Fast Algorithms for Capacitated Continuous Pric-
ing with Discrete Choice Demand Models

Tom Haering
Robin Legault
Fabian Torres
Michel Bierlaire

STRC conference paper 2024 April 25, 2024

24th Swiss Transport Research Conference
Monte Verita / Ascona, May 15-17, 2024

STRC

Fast Algorithms for the CCPP with DCM demand April 25, 2024

Fast Algorithms for Capacitated Continuous Pricing with Dis-
crete Choice Demand Models

Tom Haering Robin Legault

ENAC ORC

EPFL MIT

tom.haering@epfl.ch legault@mit.edu

Fabian Torres Michel Bierlaire

ENAC ENAC

EPFL EPFL
fabian.torres@epfl.ch michel.bierlaire@epfl.ch

April 25, 2024

Abstract

We introduce the Breakpoint Exact Algorithm with Capacities (BEAC), based on the state-
of-the-art Breakpoint Exact Algorithm (BEA) to address the choice-based pricing problem
(CPP) with capacity constraints, together with the Breakpoint Heuristic Algorithm (BHA)
for both uncapacitated and capacitated instances. For capacity management, an approach
based on an exogenous priority queue, as well as a supplier-controlled queuing strategy
to generate maximal or minimal profit for robust optimization is developed. The BHA
leverages a coordinate descent method, which we propose to extend with a dynamic line
search (DLS) to escape local optima. Our results show that for the capacitated case,
the BEAC reports runtimes up to 20 times faster than the state-of-the-art mixed-integer
linear programming (MILP) approach, while the BHA performs from 100 to 5000 times
faster than the MILP. For the uncapacitated case, the BHA outspeeds the BEA as well
as the current state-of-the-art Branch & Benders Decomposition (B&BD) approach by
multiple orders of magnitude, especially for high-dimensional instances. The average gap
in optimality between the solution reported by the BHA and the global optimum was less
than 0.2%, with the extension via DLS finding the global optimum in all tested instances,
albeit at a significant computational cost.

Keywords

discrete choice; pricing; capacity constraints; heuristic, robust optimization

Suggested Citation

Haering, T., Legault, R., Torres, F., & Bierlaire, M. (2024). Fast Algorithms for Capaci-
tated Continuous Pricing with Discrete Choice Demand Models. In: Proceedings of the
24th Swiss Transport Research Conference (STRC)

Fast Algorithms for the CCPP with DCM demand April 25, 2024

Contents
(I_Introductionl. 2
2 Problem definition| 3
2.1 Problem formulation and properties|
2.2 Breakpoints| 4
[3 Methodologyl
3.1 Breakpoint exact algorithm with capacities (BEAC)|.
(3.2 Breakpoint heuristic algorithm (BHA) 10
3.3 Dynamic line search heuristic (DLS)| 11
M Results and discussion] L 14
(.1 Casestudy|. 14
4.2 Description of experiments| 14
4.3 Numerical results and analysisf 15
B Conclusions| 17
6 References 18

Fast Algorithms for the CCPP with DCM demand April 25, 2024

1 Introduction

Utilizing discrete choice models (DCMs) improves pricing strategies by detailing demand
through individual preferences, aiding in understanding supply-demand dynamics (Sumida
et all 2021). However, incorporating DCMs introduces computational issues due to their
complex choice probabilities, which in general do not assume a closed-form expression

Hanson and Martin| (1996)).

Innovative solutions address these: Gilbert et al.| (2014) introduced a tractable approxima-
tion for revenue-maximizing pricing under mixed logit (ML) demand in congested networks,
using a two-step method involving a mixed integer program and an ascent algorithm.
Following this, |Li et al.| (2019) investigated a price optimization problem under discrete
ML demand, proposing a pair of concave maximization problems as bounds for the revenue
function. [Marandi and Lurkin| (2020 presented an iterative algorithm that converges to

the optimal solution through linear optimization and convex approximation.

