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Abstract

In vehicle platooning, time gap settings of Adaptive Cruise Control (ACC) systems have
a significant impact on car-following dynamics, traffic capacity and road safety. Traffic
capacity increases with the reduction of the average time headway; however, this raises
concerns of safety and string stability. This work presents a variable time gap feedback
control strategy to balance following a minimum time gap setting under equilibrium
car-following conditions for increased traffic capacity; and guaranteeing string stability to
attenuate disturbances away from the equilibrium flow. This is achieved using nonlinear
H∞ control; where a variable time gap component is set as the manipulated control signal.
Also, a constant time gap component is present which dominates during car-following
equilibrium and is prescribed to the minimum value. Numerical simulations demonstrate
that the proposed scheme yields less perturbations in space headway compared to its
constant time-gap ACC baseline; showcasing the potential benefits of better road utilization
and increased capacity from a traffic perspective.
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1 Introduction

Adaptive Cruise Control (ACC) is a part of the advanced driver assistance systems (ADAS)
and is designed specifically for vehicle longitudinal control. In fact, ACC systems are the
most widespread Society of Engineers (SAE) level 1 automated vehcile (AV) technology
in the current markets SAE (2021). For instance, 16 out of 20 best-selling cars in the US
market are equipped with an ACC system Shang and Stern (2021). More importantly,
vehicle automation gives rise to change traffic flow dynamics and to alleviate instabilities
and congestion.

At its center, ACC employs a spacing policy which in turn determines the car-following
behavior, platoon stability and traffic efficiency Wu et al. (2020). A small inter-vehicular
spacing results in a higher traffic capacity but undermines safety and stability. The
notion of stability referred to in this work is string stability. Intuitively, vehicles in a
platoon are string stable if small perturbations from an equilibrium flow are dampened
as they propagate in the upstream direction. Spacing policies in the literature can be
categorized into 1) constant spacing (CS), 2) constant time-headway policies (CTH), and 3)
variable time-headway (VTH) policies Ntousakis et al. (2015). String stability was proved
unattainable using CS policy without inter-vehicular communication to provide further
information such as leader’s acceleration Ntousakis et al. (2015); Bian et al. (2018). On
the other hand, CTH and VTH policies can be appropriately designed to be string stable;
nevertheless, there exists the conflicting objective of traffic efficiency. Using the OpenACC
database for car-following experiments, the authors in Makridis et al. (2021) confirm that
a string-stable ACC with large time-headway leads to poor road utilization decreasing
capacity. In addition, a large headway threatens drivers’ subjective acceptability due to
possibly increased lane changes from adjacent lanes Wu et al. (2020).

The aim of this work is to develop a VTH policy for ACC which is able to strike a
balance between string stability and traffic efficiency. Under equilibrium flow, a CTH
policy with a minimum time gap is adopted to promote efficient road utilization by ACC
vehicles. This relies on the fact that stable driving conditions are most prevalent. This
can also be supported by observed trajectory data from the OpenACC database. Figure 1
shows the distributions of instantaneous acceleration and deceleration which are mostly
under ±0.5 m/s2 for all platoons in the AstaZero and ZalaZone campaigns. However,
perturbations/disturbances give rise to sharp acceleration/deceleration; raising safety,
stability and efficiency concerns. Further investigations by Ciuffo et.al. compared short,
medium and large time gap settings for field platoons in the ZalaZone experimental
campaign in terms of traffic capacity Ciuffo et al. (2021). They showed that short time





             

gap platoons are able to attain the highest flow during stable conditions; while highly
deteriorating during perturbations to relatively match medium time-gap platoons. Hence,
the string instability is detrimental to the potential benefits of ACC systems to traffic
flow. Therefore, the CTH policy must to be relaxed to allow for the needed larger gaps to
attenuate such disturbances.

Figure 1: Distributions of instantaneous acceleration and deceleration of vehicles per
campaign and driving mode. The red labels denote the cumulative proportion of accelera-
tion/deceleration that is below/above ±0.5 m/s2.

