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Abstract

This paper examines some important aspects of uncertainties in the line planning problem
and in timetabling within the context of public transport. A literature review considers
various methods for modelling the problem and associated uncertainties. These models
range from (light) robustness to stochastic programming, e.g. 2-stage models, for stochastic
parameters. In addition, the paper explores various solution strategies that have been
applied to address uncertainties in line planning and related problems. The synthesis of
the different literature papers shows which uncertainties are usually considered, which
seem to be omitted, and different ways of modelling them. Moreover, it also reveals
variations in terminology across different papers, highlighting the complexities researchers
face.
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1 Introduction

In this paper, we examine different articles that consider public transport design. To
be more precise, we consider network design, line planning and timetabling to be our
scope. These three problems being the first steps in public transport design (Lusby et al.,
2018)), they fix a lot for the other planning steps and therefore are essential regardless of
the vehicle technology used, whether it is railway, tram, bus, other vehicle types, or any
combination. Together, these problems prescribe already a lot of important factors like
direct connections, travel time and frequency of service, which all significantly affect the

mode choice and route choice of passengers.

In reality, the precise demand or travel times are not known and also change from day to
day. Therefore, considering variable parameters is a crucial aspect of an effective public
transport operation, a topic that many timetabling and line planning approaches still
ignore and /or assume is solved at downstream stages. Only a few approaches explicitly
consider this problem, employing reactive systems that are able to deal inherently with
dynamic demand. In this paper, we focus on these papers in particular, where some inputs

are not given as deterministic values.

This paper is organised as follows. In Section 2, we discuss the problems we considered
when searching for papers. Then, in Section 3, we classify the models into three groups.
In Section 4, we show the different approaches used to solve the problems at hand. Finally,

in Section 5, we conclude with a brief discussion.

2 Problems considered

To get an overview of the different papers in this field, there were four aspects we consid-
ered to see the similarities and differences: the problem to solve, what kind of model used,
which parameters are uncertain and what methods were used to solve the problem. Table
in Appendix [A] shows an overview of the different articles.

Getting a nice overview proved quite difficult in some of the areas, especially when
defining the problem that is considered in the paper. This is due to the fact that some
authors use different terms. A finished line plan for periodic setting should, according
to [Schobel (2012), have a set of lines and the corresponding frequencies of these lines.

Yet, a lot of network-design papers have the same outcome, while some papers talking
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about line planning solve only possible subproblems. By using keywords as "choosing" or
"determining" we try to be as precise as possible with the description of what the papers
solve for. As a next point, we consider what kind of model is used. The papers considered
using some kind of mathematical programming to describe constraints and solutions. Yet
it is interesting to see which papers use linear programming, which use integer or binary
programming, and also how the uncertainty is included - e.g. being a 2-stage model or
using robustness.

Then, we wanted to compare the uncertainties. So, which parameters are taken as variables,
whereas the others will be assumed to be fixed? With this, we also see how these models
integrate stochasticity - is it through a protection level, which we often see for robust
approaches, or is it, e.g., different scenarios for a stochastic programming approach?
Finally, we compare how the models solve their problems. Although there exist special
cases and subproblems that can be solved in polynomial time, in general, the problems
considered, that being Network Design, Line Planning Problem and Timetabling, are NP-
hard (Guihaire and Haol [2008), (Schobel, 2012), (Caimi et al.,[2017)), and therefore hard to

solve. Therefore it is interesting to see which algorithms work well for solving the problems.

2.1 Poblems considered

Figure 1: Problems considered
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In general, we consider three problems in this literature review paper: network design
problem, line planning problem, and timetabling. At first glance, these three problems
follow each other, for example, in the railway planning process Lusby et al.| (2018). How-
ever, looking at the papers in more detail, we can see that these problems are much more

interconnected than first assumed. We try to show these connections with Figure [l We
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can see that many subproblems can be considered not only in one of the planning steps
but in multiple. For example, routing passengers is something that is often done in all
three steps to get a passenger-oriented solution. We can also see that network design and
line planning share a lot of common possible subproblems, such as getting a line plan,
determining frequencies or computing the stop plan. While not all papers consider all
subproblems, they occur often in both steps.

A bit more different is the third step, computing a timetable. In this step, we want to
assign arrival and departure times to the individual trains and route them through the
network. However, also, this step can have common subproblems, such as routing of
passengers or computing the stop plan.