To provide a more general framework for integrating advanced choice models into opti-
mization problems, Paneque et al. (2021)) proposed the use of Monte Carlo simulation
to generate a deterministic problem as a mixed-integer linear program (MILP). While
increasing complexity due to the exponential scaling of the MILP solve time with the
number of draws, this approach guarantees convergence to globally optimal solutions for
sufficiently large numbers of draws. However, its practical applicability is limited to very

small-scale instances, highlighting the need for more efficient computational strategies.

Recognizing this, Paneque et al| (2022) introduced a heuristic method leveraging the
decomposable structure of scenarios, allowing for a more efficient and scalable approach
to solving larger MILP formulations. Haering et al.| (2023)) introduce the Breakpoint
Exact Algorithm (BEA) together with a Spatial Branch and Benders Decomposition
(B&BD) approach to tackle uncapacitated pricing problem where demand is captured
by any discrete choice model. They manage to outspeed the previous approaches on
uncapacitated problems by several orders of magnitude when optimizing one or two
prices and significantly reduce computational time for larger prices when using the B&BD
algorithm. However, especially in high-dimensional instances, the problem remains difficult

to solve, and the ability to add capacity constraints is highly beneficial in practice.

In this paper, we thus first extend the BEA to be able to handle capacity constraints
and introduce an efficient heuristic for both the uncapacitated and capacitated case that

succeeds at finding very high-quality solutions fast.

Fast Algorithms for the CCPP with DCM demand April 25, 2024

The paper is structured as follows. Section [2| describes the choice-based pricing problem
and its key properties, as well as a brief description of the state-of-the-art Breakpoint
Exact Algorithm (BEA). In Section [, we introduce the new methods presented in this
paper; the Breakpoint Exact Algorithm with Capacities (BEAC), the Breakpoint Heuristic
Algorithm (BHA) and its extension with a dynamic line search (DLS). Section /4| presents
the computational experiments, followed by Section |5 where we conclude the paper and

present its essential takeaways.

2 Problem definition

Consider a competitive market with multiple products, of which J products are controlled
by a supplier that wants to identify the set of prices that maximizes their revenue. We
number the controlled alternatives from 1 to J, and gather the competitors’ alternatives,
as well as the option to opt-out completely in alternative 0. We consider N customers
choosing one product among all offered alternatives. Each individual n may furthermore
have a different set of considered alternatives, denoted by C,, where n € N = {1,..., N}.
We require 0 € C,,¥n € N, as otherwise the problem is unbounded. The behavior of the
customers is captured by a random utility model: each alternative ¢ is associated with a
stochastic utility U,,, which depends on socioeconomic characteristics of individual n, as

well as alternative-specific attributes, and can be defined as follows:

where py = 0 and V},, represents the deterministic part of the utility that is observed by
the analyst, which can take any form and be non-linear in the explanatory variables, and
€in 1s the unobserved error term (and thus a random variable). The only assumption we
make on the utilities is for them to be linear in the prices p;, which are multiplied by
a pricing coefficient 5;" < 0, that can vary across n and i. The probability P, (i) that

individual n chooses alternative i € C,, can now be written as follows:

P.(i) = P(Up > U, Vj € Cy)

The controlled prices p;,7 € {1,...,J} are decision variables that need to be optimized
in order to maximize the expected profit, expressed as each product’s price times the

probability the product is bought by an individual, summed up over all individuals. We

Fast Algorithms for the CCPP with DCM demand April 25, 2024

assume each price p; to be bounded within a continuous domain [pF, p¥]. In general,
P,(i) does not take on a closed-form expression and is thus difficult to integrate in an

optimization framework.

2.1 Problem formulation and properties

To address the lack of closed-form expressions for the probability functions, we employ the
simulation approach of Paneque et al.| (2021)): We take R draws &;,,, from the distribution

of the error terms to generate R scenarios with deterministic utilities U;,,.:

Uim" = V;n—i_ﬂ;npz—{_gznr ViE{O,...,J},HEN,?"ER,
= Cinr + B)'Di Vie{0,...,J},neN,reR

where R = {1,..., R}.

