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Abstract

The surge of on-demand ride-hailing services provides network users with a convenient
and flexible transportation alternative. While ride-hailing and two-passenger ride-splitting
services have been extensively studied, much less is known about the efficiency and
operation of high-capacity on-demand services. In this work, we aim to improve our
understanding of the operation of these services through casting them into a queuing
theory framework. We do so for the purpose of theoretically investigating the impact
of batching on the micro-transit service level. Given the fast-growing complexity of
this model with the network structure, we resort to a micro-simulation environment to
reproduce the deployment of on-demand micro-transit in large-scale networks. In this
simulation framework, we analyze the request waiting time and request detour under
different batching strategies and assess the service performance compared to a simple
greedy vehicle-request matching. The results show that batching has significant potential
to improve the passenger detour, yet the waiting time is rarely reduced when batching is
involved.
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1 Introduction

Ride-hailing travel alternatives have quickly gained momentum among network users
because of their potential to provide a flexible door-to-door service with affordable fares.
However, their negative externalities surfaced shortly after, in particular with respect
to their traffic impact to passenger serviceability ratio as idling ride-hailing vehicles are
shown to significantly deteriorate traffic conditions without efficiently delivering any
passengers in urban areas [Tirachini and Gomez-Lobo (2019); Beojone and Geroliminis
(2021)). Ride-splitting services partially mitigate the unfavorable outcomes of ride-hailing
because they can pair passengers with close origins and destinations within the same
route, therefore serving more requests with a lower total VKT and a better service level
compared to fixed bus routes. However, their operational features are not yet clearly
defined, especially for high-capacity on-demand services where the number of trip-sharing
passengers exceeds two. Despite its potential to be a very efficient transportation option,
our understanding of micro-transit is still underdeveloped to the best of our knowledge.
Consequently, examining its characteristics is a crucial step for identifying its market

potential or operational efficiency in multi-modal networks.

The macroscopic modeling area for ride-hailing or two-passenger ride-splitting services is
well-established as we have observed in Ke et al| (2020); Zhang and Nie| (2021). The objec-
tive of their work was to come up with adequate pricing schemes under static equilibrium
settings, including settings where idle ride-hailing vehicles are subject to congestion tolls.
As for the dynamic realm, an extensive body of literature focused on designing fast and
efficient real-time exact methods |Alonso-Mora et al.| (2017), heuristics Santos and Xavier
(2013)); [Jung et al. (2016)), or meta-heuristic |Ali et al. (2019), to achieve a high-quality
matching and routing for high-capacity dynamic micro-transit services on the microscopic
level. The main challenge here is to properly deal with the dynamic aspect of the problem,
i.e., the fact that an optimal vehicle-request match can potentially become suboptimal
with the arrival of new requests. This myopic assignment problem has been addressed
in [Ke et al| (2022), where the matching of a request is delayed if a historically better
assignment can be found. Service pricing under time-varying demand for ride-hailing or
ride-splitting is accounted for in Nourinejad and Ramezani (2020); [Fayed et al.| (2023)),
where the goal was to use macroscopic traffic and service modelling functions to assess
service price variation in multi-modal settings. The advantage of this aggregate modelling
framework is that it circumvents the need to bind the pricing optimization framework to

an exhaustive low-level vehicle-passenger matching module.

Reproducing this same analysis for high-capacity on-demand micro-transit services is
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hindered by the lack of a comprehensive high-level understanding of the structure and
operation of these services. Therefore, The main contributions of this work are twofold.
First, we carve the problem of high-capacity on-demand micro-transit services into a
queuing theory framework, and show some analytical findings on the usefulness of batching
for these services on a small scale. Second, on a larger scale, we use a simulation framework
for the city of Glyfada in Greece to showcase the effect of an event- and time-based batching

on the waiting time, detour time, and passenger acceptance rate.

2 Methodology

In the following section, we develop a macroscopic framework for the modelling of on-
demand micro-transit vehicles rooted in a queuing theory approach, and we use this
model to assess whether for simple network graphs, batching is beneficial for improving

micro-transit service level.