We can see that these three problems are very interconnected and share some similar
goals. As the solution of one step directly influences the solution of the next step, some

papers also consider an integrated approach that considers multiple steps simultaneously.

2.2 Uncertain Parameters

Figure 2: Uncertain Parameters
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To see the differences and similarities of the papers, we can also consider the parameters
that are considered uncertain. These can be split into three main groups: time, demand /-
passengers, and cost.

Time uncertainty occurred most in timetabling. When considering an uncertainty in time,
we saw that the papers considered various things. Some papers consider uncertainty in
delays, which they usually want to protect themselves against. One can also consider that
the dwell time and segment travel time are uncertain.

For line planning and network design, the uncertainty is usually caused by passengers
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or cost. The number of passengers can increase or decrease and can have a significant
influence on the network. An increase in demand could also lead to capacity problems,
which some papers consider directly. Lastly, the cost of the solution can be considered.
For line planning, that would usually be the operational cost of the vehicles, while in
network design, the problem is typically the construction cost, which cannot be estimated

precisely in advance.

2.3 Modelling of Stochasticity

Figure 3: Modelling Stochasticity

| Modelling of Stochasticity |
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It is also interesting to see how the various papers model the uncertainty. Most papers
work with either some distribution/protection level or with a set of scenarios. There are
papers with other approaches, as using fuzzy variables (Yang et al.l 2009).

The distribution can either be given a prior or from data. Some articles mention that this
distribution can be estimated from historical data (Shakibayifar et al., [2017)), but most
articles do not consider the data behind it. Through sampling, the models can be reduced
into problems using scenarios. There are also papers that directly work with scenarios.
Most distributions considered were given by a uniform distribution, where the authors
considered a box uncertainty. This was especially the case for the papers doing robust
optimisation, where the important part was the protection level given around some esti-
mate. There were also papers considering other kinds of distribution, such as polyhedral

uncertainty.
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3 Classification of Modelling-Approaches

When dealing with uncertainties in the input parameter that solve any kind of problem,
we can ask ourselves how to model this uncertainty. This is the first step of the process -
if we do not have a model, we cannot really solve it. When modelling the uncertainty, it is
important to think about why we are incorporating an uncertain parameter. Reading the
papers, we have found that there are three main streams that incorporate the variability

of some parameters.

e One way is to assume the parameters are known and deterministic but change over
time.

e Another big stream is robustness. While there are different kinds of approaches
to robustness (Lusby et al) 2018), the common goal is to protect oneself from
unpleasant situations, e.g. delays in timetables.

e Finally, one can use stochastic programming to incorporate the shape of the uncer-

tainty into the problem.

There are papers with other modelling approaches, such as fuzzy mathematics, which we

will touch upon shortly.

3.1 Variable Parameters

Solving real-life problems is difficult, as the input parameters are usually unknown and
constantly changing. One approach is to consider the parameters to be given, but they
fluctuate over time. We can assume the parameter changes in every time step, e.g. every
minute. Hao et al|(2023)) determine the lines, passenger routing and a timetable, where
the demand is given for every minute. For every departure time, the passenger demands
are given.

To simplify this, we can group the time steps together. Together, we now get periods,
which is similar to considering individual time steps but just less detailed. Nie et al.| (2023))
look at line planning for the entire week. They introduce three different types of lines
for different periods and days. They create a weekly line plan matching the passenger
demand for the different periods. [Sahin et al.| (2020), Schiewe et al.|(2023) and [Zhou et al.
(2023) all also consider a multi-period setting. While [Jahin et al.| (2020)) and |Schiewe
et al| (2023)) consider the problem of choosing lines, |Zhou et al. (2023) also integrates
timetabling into the problem.
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3.2 Robustness

Another approach to modelling the uncertainty inputs is robustness. In the context of
railway, a system is robust if it can continue its service at some level when faced with
disruptions (Lusby et al) 2018). This can be achieved by implementing a protection level
or using light robustness to minimise the number of changes necessary to get a good

system. [Schobel (2014)) discusses a few different approaches to robustness.

Strict Robustness

As is explained in (Schobel, 2014), when we deal with strict robustness, we want all
possible values of the uncertain parameter to be feasible. |Pu and Zhan| (2021)) consider
passenger demand that is in a given box-set for which they want to find a robust solution.
An and Lo| (2015) and Wang et al. (2023) both consider a box-set, too, but they extend
their model with the idea of I'-robustness, i.e. giving an upper bound on the change
possible (Bertsimas and Sim) 2003).