2.2 Breakpoints

In the CPP, the optimal price ensures that the utility of a product matches the utility of
the next cheapest alternative for at least one customer and scenario, aiming to maximize
profit without unnecessary customer loss. Specifically, for an optimal price p;, there exists
a customer n and scenario r such that any increase in p; by € > 0 would lower the utility
Us;nr below that of cheaper alternatives or the opt-out option, deterring that customer and
decreasing overall profit. Hence, this price acts as a "breakpoint" or "indifference point"
in customer decision-making, representing the maximum price before customer interest

shifts to more affordable options.

This leads us to the derivation of the Breakpoint Exact Algorithm (BEA), first introduced
in Haering et al| (2023)). As we aim to develop the Breakpoint Exact Algorithm with
Capacities (BEAC) based on BEA, we provide a brief overview of the latter. The BEA
initially assumes a fixed order of prices and solves the original problem by evaluating all
possible price permutations separately. The algorithm iteratively fixes the price of new
alternatives in ascending order. Upon introducing a new alternative to the market, it
calculates the breakpoint for each customer to switch from their current choice to the

new alternative, sorts these breakpoints, and solves the restricted problem for each. This

Fast Algorithms for the CCPP with DCM demand April 25, 2024

process is recursively repeated until all prices are fixed. Ultimately, by exploring the entire

space of breakpoints, the algorithm ensures the solution is optimal.

For a new alternative j, and given the set {0,1,...,7 — 1} of cheaper alternatives whose
prices have been previously fixed, the breakpoint p;” is defined as the price at which the
utility of alternative j matches the maximum utility over alternatives {0,1,...,j — 1} for
customer (n,r). This price is given by:

hgz'r — Cjnr

—nr __

i T gm0
P

where h{w = maxie{o,m’j,l}{cmr + ﬁ;”pi}. From there, the set of relevant breakpoints for
alternative j corresponds to all the breakpoints p}" that lie in the feasible interval [pf, pY].
The upper bound pg-] also has to be considered in the BEA, as increasing the price of j
to its maximum feasible value can lead to an optimal solution in some cases. Given the

partial solution py,...,p;_1, the set of prices to test for alternative j is thus:

Pi={{p) :neNreR}u{pi}} N [max{p},pj_1},p}]

The pseudocode of the BEA algorithm is provided in Algorithm [II We denote by S the
set of all possible permutations s of {1,...,J}. For a given permutation s € S, the j

element of the ordered list s in denoted by s;.

Algorithm 1: Breakpoint exact algorithm (BEA) to solve the uncapacitated CPP
Result: optimal solution p* and objective value o* for the uncapacitated CPP.

p;f<—0 Vie{l,...,J}
0"+ 0

for s in S do
pe, <0 Yje{l,....J}
hil <= conr V(n,7) €N X R
N <— 0 Y(n,r) € N xR
(p,0) < enumerate(s,p, h*',n, 1)
if 0 > o* then
R
0* < 0;

end

end

return (p*, 0%)

Fast Algorithms for the CCPP with DCM demand April 25, 2024

Algorithm [1] iterates over all possible orderings of prices ps, < ps, < -+ < ps,, s € S.
Each restricted problem is addressed by the recursive enumerate function. This function
accepts as arguments the current permutation s € S of alternatives, a partially filled
already set, the utility h,, and the

price 7, selected by each simulated customer (n,r) € N x R, and the depth j of the

vector of prices p, with components p,, <--- <p,,_,

current permutation’s exploration.

enumerate sets the price of the current alternative s; to each value in (TDSJ. and solves the
restricted problem recursively, updating generated profits to avoid separate computations

for each price combination.

The BEA algorithm’s complexity is O(J!(NR)? log(NR)), see [Haering et al| (2023). This
reflects exponential growth with J, the primary limitation addressed by the Breakpoint

Heuristic Algorithm discussed later.