2.1 A macroscopic modelling framework for micro-transit services

In this work, we model an on-demand micro-transit service with a fixed number of micro-
transit vehicles N, each with a capacity C such that N,C € Z*. The micro-transit
vehicles operate in a network defined as a complete graph G = (V, £) such that V is the set
of station nodes where micro-transit vehicles stop to board or alight passengers, and & is
the set of edges capturing the transit time between stations. We note that the pick-up and
drop-off operations only happen at these nodes as the service we assess is station-based
rather than door-to-door. We denote by T' € R‘égv the matrix whose elements T;; defines
the travel time on the edge e;;, where ¢;; € £ is the edge between two stations ¢ and j,
1,5 € V. The travel time between any two stations is strictly positive. As a consequence,
together with the completeness assumption of the graph, for all 4, j € V, T;; = 0 if and
only if 7 = 7. We also make the natural assumption that the matrix 7' satisfies triangular
inequality such that T;; < Tj;, + T}, for 4, j, k € V. The arrival of passenger requests covers
a time period ¢ > 0, and the average hourly demand rate between any two pair of nodes
is given by A\ € R;(X)V such that )\;; defines the demand rate between any two stations
1,7 € V.
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Figure 1: A two-node graph structure for the analysis of on-demand micro-transit

2.2 Theoretical analysis on the effect of batching in simple settings

2.2.1 Two-node example

Consider the two-node graph displayed in Figure [I] and a single vehicle only delivering
passengers from station a to b such that A\, > 0 and is equal to 0 otherwise. We denote

by 5 the batching time window and we set a@ = | We furthermore make the

_& |
2Tgp+B8-"
assumption that the demand is time-invariant and that Ty, = Tj,.

Proposition 1 For a two-station network with a single vehicle and constant demand Ay
and « > 1, the total delay over a duration & is minimized for f = 0 when Ay (2T+ ) < C,

i.e., when all passengers are getting served.

Proof When A\,;,(27,, + ) < C, the cumulative waiting time 0 for all requests before

being served, expressed in request.hr, is given by

§ = %Aaba(zTab +6)* + %Aab(é — a(2Ty + 8))* @
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Since a = Lﬁj, then there exists € such that if 0 < e < 1, we have a = m — €.
Replacing o with ﬁ — e in (1)), we get that
5:1)\ L—e (2T, +6)2+1/\ £ — L—e (2T + B) 2=

9 ab 2Tab + B ab 9 ab 2Tab + 6 ab

ST+ B) = SAae(@T + B + SAac (2T + )
Now, let
F(B) = €Q2Tw + B) + (¢ = €)(2Tw + 8)* .
Clearly,
Ui

% == 5 + 2(62 — 6)(2Tab + 5)

Hence, for f(B) to be decreasing, it must hold that
E4+2( —e) 2T +8) <0

which is equivalent to

a+e<2— 26

or

a<e—22<1

which contradicts the fact that o > 1.

2.2.2 Three-node example

Let us now consider the three-node graph shown in Figure 2] For the scenario under
consideration, we only have demand going from ¢ to a or ¢ to b such that \.,, > 0 and
Ay > 0. Also, to simplify the analysis, we set the vehicle capacity C' to oo which is an
assumption we will relax in future work. The micro-transit vehicle always serves all the

passengers waiting at node c¢ since we assume that Ty, + Thy + Toe < Top + Toe + Trog + Tye
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and Tca + Tab + Tbc < ch + Tbc + Tca + Tac-

Let R; and Rs be the route cba and cab respectively with travel time 17 = T, + Ty + Te
and Ty = Ty + Ty + Tye. The detour for passengers going from ¢ to b that we denote
by Acb =T, + Ty — T, if Ry is chosen, and Ag} = 0 otherwise. Similarly, the detour
for passengers going from c to a is Ag; =Ty + Ty — T,y if Ry is chosen, and Afa? =0
otherwise. Furthermore, we assume that the micro-transit vehicle always takes the route

that minimizes passengers’ detour.

Proposition 2 For a three-station network with a single vehicle and constant demand

Aea and Ay, the total delay over a duration & is minimized for B = 0.

Proof Under the assumption that the micro-transit vehicle chooses the route with
the minimal passenger detour, then at any time t;, the route R, chosen by the vehicle,
mr € {1,2} for 1 < k < « is such that 7 is given by

1 if )\cb(tk - tk—l)(Tca + Tab - ch) < Aca(tk - tkz—l)(ch + Tba - Tca) 5

2  otherwise.

