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Abstract

Demand-responsive multimodal transit offers opportunities to complement existing public
transport systems and provide an overall better service level to passengers while at the
same time making better use of the resources. This study optimizes the capacity of
such system by strategically sizing the required fleet and allocating it to the operating
services. We formulate a two-stage stochastic optimization model that plans the transit
system and the required fleet in the first stage, and optimizes the demand-responsive
operations in the second stage. We develop a decomposition-based method that exploits
the network-based formulation of the second stage, allowing us to solve practical instances.
Preliminary results from a case study in the city of Zurich show that designing a public
transport system together with demand-responsive mobility systems can benefit both
transport operators and passengers. By allocating the system capacity more efficiently,
operators reduce operational costs while maintaining or improving the travel experience
for passengers.
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1 Introduction

This work studies a mixed transport system where public transport (i.e., transit) and
on-demand vehicles are optimized in a synchronized and integrated manner. This type
of system, also known as On-Demand Multimodal Transit System (ODMTS), has been
actively studied in recent years (Basciftci and Van Hentenryck, 2020; Bertsimas et al.,
2020; Dalmeijer and Van Hentenryck, 2020; Steiner and Irnich, 2020; Calabrò et al., 2023).
The rise of digitalization capabilities, the need to address new and changing commuting
patterns, and the higher customer expectations underscore the potential value of such
systems. Pilot projects have proven the viability of ODMTS in practice (Van Hentenryck
et al., 2023), but modeling and planning these systems at scale remains a challenge,
and most of the studies consider different assumptions to be able to solve such models
(Banerjee et al., 2021; Sumalee et al., 2011). Among others, the large-scale models focus on
a deterministic scenario and consider homogeneous fleets within modal systems (Lienkamp
and Schiffer, 2023). One of the areas for improvement from ODMTS is dimensioning the
system capacity accurately. Running half-empty vehicles or overcrowded ones hinder the
offered service level to passengers. Adjusting the frequency of the transit lines is one
way of adapting the system capacity to the demand. However, this may not be enough,
and it is also susceptible to unexpected variations in demand. We believe that planning
and sizing a heterogeneous fleet can be a more efficient approach to optimize the system
capacity and offer a better level of service. This also fits with the needs of many transit
operators to renew their fleets and the model we present can be seen as an opportunity to
make such decisions effectively.

The public transport system is seen as the core part of an ODMTS where demand-
responsive vehicles act as a complement to transit rather than a replacement. Sizing
the system’s fleet is a strategical decision, whereas operating on-demand services is an
operational one as they do not rely on planning in advance. This brings us to formulate
the system as a two-stage model formulation in which we make strategic decisions in the
first stage (i.e., system fleet sizing and scheduling) and operational decisions in the second
stage (i.e., planning of on-demand vehicles and passenger routing) to respond to demand
uncertainty.

We address two main research questions in this study:

1. Can a model for ODMTS with heterogeneous fleet planning decisions and stochastic-
ity in demand lead to better passenger service levels and lower transport operations
costs?





        

2. What are the benefits this model can bring and how can it operate in practice?

The first question is about how can we leverage the uncertainty realization and additional
operational flexibility to plan the system capacity more efficiently. The second question
is about quantifying the value of integrating on-demand mobility systems into public
transportation line and timetable planning. This value addresses all the actors involved:
(i) operational costs for operators, (ii) passenger level of service for customers, and (iii)
environmental and congestion impact for the society.

This study aims at making the following contributions:

1. New model: Demand-responsive multimodal transit with heterogenous fleet and
stochastic demand : A two-stage stochatic optimization model.

2. Efficient exact algorithm: A solution method based on double (i.e., Benders and
Dantzig-Wolfe) decomposition.

3. High-quality solutions on large real-life instances.
4. Practical impact: Benefits of integrated multimodal planning versus independent

planning of public transport and demand-responsive services.

2 Problem description

We present a two-stage stochastic problem formulation that defines the transit schedule
and its required fleet in the first stage, and plans the on-demand vehicles and passenger
routing at the trip level in the second stage.

2.1 First stage

The first stage problem covers strategical decisions including, (i) which schedule and (ii)
with which fleet should we operate the transit system, and (iii) which transit lines and/or
on-demand vehicle serve each passenger origin-destination. It minimizes both transit
operational costs and the expected travel costs of passengers.