3 Methodology

3.1 Breakpoint exact algorithm with capacities (BEAC)

To incorporate capacity constraints into the BEA, we adopt a slightly simplified version,
sequentially exploring each valid combination of breakpoints. For each combination, we
invoke a function that calculates the objective value for these prices. Due to interdependent
choices potentially leading to recursive substitution, continuously updating choices and
profits becomes impractical. Additionally, when adding a new product, calculating
breakpoints for each simulated customer from their previous preference to the new
option is insufficient. Instead, breakpoints must be computed from any possible previous
product to the new one, considering that capacity limits may force customers to choose
an alternative other than their most preferred. This adjustment accounts for decision
breakpoints involving switches from any introduced product to the new one. Despite
these changes, the process of sequentially introducing prices remains, necessitating only a
modification of the recursive function enumerate used in Algorithm [I| to a new function

named "enumerate_cap". Algorithm [2| shows the recursive enumeration function within

the BEAC.

Fast Algorithms for the CCPP with DCM demand April 25, 2024

Algorithm 2: Recursive enumeration function within the BEAC

Function enumerate_cap(s,p, j):

A e S) N X Ryi< € CU{0)
Ny + {(n,r, si)]psLj <Pyt < pg}

Ny %NQU{pSLj,pg Vie C}

Sort the elements of Ny from largest to smallest
if j <J —1 then

for pg € N, do

P, U

(p,0) < enumerate_cap(s,p,j + 1)

if 6 > 0" then

0" <0
PP
end
end
end
else

for py7* € N, do
J “Nrs;

ij % ij
0 < compute_objective_value(p)
if 0 > o* then

0" <o

prep
end

end

return (p*, o*)
end

end

Directly evaluating an objective function at each breakpoint combination enhances flexibil-
ity in profit computation methods. Algorithm [3| details evaluating profit using a priority
queue, where individuals are assigned the highest utility alternative with available capacity.
Algorithm {4 explores maximizing profit by allowing the supplier to choose customer order.
This involves a precomputation step similar to the priority queue method: sorting alterna-
tives for each customer by descending utility, then creating and lexicographically sorting
an array of these preferences by price. Upon reaching capacity, alternatives are removed
from all future choice sets, prioritizing more price-sensitive customers likely to switch to

higher-priced options if their first choice is unavailable. For minimal profit calculation,

Fast Algorithms for the CCPP with DCM demand April 25, 2024

compute_obj_value_with_forced_capacities is invoked with max = false, sorting
preference orderings in descending order, thus optimizing for worst-case profit, presenting

a method for robust optimization.

Algorithm 3: Compute Objective Value with Priority Queue

Function compute_objective_value_with_priority_queue(p,c,prio_queue):
s < (0)icc

for idx € prio_queue do

u + U, for i € C]

a < sort(u, descending)

© < false

Jj<1

while j < C —1 and !¢ do

if ¢,; < ¢,y — 1 then
Sa; +=1
p < true
end
else
=1
end
end
end
04 D iccSi D
return o

end

Fast Algorithms for the CCPP with DCM demand April 25, 2024

Algorithm 4: Compute Objective Value with Capacities (profit max/min)

Function compute_objective_value_with_capacities(p,c;max):
s <— sortperm(p)

s < (0)icc

A+—{}

for idr € N x R do
u + Uy, for i € C]
a « sort(u, descending)
A<+ AU{a}
end
if max then
| A < sort(A, ascending)
else
| A < sort(A, descending)
end
while |A| > 1 do
T 4— Au
A+ A\ {A}
if > 1 then
gsnemtﬁpref +: 1
if gsnezt pref - Csnezt pref then
Remove all entries 7 from A
if max then
| A <« sort(A, ascending)
else
| A+ sort(A, descending)

end

end

end

end

04 D iccSi i
return o
end

Fast Algorithms for the CCPP with DCM demand April 25, 2024

3.2 Breakpoint heuristic algorithm (BHA)

In this section, we introduce the Breakpoint Heuristic Algorithm (BHA) which can be
applied to solve both the uncapacitated and capacitated version of the CPP. The BHA

can be summarized as a coordinate descent, described in the following procedure:

1. Choose a starting point for the heuristic. As any combination of prices is feasible, the
L U
simplest choice here can be to choose the middle of the price bounds, p* = (% erp L)ieC-

2. Evaluate the objective function (based on priority-queue or max/min profit) for
price p, giving objective value o*.

3. Set j =1.

4. Solve the problem using the BEA (or the BEAC in the case of capacity constraints)
but with modified bounds %, p¥, where, 5/ = 5 = p; Vi # j and p} = p¥, p7 = p¥.
Thus, all bounds except for alternative j are tight, drastically simplifying the problem.
We thus iterate over all relevant breakpoints for all simulated customers, evaluating
the objective value at each combination of breakpoints and updating the highest
objective 0* and the best prices p* whenever a better solution is found.

6. Set 7 = j + 1 and repeat from step 4. In the case of j = D, we reset it to 7 = 1.

7. Terminate once no change in the optimal solution is observed over D iterations.

The pseudocode for the BHA is provided in Algorithm [5]

10

Fast Algorithms for the CCPP with DCM demand April 25, 2024

Algorithm 5: Breakpoint Heuristic Algorithm (BHA)

Function BHA (pgsiare; ¢, prio_ queue):
0* < compute_objective_value(psiqrt)
D" 4= Pstart
71
o<+ 0
140
while ¢ < D do
14+=1
A = false
Dj, 0
BEA(5"(p, 4, ™), pY (p, 4, p¥)) or BEAC(5" (p, 5, p"), B” (p, 5, p"), ¢, prio_queue)
pj < Dj
if 6 > 0* then
0% < 0
P p
g+ 0

else
| o+=1

end

j4=1

if 7 > D then
| 741

end

end

* >k
return o*,p
end

3.3 Dynamic line search heuristic (DLS)

The dynamic line search algorithm is an iterative enhancement to the BHA, aimed at
escaping local optima through adaptive step size adjustments. Initiated with a set of
initial prices p and an objective value o*, the algorithm takes as additional inputs an
initial step size d, the number of steps to be taken in each direction (increase and decrease)
k, a step increase factor 7, and a maximum step size Ap.,. Each iteration consists of the

following steps:

11

Fast Algorithms for the CCPP with DCM demand April 25, 2024

e Exploring both increase and decrease directions for each price component ¢ € C', the
algorithm tests k increment steps, each being a multiple of . At each step, a new
candidate solution p is generated by adjusting the i-th component of p by +kd.

e For each candidate solution, the objective function is evaluated, and o* is updated
when a new best solution is found.

e If there was no improvement in objective value after completing the line search on
all components of p, the step size d is increased by the factor ~, enlarging the scope

of the line search in the next iteration.

The algorithm continues until 6 > A,.«. The pseudocode for the DLS can be found in
Algorithm [0]

12

Fast Algorithms for the CCPP with DCM demand April 25, 2024

Algorithm 6: Dynamic Line Search Algorithm

Function dynamic_line_search_cap (psiart, 0, K, 7, Amag; CAPS, prio__queue):
0* < compute_objective_value(psrt)

p* < Dstart
p < true
o<+ 0

while 6 < A,,.. do
@ < false

for j€1:Ddo
for d € [-1,1] do

forle1:kdo
pnew<_p

P H+=d-1-9
if pJL < pi < pg-J then

0" p"? <— BHA (Prew; C, PTE0__queue)
if 0" > o* and p"** € [p*, pV] then
0" o™
P prew
© < true
o<+ 0
end
end
end
end
end
if 1o then
oc+=1
0=
end
else
|l 0+ 0
end
p<p
04 0"