Light Robustness

Light robustness can be considered as the "flexible counterpart" to robust optimisation,
as Fischetti and Monaci (2009) put it. Both [Cacchiani et al. (2020) and |Qi et al.| (2018))
consider light robustness in their approach. (Cacchiani et al.| (2020) solve the problem of
timetabling, including considering the stop plan of the lines and passenger routing. They
introduce different robust models, but they all want to protect against demand increase.
Qi et al. (2018) solve the same problem, also protecting against a possible increase in
demand. In their case, they consider the protection level, i.e. demand-increase, for every

od-pair, with the protection level being limited by the residual capacity available.

3.3 Stochastic Programming

Another common approach is to use stochastic programming to solve the problem. When
we introduce uncertainty in an input parameter, there is no such thing as an optimal
solution. So, in stochastic optimisation, we usually want to find a good overall solution.
This solution will hardly ever be optimal after the uncertain variable is realised, but it
should produce a good solution for almost all cases. For this, we usually look at the
deterministic equivalent of a stochastic problem by introducing the expectation of the
objective and optimising this expectation (Kall and Wallace|, [1994)).

When using stochastic programming, we assume that we know the distribution of the

random variable. There are two streams: some papers consider pre-defined scenarios or
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by assuming probability distribution for the random variable.

Stochastic Programming with pre-defined Scenarios

Feng et al.| (2023)) consider the timetable problem with some additional subproblems.
They deal with uncertain passenger demand given as a set of s stochastic scenarios. |Khan
and Zhou| (2010)) also consider the timetable problem with a number of scenarios. They,
however, in contrast to (Feng et all 2023) consider the uncertainty in the segment travel
time and in the departure times.

Cadarso et al|(2018) also use stochastic programming to determine lines and passenger

flow. They introduce a scenario tree to get a discrete number of scenarios.

Stochastic Programming with Probability Distribution

An and Lo (2016)) calculate lines, frequencies and passenger routing under uncertain
demand. They sample a continuous distribution to get scenarios. Similarly, Kroon et al.
(2008) also start with a random variable that is sampled. They do timetabling based on
an input timetable and only change it slightly. They consider uncertainty in disturbances,
looking at independent realisations of the timetable subject to a stochastic primary distur-
bance. While Shakibayifar et al.|(2017) also consider the problem of generating a timetable,
they consider the passenger arrival rates to the stations as stochastic. They assume that
a probability distribution can be estimated from historical data. This distribution is then
used to sample and introduce different scenarios.

Similarly to (Kroon et al. 2008), Yin et al| (2016)) also do timetabling based on an
input timetable. They consider the passenger demand to be dynamic, where the arrival
of passengers at the stations is a stochastic process. Yang et al.| (2017) also consider
timetabling (and calculations of the speed profile). They consider the dwell time to be a

random variable with a given probability density function.

3.4 Other Approaches

Han and Ren| (2020)) consider the problem of stop planning and ticket allocation. They
assume the passenger demand to be uncertain. They use uncertainty theory to transform
the model to a deterministic one. Another approach is taken by Yang et al. (2009), where
they solve a timetable. They consider the passenger demand as uncertain and model it as
a fuzzy variable. And |Yao et al|(2014) calculate lines and consider passenger demand.
They assume the travel time is uncertain but use sampling to get a precise value used in

a deterministic mathematical programming model.
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4 Approaches to solve the problems

4.1 Variable Parameters

Solvers
While this might seem like a weird approach to state, just using a solver might be able to
solve the problem for a certain size. Both Sahin et al.| (2020) and Schiewe et al.| (2023) do

not introduce an algorithm and just use the Gurobi-solver for their problem.

Heuristics

The other approach taken in the mentioned papers is heuristics. |Nie et al.| (2023)) solve
line planning by implementing a genetic algorithm to solve their model. Zhou et al.| (2023)
use a simulated annealing algorithm to solve their problem. Moreover, they compare
this to a particle swarm optimisation algorithm to see which algorithm works better
for the problem considered. Hao et al.| (2023) solve the same problem and also use a

simulated annealing algorithm - in their case, a double-layer simulated annealing algorithm.