We consider a set of public transport lines L to operate (e.g., bus or tram) formed by a set





        

of stations Sℓ, that can be operated using vehicles of types B. We denote Fℓb to the set of
frequencies that line ℓ ∈ L could operate using bus type b ∈ B. Moreover, we predefine a
set of possible schedules Pℓf for such frequency f ∈ Fℓtb as well as the number of vehicles
required Nℓfb. Each schedule is formed by the set of services Hp and each bus type
b ∈ B has capacity CB

b . For the passengers, we denote OD to the entire sets of possible
origin-destination pairs, and let Dd be the expected demand flow on origin-destination
d ∈ OD. Passengers can travel using the transit systems but also cover part or the whole
trip using on-demand transport.

Based on this setup, we define cLdℓ and cVdk as the travel cost of serving the passenger flow
d ∈ OD using line ℓ ∈ L and served partly by an on-demand vehicle, respectively. This
can be seen as the fixed cost related to sizing the system fleet. Finally, to account for
operational costs we define cQℓfbp as the cost of operating line ℓ ∈ L running at frequency
f ∈ Fℓb using vehicles of type b ∈ B using schedule p ∈ Pℓtf . Each of these costs has
an associated variable in the model, namely in order, zdℓ (binary variable that denotes
if OD pair d ∈ OD is served by line l ∈ L), vd (integer variable that defines how many
on-demand partial legs are needed to serve OD pair d ∈ OD), and qℓfbp (a binary variable
that denotes if line ℓ ∈ L runs with frequency f ∈ Fℓtb using vehicles of type b ∈ B using
schedule p ∈ Pℓf ).

The first-stage minimizes in the objective function Eq. (1) the a priori costs of serving
origin-destinations by a transit system and on-demand vehicles and the operational costs
of the chosen transit schedule. We find the schedule of each transit line in Eq. (2), we
size the system to the expected demand in Eq. (3), and Eqs. (4)- (6) define the nature of
variables.

The first-stage model looks like this:

min
∑
d∈OD

(cWd wd + cVd vd +
∑
ℓ∈Ld

cZdℓzdℓ) +
∑
ℓ∈L

∑
f∈Fℓb

∑
b∈B

∑
p∈Pℓf

cQℓfbpqℓfbp + E[Y (z, q,v),S] (1)

s.t.∑
b∈B

∑
f∈Fℓtb

∑
p∈Pℓtf

qℓftbp = 1 ∀ℓ ∈ L, t ∈ T (2)

∑
d∈ODℓ

Ddzdℓ ≤
∑
b∈B

∑
f∈Fℓb

∑
p∈Pℓf

CB
b Nℓfkqℓfbp ∀ℓ ∈ L (3)





        

vd ∈ Z+ ∀d ∈ OD (4)

zdℓ ∈ {0, 1} ∀d ∈ OD, ℓ ∈ Ld (5)

qℓfbp ∈ {0, 1} ∀ℓ ∈ L, b ∈ B, f ∈ Fℓb, p ∈ Pℓf (6)

2.2 Second stage

The second stage tackles the operations of the transit and on-demand services and the
routing of all the passengers. This stage is divided into a set of scenarios S, each scenario
s ∈ S corresponding to a different realization of the passenger demand with probability
πs. We define the discrete set of passenger requests Rs in scenario s ∈ S. Each passenger
request r ∈ Rs is characterized by an origin or, destination dr, request time tr and number
of passengers nr.

To capture each passenger’s trip, we use a graph G with the set of nodes V and arcs A.
These node and arc sets can be divided into the following subsets.

The node set V is divided into the following subsets:

• Artificial source and sink nodes : These nodes represent the origin and destination
of a passenger’s path. We denote ôrs and d̂rs to the origin and destination node for
passenger r ∈ Rs in scenario s ∈ S.

• Location nodes : These nodes represent a time and space coordinate, where the space
is characterized by a location in the network (e.g., passenger origin/destination, or
transit stop), and the time is characterized by a time instant in the planning horizon.
These nodes are used to characterized the arrival or departure time of passengers to
the different locations in the network.

• Transit nodes : These nodes represent the scheduled stops of each transit trip. This
set can be divided into arrival and VBD nodes. For each trip p ∈ Pℓtf of line ℓ ∈ L,





        

stopping location n ∈ Sℓ, and bus type b ∈ B, there is one node for arrival time, and
one node for the departure time.

• Boarding nodes : These nodes represent the change of transport mode when boarding
a transit trip or an on-demand first/last mile trip.