end

>k >k
return o*, p
end

13

Fast Algorithms for the CCPP with DCM demand April 25, 2024

4 Results and discussion

4.1 Case study

To test the presented methodology we rely on the same case study as Paneque et al|(2021)),
Paneque et al. (2022)), and Haering et al.| (2023) as it uses a mixed logit model published
in the literature, illustrating the fact that there is no need for any assumption about
the choice model to apply the methodology. The case study concerns a parking services
operator, motivated by the published disaggregate demand model for parking choice
by [Ibeas et al.| (2014). The choice set consists of three services: paid on-street parking
(PSP), paid parking in an underground car park (PUP), and free on-street parking (FSP),
presenting the opt-out. We artificially add more PSP or PUP options by duplicating the
respective alternative and increasing the access time from the parking space to the desired
destination by one minute per duplicate. This corresponds to augmenting the parking

space facilities in size.

4.2 Description of experiments

We will further refer to the different methods used as: Mixed-integer linear programming
(MILP), Branch and Benders Decomposition (B&BD), Breakpoint Exact Algorithm (BEA),
Breakpoint Exact Algorithm with Capacities (BEAC), BEAC with profit-maximizing
(BEAC-M), BEAC with profit-minimizing / robust optimization (BEAC-R), Breakpoint
Heuristic Algorithm (BHA) and Dynamic Line Search (DLS). The goal of our experiments

is to answer the following questions:

1. How does the BEAC compare in runtime to the state-of-the art MILP approach of
solving capacitated instances of the choice-based pricing problem (CPP) when an
exogenous priority queue is set in place?

2. How do the BEAC-M and BEAC-R methods compare to the BEAC with an exoge-
nous priority queue, both in terms of runtime and achieved revenue?

3. How do the BHA and DLS compare to the state-of-the-art B&BD approach on
pricing instances without capacity constraints?

4. How do the BHA and DLS compare to the MILP and BEAC approaches on instances
with capacity constraints and a priority queue in terms of runtime and achieved

revenue?

14

Fast Algorithms for the CCPP with DCM demand April 25, 2024

To investigate these four issues we perform the tests described in Table [I, where N
denotes the number of individuals considered, R the number of scenarios generated and

J = Jpsp + Jpuyp equals the number of controlled prices.

Table 1 — Summary of Tests

Test 1 Test 2 Test 3 Test 4
J 2 2,4 4 2,4
N 50 50 20 50
R 2, 5, 10, 25, 50, 2, 5, 10, 25, 50, 100, 200, 300, 2, 5, 10, 25, 50,
100, 250 100, 200, 250 500, 1000 100, 200, 250
Capacities |20, 20] [20, 20], [15, [o0, oo, o0, [20, 20], [15,
15, 15, 15] o0 15, 15, 15]
Methods MILP, BEAC BEAC, B&BD, BEA, MILP, BEAC,
BEAC-M, BHA, DLS BHA, DLS
BEAC-R

The bounds for all prices are taken directly from |Paneque et al.| (2021) and are defined to
be 0.5, 0.7] for PSP alternatives and [0.65, 0.85] for PUP alternatives. For the DLS, we
use the following hyperparameter inputs: 6 = 0.005,k = 3,7 = 2, Ajax = 0.05. Both the
MILP and B&BD experiments are performed using GUROBI 10.0.3 (Gurobi Optimization,
LLC, [2021). All methods are run on a single thread in a computational cluster node with
two 2.4 GHz Intel Xeon Platinum 8360Y processors, where we utilize 12 cores with a total
of 16 GB of RAM.

4.3 Numerical results and analysis

Table [2] illustrates results from Test 1, showing that the BEAC is on average 20x faster
than the MILP with equal profits for all completed instances. For unsolved instances
(R = 250), the BEAC offers slightly better solutions. Table (3| compares BEAC, BEAC-M,
and BEAC-R runtimes, noting that BEAC-M is about 1.2x slower on larger instances
compared to BEAC, while BEAC-R finishes in approximately 1.25x the time of BEAC.
Profit-wise, BEAC-M generates 5.5% more than BEAC with a random queue, and BEAC-
R’s robust profits are 0.1% lower than BEAC. Table {4| from Test 3 reveals that BHA and
DLS significantly outperform B&BD and BEA in uncapacitated instances, with speedups