T —

Knowing 7, the the service time for the next time interval ¢34y = tx + T, + 3. The

cumulative number of serviced requests at any time ¢ is

Se(tr) = (Aea + Aap) (te — tr1)

for 1 < k < a. The total delays, which are in this case a sum between the waiting and

detour time, are given by

a—1
0 =&+ Aa) = [ D (trsr — t) Se(ti) + (€ — ta) Se(ta)
k=1

«

+ Z(tk - tkfl)(Aca )\ca + ARnk)\ ) + (f - toz)(AglﬁaJrl )\ca + ARﬂaJrl )\cb) )

k=1
where « in this case is the last integer such that £ —t, < T, .
Without loss of generality, let us assume that A\, > A, then the vehicle will always

serve route R since 7, = 1 and ¢, = k(T7 4 ) for 1 < k < . Clearly, the waiting time

formulation is similar to what we observed in Proposition [I, and therefore is minimized
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for § = 0. As for the detour, we that Aff} = 0, and we are therefore left with fAfgl)\ca,
which is independent of .

3  Numerical Case Study

The theoretical framework that we developed so far quickly increases in complexity when
the number of stations grows. This justifies the need to perform large-scale simulations
to validate whether our conclusion on the effect of batching scales well in more realistic
networks. As a result, we perform in the following section a numerical study in a
simulation environment to replicate real network settings. Given the flexibility of the
simulation environment, we furthermore study instances with time-varying demand to

identify whether batching is potentially useful under non-uniform demand profiles.

3.1 Simulation settings

In the following part, we elaborate on the main characteristics of the generic simulation
environment that we developed, and we illustrate the main outcomes of our simulations.
In particular, we consider the city of Glyfada in Greece, shown in Figure [3] We design a
service of variable fleet N of micro-transit vehicles with a uniform passenger capacity C'.
The network under consideration has 10 stations distributed over the center and the city’s
outskirts. The total arrival of requests happens over a span of ¢ = 3 hr. The simulation
time itself can potentially extend beyond & as long as micro-transit vehicles continue
to pick up and drop off pre-assigned requests. Assuming that the hourly micro-transit
vy (1 1-1).

The variable n(t), which defines the number of passengers having arrived at every node

demand is uniform for all trips, with demand rate A, then the matrix A\ =

during a period [0,1], t < D, follows a Poisson process such that n(t) ~ Poisson(\t). The
origin O and the destination D of arriving requests are uniformly generated from the set
of stations )V such that O, D € V.

With regard to the vehicle-passenger matching and vehicle dispatching, we implement
an efficient and fast algorithm within the simulation to achieve desired objectives within
reasonable time frames. For this reason, we design a straightforward greedy matching with

the aim of minimizing a combined objective function that consists of the waiting time of
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Figure 3: Glyfada network with the station locations

requests and the detour time of traveling passengers. For every request assignment, and
every potential vehicle schedule, we make sure that the output solution is feasible, i.e., it
abides by the capacity, maximum waiting time, and maximum detour time constraints. The
baseline greedy matching algorithm is instantaneous and assigns the first coming request
to the feasible vehicle route with the least amount of wait and detour cost increment, and
this assignment is definitive in the sense that any changes in the assignment are forbidden
despite the new arrival of requests. A summary of the greedy algorithm logic that we

utilize in our simulations is displayed in Algorithm

Algorithm 1 Greedy matching and routing algorithm
: procedure GREEDY (vehicles, O, D) > For a copy of the vehicles structure, find
the best vehicle for a given OD pair
best_vehicle + (), best_cost < +oo
for vehicle € vehicles do
origin_indices < enumerate_origin_index(vehicle.route)
for ip € origin_indices do
destination_indices <— enumerate_destination_index(ip,vehicle.route)
for ip € destination_indices do
vehicle.route.insert_stop(O,ip)
vehicle.route.insert_stop(D,ip)
8: if feasible(vehicle) and cost(vehicle) < best_cost then
best_vehicle < vehicle, best_cost < cost(vehicle)
9: end if

—_

10: end for

11: end for

12: end for

13: return best_vehicle

14: end procedure
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Upon the arrival of a request with an origin station O and destination station
D, Algorithm [I] iterates over the set of operational vehicles, and the functions
enumerate_origin_index and enumerate_destination_index return the comprehen-
sive set of origin and destination indices ip and ip respectively, always ensuring that the
destination index follows the origin index in a vehicle route. Next, we insert the stations in
the vehicle route according to their candidate positional index, and check for violations of
capacity constraints. If the route is feasible, and the cost increment in terms of additional
detour and waiting times incurred is the lowest, the current vehicle and its respective
route becomes the best candidate assignment. The algorithm continues running up until

it covers all available vehicles and their respective routes.