The arc set A is also divided into different arc subsets. Following a similar approach to
the traffic assignment using diachronic graphs from Gentile (2016), we differentiate the
following types of arcs:

• Source and sink arcs : These arcs connect the artificial source (resp. sink) node of
each request r ∈ Rs with the location node of its origin location or (resp. destination
location dr) and request time tr (resp. arrival time).

• Walk arcs: These arcs represent passenger walking between their origin (respct.
destination) and their nearest transit stops. These arcs connect two location nodes
within walking distance and the arrival time is directly given by the starting walking
time. The cost of the arc is computed as ωWK∆WK where ωWK is the walking
coefficient and ∆WK is the walking time.

• Driving arcs : These arcs represent passenger using an on-demand vehicle as part of
their trip (first-mile, last-mile, or door-to-door) and are modeled in the same way as
the walking arcs. The cost of the arc is computed as ωDV∆DV where ωDV is the
driving coefficient and ∆DV is the driving time. This coefficient is also used as a
proxy to measure the operational (variable) costs of utilizing an on-demand vehicle.
Remember that these arcs are associated with the first-stage variable vd, except the
door-to-door driving arc, that has a higher penalty cost, as we want to incentivize
passenger to use the transit system as part of their trip.

• Transit Boarding arcs: These arcs represent waiting at a certain location and
boarding a transit service. These arcs connect a location node set with the corre-
sponding boarding node. The cost of the arc is computed as ωTB where ωTB is the
on/off-boarding-time coefficient.

• Transit running arcs : These arcs represent the running time between stations of the
transit services. Each arc connects the departure with the arrival transit node of
two consecutive stations. The cost of the arc is computed as ωTR∆TR where ωTR is
the transit run-time coefficient and ∆TR is the running time.

• Transit dwell arcs : These arcs represent the dwell time at stations of the transit
services. Each arc connects the arrival with the departure transit node at the station.
The cost of the arc is computed as ga = ωTD∆TD where ωTD is transit dwell-time
coefficient and ∆TD is the dwell time.

• Transit transfer arcs : These arcs represent transfers between line services at stations.





        

Each arc connects two transit nodes, where stops are the same, but the trips and
vehicle types are different. The arrival time from the incoming service and the
departure time of the outgoing service need to satisfy the minimum transfer time
at the station. The cost of the arc is computed as ga = ωTT∆TT where ωTT is the
transfer-time coefficient and ∆TT is the transfer time.

Figure 1: Example of a passenger graph.

A simplified example of such network for a passenger is shown in Figure 1. The model has
one set of binary variables to find the passenger trips. For each scenario s ∈ S, let yras be
1 if arc a ∈ A is traversed by passenger request r ∈ Rs. Associated with these variables,
we have the corresponding costs ĉras. These costs capture the generalized cost of travel,
but also the variable costs of operating the fleet of on-demand vehicles as mentioned in
each of the arc subsets. To ease the notation, for each passenger request r ∈ Rs, we define
Ar the set of arcs that the passenger can traverse. We denote A+

r (i),A−
r (i) to the set of

outgoing arcs from and incoming arcs to node i ∈ V respectively. We also define A(ℓ)

as the arcs related to transit line ℓ ∈ L, ADV as the driving arcs, A(q̄ℓfbp) as the arcs
related to the services defined by variable qℓfbp, and A+

ℓfbph(n) as the transit running arcs
from station n corresponding to service h of schedule p ∈ Pℓf from line ℓ ∈ L, frequency
f ∈ Fℓtb and vehicle of type b ∈ B. The second-stage model is as follows:

Y(z̄, q̄, v̄,S) = min
∑
s∈S

πs(
∑
r∈Rs

∑
a∈Ar

ĉrasyras) (7)

s.t.∑
a∈A+

r (ôrs)

yras = 1 ∀r ∈ Rs, s ∈ S (8)

∑
a∈A−

r (d̂rs)

yras = 1 ∀r ∈ Rs, s ∈ S (9)





        

∑
a∈A+

r (i)

yras −
∑

a∈A−
r (i)

yras = 0 ∀i ∈ V\{ôrs, d̂rs}, r ∈ Rs, s ∈ S (10)

∑
a∈A(ℓ)

yras ≤ z̄(or,dr)ℓ ∀r ∈ Rs, ℓ ∈ L, , s ∈ S (11)