The most widely used ACC model is developed by Milanés and Shladover (2014) as a
linear feedback control algorithm; where the acceleration is computed based on deviations
away from a target speed (leading vehicle speed in car-following mode) and away from
a target spacing determined by a constant time gap (CTG) policy. This spacing policy





             

assumes that the space gap is proportional to the vehicle speed; thus, more appealing
to drivers. Furthermore, Gunter et. al. have shown that commercially available ACC
systems utilizing CTG policy are string unstable Gunter et al. (2021). Interestingly, Shang
and Stern (2021) presented simulations of string-unstable ACC vehicles platoon with a
minimum time gap which enhanced downstream capacity relative to their string-stable
counterpart with a maximum time gap. Lin et.al. demonstrated through experiments the
need for different time gap setting in different driving scenarios in order to balance safety
and driver’s subjective acceptance Lin et al. (2009).

Other variable spacing policies assume a nonlinear relationship between the space gap and
the vehicle speed to improve stability properties and traffic capacity — e.g. approaches
by Wang and Rajamani (2002) and Swaroop and Rajagopal (1999) are inspired by
Greenshield’s fundamental diagram (FD), approaches by Wang and Rajamani (2002, 2004)
and Zhou and Peng (2004) adopt nonlinear spacing policies enforced through sliding mode
control and approaches by Kesting et al. (2008); Wang et al. (2014); Spiliopoulou et al.
(2018) and Bekiaris-Liberis and Delis (2021) directly manipulate the time gap of the
underlying ACC system. Specifically, Bekiaris-Liberis and Delis (2021) assume the time
gap of ACC vehicles as a control input to be manipulated to stabilize traffic flow expressed
by an Aw-Rascle-Zhang (ARZ) mixed traffic model. The feedback VTG control policy
was developed for the linearized system around a uniform, congested equilibrium profile.
Numerical simulations reported improved performance in terms of fuel consumption, travel
time, and comfort compared to the CTG policy; which the authors proved to yield an
unstable traffic flow.

In this work, we employ a VTG policy consisting of both a constant component; which
may be a constant desired setting by the driver or a minimum time gap for efficient traffic
flow, and a manipulated component to be designed in order to achieve string stability.
This manipulated time gap component is developed as a feedback control policy; similar
to Bekiaris-Liberis and Delis (2021), using nonlinear H∞ control in order to achieve L2

string stability in the strict sense. A nonlinear analysis is necessary here due to the VTG
strategy adopted. Also, formulation through strict string stability facilitates extending the
platoon to any number of vehicles; since a platoon can be split to multiple leader-follower
subsystems. This scheme provides a compromise between enforcing traffic efficiency during
equilibrium car-following conditions and attaining string stability during non-equilibrium
flow by relaxation to the VTH policy.





             

2 Preliminaries

Consider a platoon of N + 1 vehicles. The leader is denoted by the index 0. Each follower
vehicle i, ∀i = 1, . . . , N, is described by the following state-space model.

ṡi(t) = vi−1(t)− vi(t) (1a)

v̇i(t) = fa,i(si(t), vi(t), vi−1(t)) (1b)

where si and vi denote the space headway and velocity of vehicle i respectively and
vi−1 denotes the velocity of the preceding vehicle. The function fa,i(·) represents the
longitudinal dynamics defined by car-following models such as the IDM Treiber and
Kesting (2013) which may be homogeneous or heterogeneous.

A signal u(t) ∈ L2 has, intuitively, bounded energy, i.e.
∫∞
t0

uT (t)u(t)dt < ∞, if it belongs
to the Lebesgue space L2 of square-integrable functions.