15

Fast Algorithms for the CCPP with DCM demand

April 25, 2024

Table 2 — Test 1: MILP vs. BEAC in the capacitated case

MILP BEAC
N R J Time(s) Profit Time (s) Profit
50 2 2 4.17 27.61 0.43 27.61
50 5 2 46.95 26.51 1.72 26.51
50 10 2 180.85 27.06 11.42 27.06
50 25 2 3119.66 27.08 169.08 27.08
50 50 2 >5hours >25.15 1272.68 26.85
50 100 2 >25hours >25.11 9928.57 26.85
50 250 2 >45 hours >23.45 >45 hours >25.00

Table 3 — Test 2: Priority queue vs. Max profit vs. Robust Optimization

BEAC BEAC-M BEAC-R
N R J Time (s) Profit Time (s) Profit Time (s) Profit
50 2 2 0.43 27.61 0.44 28.81 0.45 27.61
20 5 2 1.72 26.51 1.78 28.44 1.82 26.46
50 10 2 11.42 27.06 12.88 28.3 12.98 27.01
50 25 2 169.08 27.08 197.23 28.58 189.28 27.06
50 50 2 1272.68 26.85 1513.44 28.61 1523.89 26.85
50 100 2 9928.57 26.85 12093.8 28.57 12494.13 26.85
50 250 2 >45 hours 2>25.00 >45 hours >26.63 >45 hours >24.34

to 3-10°. DLS, slower than BHA, does not improve objective values here. BHA and DLS
achieve the global optimum for verifiable instances (R = 100, 200) and outperform the

exact methods in unterminated cases. Table [5| indicates BHA is up to 200x faster than
BEAC for two prices, and DLS is about 3x faster. For four prices, BHA and DLS achieve
speed-ups to 5000x and 65x, respectively. DLS consistently finds global optima where

verifiable but is 40x slower than BHA, whose solutions are within 0.2% of the optimal

value. For instances with four prices and R > 50, BHA matches DLS’s solutions.

16

Fast Algorithms for the CCPP with DCM demand April 25, 2024

Table 4 — Test 3: BHA and DLS vs. B&BD and BEA in the uncapacitated case

B&BD BEA BHA DLS
N R J Time(s) Profit Time (s) Profit Time (s) Profit Time (s) Profit
20 100 4 12478 10.40 >24 hours >9.81 0.00 10.40 0.14 10.40
20 200 4 29213 10.40 >24 hours >10.40 0.01 10.40 0.41 10.40
20 300 4 >24 hours 2>10.38 >24 hours >10.13 0.02 10.24 0.64 10.24
20 400 4 >24 hours >9.81 >24 hours >9.42 0.05 10.26 0.78 10.26
20 500 4 >24 hours 2>10.01 >24 hours >9.67 0.13 10.24 1.37 10.24

Table 5 — Test 4: BHA and DLS vs. MILP and BEAC in the capacitated case

MILP BEAC BHA DLS
N R J Time (s) Profit Time (s) Profit Time (s) Profit Time (s) Profit
50 2 2 4.17 27.61 0.43 27.61 0.22 27.61 1.03 27.61
50 5 2 46.95 26.51 1.72 26.51 0.32 26.46 5.91 26.51
50 10 2 180.85 27.06 11.42 27.06 0.58 27.05 20.34 27.06
50 25 2 3119.66 27.08 169.08 27.08 3.40 27.05 129.66 27.08
50 50 2 >b5hours >25.15 1272.68 26.85 8.31 26.53 559.04 26.85
50 100 2 >25 hours >25.11 9928.57 26.85 01.77 26.72 2791.28 26.85
50 250 2 >45 hours >23.45 >45 hours >25.00 455.37 26.66 15867.67 26.71
50 10 4 >10 hours >22.21 >10 hours >25.41 7.08 26.78 5927.34 26.83
50 50 4 >20 hours >22.19 >20 hours >27.00 166.21 27.00 7234.88 27.00
50 100 4 >45 hours >20.50 >45 hours >24.86 866.97 26.67 34050.57 26.67
50 200 4 >72 hours >20.32 >72hours >24.79 2762.39 26.70 106286.13 26.70