∑
r∈Rs|(or,dr)=d

∑
a∈ADV \{(ôrs,ôds)}

yras ≤ v̄d ∀s ∈ S, d ∈ OD (12)

∑
a∈A(q̄ℓfbp)

yras ≤ q̄ℓfbp ∀r ∈ Rs, ℓ ∈ L, b ∈ B, f ∈ Fℓb, p ∈ Pℓf , s ∈ S (13)

∑
a∈A+

ℓfbph(n)

∑
r∈Rs

nryras ≤ CB
b q̄ℓfbp ∀b ∈ B, ℓ ∈ L, n ∈ Sℓ, f ∈ Fℓb, p ∈ Pℓf , h ∈ Hp, s ∈ S

(14)

yras ∈ {0, 1} ∀r ∈ Rs, a ∈ Ar, s ∈ S (15)

The objective function Eq. (7) minimizes the operational costs of the passenger door-
to-door trips and the on-demand vehicles across scenarios. Eqs. (8)- (10) define a path
for each passenger in the time-space graph G. Eq. (11) only allows the passenger to use
a transit line if its origin-destination has been assigned to it, and Eq. (12) only allow
passengers to use the assigned fleet of on-demand vehicles. We can only choose transit
arcs of the activated schedules in Eq. (13). Eq. (14) ensures capacity restrictions at the
transit trip level and Eq. (15) define the binary nature of the variables. The second stage
is always feasible as we assume that passengers can always be served by a door-to-door
service.





        

3 Solution method

To solve large-scale instances of the model, we exploit the decomposability of problem,
and in particular, of the second-stage graph. First, we can apply Benders decomposition
to the entire two-stage problem. The first-stage problem becomes the Benders Master
Problem (BMP) and the second-stage problem becomes the Benders Sub-problem (BSP).
Leveraging this decomposition, we can reformulate the second-stage problem as a set
partitioning formulation where variables refer to paths instead of arcs in the time-space
graph. Each path corresponds to a passenger trip from origin to destination.

Given the complexity of the second stage, enumerating all path-based variables is not
tractable. Therefore, we opt to generate them dynamically using column generation. Due
to the reformulation, we only convexify Eqs. (8)- (10), meaning that the pricing problem
(PP) is a shortest path problem in a directed and acyclic graph (DAG). Therefore, we can
use efficient label-setting algorithms to solve them. We acknowledge that, when the PP is
a pure shortest path problem, column generation does not provide a benefit in terms of
root node relaxation (i.e., solving the root node with column generation and solving the
relaxed version of the original formulation provide equal bounds), but we foresee to solve
the root node faster.

Once the column generation does not provide any path with negative reduced cost and the
Benders decomposition procedures converge, if the solution is still fractional, we solve the
integer version of the BSP to guarantee an integer feasible solution. The BSP formulation
is tight in itself, and therefore, we expect the integrality gap to also be tight. An overview
of the solution method is depicted in Figure 2.

4 Preliminary results

We compare our two-stage stochastic model for ODMTS, with two different benchmarks.
On one side, to assess the value of the stochastic optimization, we compare our model
with a deterministic equivalent, and on the other side, to evaluate the value of integrating
multiple modes of transport, we compare ODMTS with a system in which transit and
on-demand services are planned separately.





        

Figure 2: Algorithm overview.

Table 1: Model benchmark comparison.

ODMTS vs. Transit
fleet costs

On-demand
service distance

Transit
users

Average
passenger delay

Number of
direct taxi trips

Deterministic
equivalent +0% -25.9% x5.8 +1.2% -28.1%

Non-integrated system +0% -11.8% x1.3 -1.7% -18.6

The results in Table 1 show a comparison of the out-of-sample solutions in a relatively
small test case (three lines, tens of stops, and hundreds of passengers) in the city of Zurich,
Switzerland. Thanks to the additional planning flexibility, our model is able to drastically
improve the transit ridership while maintaining a similar level of service and without the
need to increase the system capacity. This translates in a significant reduction of the
operating costs (i.e., distance) of on-demand services, which can also translate in reduced
consgestion and pollution.

For the results conducted so far, the model could be solved directly using commercial
solvers, but the decomposition-based method presented is expected to scale better and
solve real-life city-scale instances efficiently. We also plan to conduct detailed assessments
on the value of fleet heterogeneity and the potential of ride-pooling on first/last mile
on-demand services.

In overall, results suggest that ODMTS can become a relevant solution in the current
mobility ecosystem and provide benefits to users, operators and society as a whole.
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