Definition 1. Let seq,i and veq be the equilibrium profile of (1), xi(t) =
[
si(t)− seq,i vi(t)− veq,i

]T
be the deviation states away from the equilibrium profile and δvi−1(t) = vi−1 − veq. For
any platoon to be strictly input-to-state string-stable, follower vehicle i should have a local
L2-gain equal to or less than γ, γ ≤ 1 for any initial state xi(0) ∈ N if the response xi(t)

to any disturbance from the preceding vehicle δvi−1(t) ∈ L2[0,∞) satisfies

∥xi(t)∥2L2
≤ γ2

(
κ(xi(0)) + ∥δvi−1(t)∥2L2

)
,∀t ≥ 0, i = 1, . . . , N (2)

for some bounded function κ, κ(0) = 0 and N ⊆ X ⊆ R2 where X is the set of admissible
states.

Definition 2. Let Xi(s) and ∆Vi−1(s) be the Laplace transform of xi(t) and δvi−1(t).
For a linear platoon to be strictly input-to-output string-stable, follower vehicle i should
have an H∞-norm or induced L2-gain equal to or less than γ, γ ≤ 1 if the response xi(t)

to any disturbance from the preceding vehicle δvi−1(t) ∈ L2[0,∞) satisfies

∥Γi(s)∥H∞
= sup

δvi−1∈L2(0,∞)̸=0

∥xi(t)∥2L2

∥δvi−1(t)∥2L2

≤ γ, ∀i = 1, . . . , N (3)

where Γi(s) =
Xi(s)

∆Vi−1(s)
is the transfer function between follower vehicle i and its predecessor

i− 1.





             

The L2-gain, or H∞-norm for linear systems, represents the worst-case system gain over
all excitations or input disturbances. Thus, if a platoon has an L2-gain of γ ≤ 1, it means
that perturbations will dissipate as they propagate upstream and the platoon will be
string-stable.

For a platoon of ACC vehicles Milanés and Shladover (2014), the dynamic model can be
written as follows.

ṡi(t) = vi−1(t)− vi(t) (4a)

v̇i(t) = k1,i(si(t)− s0 − Li−1 − τivi(t)) + k2,i(vi−1(t)− vi(t)) (4b)

where s0 is the standstill distance, Li−1 is the length of vehicle i− 1 and k1,i, k2,i and τi

are the spacing control gain, velocity control gain and the constant time gap for ACC
vehicle i. The CTG spacing policy is defined as sdes,i = s0 + Li−1 + τivi(t).

To define the error dynamics of a leader-follower subsystem, the equilibrium profile is
defined by the constant speed veq at which all vehicles are travelling at. The equilibrium
space headway is given as seq,i = s0+Li−1+τiveq. Then, the deviation states are expressed
as s̃i = si − seq,i and ṽ = vi − veq and the deviation dynamics are derived as follows.

˙̃si = vi−1 − vi (5a)

= (vi−1 − veq)− (vi − veq) (5b)

= −ṽi + δvi−1 (5c)

˙̃vi = k1,i(si(t)− s0 − Li−1 − τivi(t)) + k2,i(vi−1(t)− vi(t)) (6a)

= k1,i(si(t)− s0 − Li−1 − τi(ṽi + veq)) + k2,i(−ṽi + δvi−1) (6b)

= k1,i(si(t)− s0 − Li−1 − τiveq)− k1,iτiṽi − k2,iṽi + k2,iδvi−1 (6c)

= k1,is̃i − k1,iτiṽi − k2,iṽi + k2,iδvi−1 (6d)

where δvi−1 denotes the deviation of the leader’s velocity away from the equilibrium
velocity and represents a disturbance to the considered leader-follower subsystem.





             

3 Synthesis of H∞-based Variable Time Gap Control
Policy

In this section, a VTG control policy is designed to guarantee strict string stability during
conditions away from the equilibrium profile, seq,i and veq, of the ACC model in (4).
Consider the following form of the time gap command

τi = τ ⋆i + ui(t) (7)

where τ ⋆i and ui(t) are the constant and variable time gap components respectively. The
deviation dynamics for follower vehicle i can be then derived similar to (5) and (6) and
are expressed as

˙̃si(t) = ṽi(t) + δvi−1(t) (8a)
˙̃vi(t) = k1,is̃i(t)− (k1,iτ

⋆
i + k2,i)ṽi(t) + k2,iδvi−1(t)− k1,i(veq + ṽi(t))ui(t) (8b)

where δvi−1(t) is considered as the disturbance from the preceding vehicle to be at-
tenuated by the control input ui(t). The system states are denoted by the vector

xi(t) =
[
s̃i(t) ṽi(t)

]T
.