Note that so far, this algorithm deals with instantaneous request arrivals. To integrate
batching into our framework, we implement two batching strategies: a time-based batching,
and an event-based batching. The difference between the two is that the time-based
batching accumulates the requests over a fixed time interval, and the assignment of requests
to vehicles is triggered once this time has elapsed. On the contrary, the event-based
batching triggers the request to vehicle assignment once a pre-defined number of requests
have been accumulated. Whether prompted by a time-based or event-based batching,
the assignment of the queued requests to available vehicles is done through repeatedly
calling Algorithm [I| but batching guarantees that the iteration over all requests in the
batch is completed before proceeding with the rest of the simulation. Moreover, instead
of assigning the requests based on a first come first served basis, we shuffle the queue of
requests multiple times, and keep the solution with the lowest objective function value.
Next, we elucidate the results of our simulations for two different scenarios, one with fixed

demand rate \, and another scenario for a variable demand rate \.

3.2 Numerical results

In the following part, we display the different simulation outputs for cases with constant
and time-varying demand. Although the theoretical analysis we previously performed
applies only for fixed demand, the simulation framework is flexible such as it allows to

assess the efficiency of batching irrespective of the demand profile.

10
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3.2.1 Cases with constant demand

For the purpose of showing the influence of batching on the performance of the on-demand
micro-transit service, we assess the case for two different fleet sizes, N =8 and N = 10
vehicles. The demand rate A for this part of the results is set to 180 requests/hr. Moreover,
we consider the cases when the waiting time constraint is equal to 10 min, but also when
the waiting time is unconstrained. Irrespective of the scenario under consideration, we
always set the detour time constraints to infinity. We point out here that for the time- and
event-based situations, we perform the simulations for different batching time windows
and various number of requests for the time-based and event-based batching, respectively.
However, we only report the values for the instances returning the lowest average waiting
time for the accepted requests. Moreover, for demonstrative purposes, we display the
results for the greedy time-based and greedy event-based to observe the effect of solely
delaying the request assignment without any attempt at reoptimizating through reshuffling.
When batching is performed but the assignment is based on a first-come first-served basis
(FCFS), we denote these scenarios by FCFS time-based and FCFS event-based. When
the assignment however is performed after a batching round with reshuffling, we denote
these scenarios by Shuffle time-based, and Shuffle event-based. Every value reported in
this section represents the average over 10 simulation runs. Also, for the optimization

framework, we randomly shuffle the requests 50 times before selecting the best solution.

Tables [l and Rl summarize the simulation results for a fleet of 8 vehicles under a constrained
versus unconstrained waiting time scenarios respectively. Clearly, when the maximum
waiting time constraint is set to infinity, we accept all requests at the expense of a higher
wait delays. The values of detour are however smaller, indicating that a higher trip
efficiency is achieved when the number of serviced users is larger. When comparing
the different scenarios in each table independently, it is clear that time-based or event-
based batching does not significantly improve waiting time, yet it reduces the detour and
increases the acceptance rate in constrained settings. This improvement is less significant
in the unconstrained settings. Similar results are observed when the fleet size is set to 10 in
Tables [3|and [d] Moreover, a larger fleet size results in a lower waiting and detour time, and
a higher acceptance rate due to the increase of the overall service capacity. Nevertheless,
the results here reproduce what we observed with the scenarios of N = 8. The minor
difference however, is that batching scenarios have relatively worse waiting times compared
to the instantaneous greedy assignment scenario. In unconstrained settings, the need for
batching is actually unsubstantiated, given that the greedy assignment is returning good

enough solutions.