4.2 Robustness

Although we distinguished between strict and light robustness in the last section, the

approaches to both are similar. Therefore, we do not distinguish the models here.

Solvers

As with the variable demand, there are papers that do not consider a separate algorithm
for solving the problem. To solve timetabling Qi et al.| (2018)) use CPLEX. |Cacchiani et al.
(2020) investigate the same problem and also use CPLEX. Wang et al. (2023)) use CPLEX
to solve their problem of extending lines. To simplify it, they use a section-based strategy

to decrease the number of constraints.

Algorithms
An and Lo (2015) use a cutting constraint algorithm, the Frank-Wolfe algorithm, to
determine a line plan and solve the routing of passengers. |Pu and Zhan| (2021)) use la-

grangian relaxation to solve their two-stage model for stop planning and passenger routing.
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4.3 Stochastic Programming

As with robustness, the approaches to solving the problem do not differ much, whether

the model deals with individual scenarios or uses probability distributions.

Solvers

To solve timetabling [Kroon et al.| (2008) use CPLEX. Using the sample-average approx-
imation method, they sample the distribution to get a deterministic model. Similarly,
Shakibayifar et al.| (2017) solve timetabling using CPLEX. Using the sample average
approximation method, they compute lower and upper bounds, increasing the sample size

until the estimated confidence intervals are close enough.

Algorithms

There are quite a few different approaches, in addition to the sample average approximation
method, to obtain a solution to the problem. To solve the line planning problem An and Lo
(2016) use a gradient method combined with neighbourhood search. (Cadarso et al.| (2018)
consider a similar problem. They use a fix-and-relax and lazy metaheuristic algorithm
with dynamic scenario (de)aggregation to solve the problem. Khan and Zhou (2010)
consider the problem of obtaining a timetable. Under segment travel-time and departure
time uncertainty, they use a heuristic sequential solution framework to get a timetable.
Yin et al|(2016]) use a approximate dynamic programming algorithm while [Yang et al.
(2017) use a genetic algorithm framework with e-constrained method to obtain a solution.

To solve timetabling, Feng et al.|(2023) use a heuristic local search with branch-and-bound.

4.4 Other Approaches

Han and Ren| (2020) use uncertainty theory to obtain a deterministic mathematical pro-
gramming model. They use lagrangian relaxation heuristic algorithm to obtain a solution
to their problem. [Yang et al.|(2009)) introduced a fuzzy variable for passenger demand. To
solve their model, they use a fuzzy simulation-based branch and bound. Yao et al.| (2014)

use tabu search to find a solution to determine lines and compute the passenger routing.

10



Including Uncertainties in Line Planning
May 23, 2024
and Timetabling

5 Conclusion

In conclusion, this paper provides a comprehensive overview of the research landscape
surrounding uncertainty in network design, line planning, and timetabling within public
transportation. With many recent studies, the paper offers valuable insights into the
evolving discourse on this topic. Despite much recent research, there remains a limited
exploitation of data, particularly in leveraging historical data for modelling the uncertainty.
Having more information and data from the past could help to incorporate uncertainty in
better detail in the model.

The consideration of robustness and stochasticity emerges as an important aspect in
addressing uncertainties in planning processes, although their practical utility from both
operator and passenger perspectives warrants further exploration. There are mathematical
indicators, e.g., the value of stochastic solution, that can already imply that incorporating
uncertainty can be useful. However, having more real-life test cases on which to test the
models would be helpful. Moving forward, the establishment of common test cases could
furthermore facilitate comparative analyses across modelling approaches, thereby fostering
a deeper understanding of their strengths and limitations. Such common test cases would

also help investigate the advantages and disadvantages of the different models further.

The confusion surrounding nomenclature, particularly regarding line planning and network
design, highlights the importance of establishing standardised definitions and terminology
in future research endeavours, such as the definition of the line planning problem proposed
by [Schobel| (2012). As the problems are similar, there is a lot that one can learn from

each other: what kind of models exist and which algorithms are able to solve them.

In the future, it would be interesting to have a more detailed comparison of the approaches.
Finding out whether robustness and what kind of stochastic programming is more efficient
could help us design better public transport. Moreover, line planning usually focuses
a lot on uncertainties in regard to demand. It would be interesting to also incorporate

time-related uncertainties, for example, by taking a distribution on the travel time.

11
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