For strict input-to-state string stability, the VTG control policy for ui(t) needs to be
designed to yield an L2-gain of γ ≤ 1. Notably,the system is nonlinear due to the last
term in (8b). To this end, a synthesis of nonlinear H∞ controller ensues.

The nonlinear system is represented as in the following standard state-space form

ẋ = f(x) + g1(x)w + g2(x)u (9a)

z = h(x) +K12(x)u (9b)

where the subscript i is dropped for brevity, w = δvi−1 denotes the exogenous disturbance,
u = ui denotes the control input, and z =

[
ρss̃i ρvṽi ρuui

]
denotes the penalty variables

with penalty weights of ρs, ρv and ρu. Thus, the vector-valued functions are given as





             

follows.

f(x) =

[
−ṽi

k1,is̃i − (k1,iτ
⋆
i + k2,i)ṽi

]
(10a)

g1(x) =

[
1

k2,i

]
(10b)

g2(x) =

[
0

−k1,i(veq + ṽi)

]
(10c)

h(x) =
[
ρss̃i ρvṽi 0

]T
(10d)

K12(x) =
[
0 0 ρu

]T
(10e)

hT (x)K12(x) = 0 , KT
12(x)K12(x) = R2 = ρ2u (10f)

The problem of designing u for string stability, as per Definition 1, can be formulated as
an infinite-time horizon min-max optimization problem so that the L2-gain from w to z

is γ ≤ 1.

u⋆ = argmin
u∈U

max
w∈L2

1

2

∫ ∞

0

∥z(t)∥2 − γ2 ∥w(t)∥2 dt subject to (9) (11)

where U ⊆ R is the set of admissible control inputs. Here, the objective function balances
the minimization of the penalty variables, i.e. performance specifications, against the worst-
case exogenous disturbances. Notably, the penalty variables z(t) include the deviation
of the space headway away from the equilibrium profile seq,i and the manipulated time
gap command ui(t). This motivates minimizing the space headway, as an incentive to
more efficient road utilization and traffic capacity from a microscopic perspective, and
the manipulated time gap command to maintain proximal operating conditions to the
constant time gap setting τ ⋆i .

This optimization problem is also a differential game; consisting of a two-player zero-sum
game. The minimizing player controls the input u; whereas the maximizing player controls
the disturbance w. This game has a saddle-point equilibrium solution if it has a value
function V : X 7→ R that is positive definite and satisfies the Hamilton-Jacobi-Isaacs





             

(HJI) equation and the optimal feedback policies of both players Huang and Lin (1995)

u⋆ = −R−1
2 (x)gT2 (x)Vx (12a)

w⋆ =
1

γ2
gT1 (x)Vx (12b)

Vxf(x) +
1

2
hT (x)h(x) +

1

2
Vx

( 1

γ2
g1(x)g

T
1 (x)− g2(x)R

−1
2 gT2 (x)

)
= 0 (12c)

where Vx is the Jacobian matrix of V (x). A closed form solution for (12c) does not exist,
thus, a numerical approximation using Taylor’s series is adopted. Then, the HJI equation
becomes an algebraic Ricatti equation of the following form to be solved online; since we
consider the equilibrium velocity as the subsystem leader velocity veq = vi−1.