11
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Table 1: Simulation results with constant demands for N = 8 and waiting time constraints

Scenario Waiting [hr] Detour [hr] Acceptance
Greedy 0.110 0.205 0.639
FCFS time-based 0.113 0.198 0.639
FCFS event-based 0.115 0.204 0.630
Shuffle time-based 0.106 0.142 0.680
Shuffle event-based 0.106 0.152 0.691

Table 2: Simulation results with constant demands for N = 8 and no waiting time
constraints

Scenario Waiting [hr] Detour [hr] Acceptance
Greedy 0.259 0.078 1
FCFS time-based 0.259 0.077 1
FCFS event-based 0.262 0.076 1
Shuffle time-based 0.247 0.073 1
Shuffle event-based 0.244 0.072 1

3.2.2 Cases with time-varying demand

Batching has not shown to improve the waiting under constant demand rates, whether in
the simulation environment or the analytical framework. Motivated by this, we analyze
the output of the simulations for the time-varying case to verify whether a non-uniform
demand profile justifies the need for request batching. For this case, therefore, we assume
that for every 30 request arrivals, we regenerate the demand rate A such that A = 100
requests/hr for 80% of the time and A = 450 requests/hr for the remaining time. Elsewise,
all the other parameters are kept the same as in the case with constant demand. The
results for a fleet size of 8 for a constrained and unconstrained waiting times are displayed
in Tables 0] and [6], while the results for a fleet of 10 are shown in Tables [7] and [§] The
conclusions that we reach here are similar to those observed in the case of constant

demand. Nevertheless, we point out that a more accentuated difference was observed in

Table 3: Simulation results with constant demands for N = 10 and waiting time constraints

Scenario Waiting [hr] Detour [hr] Acceptance
Greedy 0.102 0.173 0.825
FCFS time-based 0.104 0.177 0.798
FCF'S event-based 0.108 0.172 0.806
Shuffle time-based 0.099 0.127 0.845
Shuffle event-based 0.100 0.119 0.859

12
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Table 4: Simulation with constant demands results for N = 10 and no waiting time
constraints

Scenario Waiting [hr] Detour [hr] Acceptance
Greedy 0.136 0.057 1
FCFS time-based 0.142 0.060 1
FCFS event-based 0.155 0.058 1
Shuffle time-based 0.143 0.057 1
Shuffle event-based 0.145 0.056 1

Table 5: Simulation results with time-varying demands for N = 8 and waiting time
constraints

Scenario Waiting [hr] Detour [hr] Acceptance
Greedy 0.109 0.202 0.658
FCFS time-based 0.110 0.201 0.649
FCEFS event-based 0.112 0.191 0.655
Shuffle time-based 0.106 0.154 0.714
Shuffle event-based 0.105 0.150 0.721

Table [3] compared to Table [7] between the two scenarios Shuffle time-based and Shuffle
event-based, indicating that the event-based scenario performs better under time-varying
demand. This finding however requires further justification in other instances with various

demand profiles.

Table 6: Simulation results with time-varying demands for N = 8 and no waiting time
constraints

Scenario Waiting [hr] Detour [hr] Acceptance
Greedy 0.230 0.074 1
FCFS time-based 0.216 0.073 1
FCEFS event-based 0.260 0.077 1
Shuffle time-based 0.226 0.069 1
Shuffle event-based 0.234 0.070 1

13
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Table 7: Simulation results with time-varying demands for N = 10 and waiting time
constraints

Scenario Waiting [hr] Detour [hr] Acceptance
Greedy 0.102 0.166 0.823
FCFS time-based 0.099 0.159 0.863
FCFS event-based 0.107 0.157 0.801
Shuffle time-based 0.098 0.145 0.881
Shuffle event-based 0.101 0.124 0.838

Table 8: Simulation results with time-varying demands for N = 10 and no waiting time
constraints

Scenario Waiting [hr] Detour [hr] Acceptance
Greedy 0.129 0.057 1
FCFS time-based 0.145 0.058 1
FCEFS event-based 0.161 0.060 1
Shuffle time-based 0.144 0.056 1
Shuffle event-based 0.150 0.056 1

4 Conclusions

In this work, we focused on investigating the influence of request batching on the service
level for on-demand high-capacity micro-transit services. We modeled the problem
structure within a queuing theory framework and analyzed the effect of request batching
on total delays for simple network graph with constant demand. We then tested our
findings in a more realistic simulation environment with a larger service scale with uniform
and time-dependent demand profiles. In both approaches, we concluded that batching has

little improvement in waiting time but has the potential to reduce the passenger detour.

In the future, we plan to further develop our analytical findings to handle more complex
scenarios. Furthermore, we aim to come up with comprehensive scaling laws for the
structure and operation of high-capacity micro-transit under different exogenous factors
shaping this particular service. The ultimate goal is to integrate the aggregate relation-
ships we uncover to investigate the pricing of on-demand micro-transit in multi-modal

networks.

14
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