5 Conclusions

This research introduces the Breakpoint Exact Algorithm with Capacities (BEAC) and the
Breakpoint Heuristic Algorithm (BHA), both of which offer substantial advancements in
solving the choice-based pricing problem (CPP) with and without capacity constraints. The
BEAC, enhancing the Breakpoint Exact Algorithm (BEA) with a capacity management
strategy, outperforms the state-of-the-art mixed-integer linear programming (MILP)
approach by 20 times in computational speed. The BHA, employing a coordinate descent
method, excels in high-dimensional scenarios, showing remarkable efficiency in both
capacitated and uncapacitated cases. Notably, it outpaces the MILP by a factor of 100 to
5000 for the capacitated case, and the state-of-the-art Branch and Benders Decomposition

approach by several orders of magnitude for the uncapacitated case, while maintaining an

17

Fast Algorithms for the CCPP with DCM demand April 25, 2024

average optimality gap of less than 0.2%. The dynamic line search extension of the BHA
succeeds in identifying the global optimum in all tested instances, albeit with a significant
speed reduction. For future research, other extensions of the BHA to escape local optima

should be considered.

6 References

Gilbert, F., P. Marcotte and G. Savard (2014) Mixed-logit network pricing, Computational
Optimization and Applications, 57, 105-127.

Gurobi Optimization, LLC (2021) Gurobi Optimizer Reference Manual, https://www.

gurobi.com.

Haering, T., R. Legault, F. Torres, I. Ljubic and M. Bierlaire (2023) Exact algorithms
for continuous pricing with advanced discrete choice demand models, Technical Report,
TRANSP-OR 231211, Transport and Mobility Laboratory, Ecole Polytechnique

Fédérale de Lausanne, Lausanne, Switzerland.

Hanson, W. and K. Martin (1996) Optimizing multinomial logit profit functions, Manage-
ment Science, 42 (7) 992-1003.

Ibeas, A., L. Dell’Olio, M. Bordagaray and J. d. D. Ortuzar (2014) Modelling parking
choices considering user heterogeneity, Transportation Research Part A: Policy and
Practice, 70, 41-49.

Li, H., S. Webster, N. Mason and K. Kempf (2019) Product-line pricing under dis-
crete mixed multinomial logit demand: winner—2017 msom practice-based research

competition, Manufacturing & Service Operations Management, 21 (1) 14-28.

Marandi, A. and V. Lurkin (2020) An exact algorithm for the static pricing problem under
discrete mixed logit demand, arXiv preprint arXiv:2005.07482.

Paneque, M. P.; M. Bierlaire, B. Gendron and S. S. Azadeh (2021) Integrating advanced
discrete choice models in mixed integer linear optimization, Transportation Research
Part B: Methodological, 146, 26—49.

Paneque, M. P., B. Gendron, S. S. Azadeh and M. Bierlaire (2022) A lagrangian decom-
position scheme for choice-based optimization, Computers ¢ Operations Research, 148,
105985.

Sumida, M., G. Gallego, P. Rusmevichientong, H. Topaloglu and J. Davis (2021) Revenue-
utility tradeoff in assortment optimization under the multinomial logit model with

totally unimodular constraints, Management Science, 67 (5) 2845-2869.

18

https://www.gurobi.com
https://www.gurobi.com

	Introduction
	Problem definition
	Problem formulation and properties
	Breakpoints

	Methodology
	Breakpoint exact algorithm with capacities (BEAC)
	Breakpoint heuristic algorithm (BHA)
	Dynamic line search heuristic (DLS)

	Results and discussion
	Case study
	Description of experiments
	Numerical results and analysis

	Conclusions
	References

