such as object detection, tracking, and trajectory
forecasting. In the realm of industry solutions, it is common to deploy standalone models for each of these tasks,
often evaluating and comparing them independently without considering their interdependencies. In other words, it
assumes that previous modules function optimally. In practice, early modules may exhibit imperfections that can result
in less-than-ideal trajectory forecasting.

We present a novel dataset designed for end-to-end trajectory forecasting in order to study the performance given
non-perfect previous modules such as tracking. This is an extension of JRDB [12] dataset viewed from the perspective
of a robot navigating within a dynamic environment. The task is to predict the future positions of all agents within the
scene relative to the robot, leveraging raw sensory input data, point clouds and images. By focusing on end-to-end
trajectory forecasting, our goal is to bridge the gap between isolated models and practical applications, fostering a
deeper understanding of real-world navigation dynamics.

Notably, assessing the future trajectory prediction performance for multiple agents poses a challenge. Common metrics
such as Average Displacement Error (ADE) and Final Displacement Error (FDE) cannot be employed because complete
and accurate observed trajectories are unavailable. In essence, we lack the associated identities (IDs) required to
calculate the displacement error accurately. Moreover, the inclusion of detection and tracking models can lead to
instances where agents are either not detected or are over-detected, subsequently affecting the input data provided to
the forecasting model. To address these issues, we introduce a novel, comprehensive metric for evaluating trajectory
forecasting models in a two-step process involving matching and measuring displacement.

We made our benchmark publicly accessible, inviting researchers to submit their trajectory prediction models for
evaluation and benchmarking against this new metric. The leaderboard and code are publicly available.

2 The JRDB-Traj Dataset

JRDB [12], JRDB-Act [5] and JRDB-Pose [19] previously introduced annotations including 2D and 3D bounding boxes
with tracking IDs, action labels, social groups and body pose. We leverage the 3D bounding box annotations and make
the trajectories using the center of the bounding box of the person on the ground.

2.1 Splits

We follow the official splits of JRDB [12] to create training, validation, and testing splits from the 54 captured sequences,
with each split containing an equal proportion of indoor and outdoor scenes as well as scenes captured using a stationary
or moving robot. All frames from a scene appear strictly in one split. The videos and point clouds for the last five
seconds of the test are hidden.

2.2 Evaluation Metrics

Assessing trajectory forecasting performance in the absence of ground-truth IDs necessitates the establishment of
associations between predicted and ground-truth trajectories in future frames, followed by their distance measurement—a
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standard approach in detection and tracking evaluations. Therefore, we report two prevalent detection and tracking
metrics in these future frames:

1. IDF1 [15]: This is the ratio of correctly identified detections over the average number of ground-truth and
computed detections.

2. OSPA-2 [14]: Optimal Sub-Pattern Matching (OSPA) [18] is a multi-object performance evaluation metric
which includes the concept of miss-distance in tracking. OSPA-2 has been further adapted to detection and
tracking tasks. It is a set-based metric that can directly capture a distance between two sets of trajectories
without a thresholding parameter.

Furthermore, we propose End-to-end Forecasting Error (EFE) for assessing trajectory forecasting in real-world scenarios.
In short, EFE determines the associations between predicted and ground-truth trajectories, measures their distances, and
accounts for any mismatches in the number of trajectories. Importantly, EFE refrains from penalizing early terminations
in predicted trajectories. In practical terms, if a model predicts a trajectory for an agent that extends beyond the scene
boundaries, it does not contribute to error. A comprehensive explanation follows.

Let X = {XD1
1 , XD2

2 , . . . XDm
m } and Y = {Y D1

1 , Y D2
2 , . . . Y Dn

n } be the sets of trajectories for prediction and the
ground-truth, respectively. Note Di represents the time indices which track i exists (having a state-value). Then, we
calculate the time average distance of every pair of tracks XDi
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where dc(xi, yi) := min(c, d(xi, yi)) indicates the euclidean displacement error with the cutoff distance c.

Finally, we obtain the distance, EFE, between two sets of trajectory tracks, i.e., X and Y by:

EFE(X,Y) =
1

n

(
min
π∈Πn

m∑
i=1

d̃(XDi
i , Y

Dπi
πi ) + c ∗ (n−m)

)
, (3)

if n ≥ m. Πn is the set of all permutations of {1, 2, . . . , n}. Note that d̃ reflects the localization errors of trajectories,
whereas c∗ (n−m) reflects the cardinality error (false and missed trajectories) and we put c = 5 meters as the threshold
penalty. If m > n:

EFE(X,Y) =
1

m

(
min
π∈Πm

n∑
i=1

d̃(X
Dπi
πi , Y Di
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. (4)

We further define EFE(X,Y ) = c if either X or Y is empty, and EFE(∅, ∅) = 0. The code of the metrics and related
details can be accessed in JRDB Toolkit.
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Figure 2: Qualitative results of trajectory forecasting on JRDB-Traj dataset. Solid lines indicate the observed past
trajectories and dots represent the predicted trajectories.

EFE ↓ OSPA-2 ↓ IDF1 ↑
Zero-Velocity 2.981 3.082 49.431
PCENet [10] 3.939 3.961 23.813
OpenTraj [2] 3.498 3.579 37.127
SMEMO [11] 2.671 2.786 55.258
Social-LSTM [1] 2.646 2.76 54.673
Social-Pose [6] 2.558 2.675 56.298
HST [17] 2.506 2.627 58.392

Table 1: Quantitative evaluations of trajectory forecasting models on JRDB-Traj dataset.

2.3 Benchmark

In Table 1, we have evaluated the performance of some baselines on this dataset and task, starting by the simple
Zero-Velocity, a simple yet competitive baseline. It repeats the last observed location of each agent as its future
predicted locations.

We then evaluated the well-known Social-LSTM baseline [1]. Note that we forecast future trajectories by leveraging
observed past trajectory estimates derived from detection and tracking algorithms. Here, we utilized the estimated
detections by a pre-trained PiFeNet [8] and subsequently employed the Simpletrack [13] tracking algorithm to provide
observed past trajectory estimates as inputs to all the aforementioned models. We employed the Social-LSTM code
provided by TrajNet++ [7]. Nevertheless, it is essential to note that we predicted an agent’s future trajectory when we
had access to the last two observed data points within their trajectory. A qualitative example is available in Figure 2
with observed and predicted trajectories of all agents in the scene. Our code is available online: https://github.com/vita-
epfl/JRDB-Traj.

We have also evaluated the performance of five other recent methods in trajectory forecasting, PCENet [10], OpenTraj [2],
SMEMO [11], Social-Pose [6] and HST [17]. It shows that HST is currently the leader of this benchmark. Using our
public benchmark, one can submit their model and evaluate their performance.

3 Conclusion

In this paper, we introduced JRDB-Traj, a new dataset and benchmark for trajectory forecasting from raw sensory
inputs. We have also introduced EFE, a new metric for trajectory forecasting in crowds where ground-truth identities
are inaccessible. We anticipate that this dataset will foster further research in this domain, bringing us closer to realizing
a fully functional autonomous driving system suitable for practical applications. As future works, we will enrich this
dataset with adding more fine-grained human motion (body keypoints) annotations to it.
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