PA+ ATP + P

(
1

γ2
B1B

T
1 −B2R

−1
2 BT

2

)
P + CTC = 0 (13a)

f(xi) = Axi + f̂ [2+](xi) ; A =

[
0 −1

k1 −(k1T
⋆
g + k2)

]
(13b)

g1(xi) = B1 + ĝ
[1+]
1 (xi) ; B1 =

[
1

k2

]
(13c)

g2(xi) = B2 + ĝ
[1+]
2 (xi) ; B2 =

[
0

−k1ve

]
(13d)

h(xi) = Cxi + ĥ[2+](xi) ; C =

ρs 0

0 ρv

0 0

 (13e)

V (xi) = xT
i Pxi + V̂ [3+](xi) (13f)

The nth-order and higher-order terms of the function (·)(xi) are denoted by (̂·)
[n+]

(xi)

and P ⪰ 0 is a symmteric positive definite matrix. Note that, in our setting, the only
assumptions made are (13d) and (13f) and the rest are exact expressions. On another
note, the algebraic Ricatti equation in (13a) is feasible for a prescribed γ if the pair (A,B2)

is stabilizable and the Hamiltonian matrix

H =

 A

(
1
γ2B1B

T
1 −B2R

−1
2 BT

2

)
−CTC −AT


is dichotomic, i.e. has no eigenvalues on the imaginary axis. This is true for veq > 0 and
for an appropiate choice of penalty weights, ρs, ρv and ρu. The VTG control strategy can
be illustrated in Figure 2.





             

Figure 2: Block diagram of the VTG proposed feedback control policy.

This VTG policy is robust to velocity disturbances from the leader away from the
equilibrium profile; thus it yields a string-stable system in the strict sense with a worst
case L2-gain of γ ≤ 1. It also guarantees the internal stability of the considered vehicle
i. Additionally, the constant time gap setting can be kept either at minimum setting for
benefits in traffic efficiency or at a desired setting chosen by the driver. Hence, the time gap
parameter design is modularized by separating string stability from other considerations.

4 Numerical Simulations

In this section, the performance of the proposed VTG ACC scheme will be investigated
against the CTG ACC scheme Milanés and Shladover (2014) and two string-stable
controllers from the literature Zhou and Peng (2004); Mousavi et al. (2023) on artificial
driving cycles.

The first ACC scheme by Zhou and Peng (2004) utilizes a quadratic spacing policy inspired
from human driving behavior and optimized for string stability and maximum traffic
capacity. The desired space headway sdes,i(t) according to the spacing policy can be
expressed as

sdes,i(t) = Li−1 + A+ Tvi(t) +Gv2i (t) (14)

where A is the standstill distance and T = 0.0019 and G = 0.0448 are coefficients identified
by the authors through constrained optimization. A sliding mode controller is implemented
to find the follower acceleration enforcing such spacing policy. The car-following dynamics





             

in (1) beocmes

fa,i(si(t), vi(t), vi−1(t)) =
λ

T + 2Gvi(t)
(si(t)− sdes,i(t)) +

1

T + 2Gvi(t)
(vi−1(t)− vi(t)) (15)

where λ is a controller gain defining the sliding surface dynamics ϵ̇ = −λϵ. The sliding
variable ϵ is expressed through deviation of space headway away from desired spacing
ϵ = si(t)− sdes,i(t). This essentially implements a VTG policy and will be referred to as
VTG SMC. Also, Table 1 summarizes the used parameter values for all ACC schemes
investigated.

Table 1: Parameter values of the implemented ACC control schemes.

CTG ACC VTG ACC VTG SMC Centralized ACC
Parameter Value Parameter Value Parameter Value Parameter Value
k1 0.23 k1 0.23 λ 2 ρs 0.2
k2 0.07 k2 0.07 T 0.0019 ρv 0.3
τ 1.0 τ ⋆ 1.0 G 0.0448 ρu 1
s0 3 s0 3 A 3
L 5 ρs 0.2 L 5

ρv 0.3
ρu 1
γ 0.95

Figure 3 shows the resulting trajectories of 4 following vehicles of a platoon leader,
with the lead velocity shown in black, on a straight open road. The following vehicles
start with an initial perturbation in their velocities. This driving cycle, also, has sharp
acceleration/deceleration of maximum values ±4 m/s2 at t = 50, 300 s; thus, the response
to different types of disturbances can be observed. The minimum time-gap setting of
τ = τ ⋆ = 1 s was used. Naturally, the CTG ACC shows string-unstable behavior; where
the perturbations in both velocity and spacing amplify as they propagate upstream. On
the other hand, both VTG ACC and VTG SMC are string-stable. Nevertheless, VTG SMC
demonstrates larger space gaps to accommodate and dissipate these disturbances; whereas,
the proposed VTG ACC scheme introduces minimal changes in space and time headways
with respect to the equilibrium minimum time gap operation. It is, also, important to
notice that the amplified oscillations exhibited by CTG ACC present with dangerously
low values of time headway raising safety concerns. This highlights the importance of the
choice of the penalty variables z(t) in the optimization problem (11) and the design of
the nonlinear H∞ scheme.





             

Figure 3: Simulated trajectories of a platoon of 5 vehicles along a straight road using
CTG ACC, VTG SMC and the proposed VTG ACC. Platoon leader velocity is the black
dashed line.

Additionally, in order to asses the safety and energy consumption of these approaches,
the Time To Collision TTCi and tractive energy consumption Ei metrics were used. The
instantaneous TTC can be expressed as

TTCi(t) =
si(t)− Li−1

vi(t)− vi−1(t)
(16)

whereas the tractive energy consumption is obtained as follows Apostolakis and Ampoun-
tolas (2023).

Pi = max
(
0, 10−3vi

(
F0 + F1vi + F2V

2
i + 1.03mai +mg sin θ

))
(17a)

Ei =

∫ T

0
Pidt

0.036
∫ T

0
vidt

(17b)

Tractive energy consumption takes into account only tractive power demand so that it
is agnostic to vehicle specifications; enabling a fair comparison between different ACC
algorithms. The road is assumed horizontal; θ = 0. The road-related coefficients F0 = 213

N, F1 = 0.0861 Ns/m, F2 = 0.0027Ns2/m2 and the vehicle’s mass m = 1500 kg are assumed
constant over all vehicles in order to normalize over the different platoons and compare





             

the performance of the utilized ACC algorithms. Figure 4 illustrates the minimum TTC
and tractive energy consumption of each vehicle inside the platoons. For the first following
vehicle, the proposed scheme yields an improved TTC by 86.4% compared to CTG ACC
and by 23.5% compared to VTG SMC. This difference is quite pronounced for the first
follower since it is the immediate following vehicle to the perturbing one (i.e. platoon
leader). Regarding tractive energy consumption, both the VTG ACC and VTG SMC
algorithms homogenize the energy consumption overall the platoon members; whereas
the CTG ACC algorithm shows higher energy consumption due to the disturbances
propagation along the platoon. Hence, safety and energy efficiency concerns raised due to
string instability are releived using the proposed approach while optimizing road space
utilization by adhering to a minimum time gap during stable car-following conditions.

Figure 4: Time To Collision and tractive energy consumption of followers in a platoon of 5
vehicles along a straight road using CTG ACC, VTG SMC and the proposed VTG ACC.

As for the approach adopted by Mousavi et.al. Mousavi et al. (2023), a centralized mixed
H2/H∞ control strategy is developed for a platoon of heterogeneous vehicles to mitigate
the effect of disturbances and regulate the platoon to equilibrium flow. Here, we consider
homogeneous platoons of ACC-enabled vehicles for implementation of the centralized
controller by Mousavi et al. (2023) for comparison. This test is carried out for a platoon
of 5 vehicles in a ring road of length 165 m as well as a minimum time gap of τ = τ ⋆ = 1 s.
Initial perturbations in the vehicles velocities are introduced as well as a sharp deceleration
of −3 m/s2 lasting 3 s for one random vehicle — ’CAV3’ in Figure 5.

As illustrated in Figure 5, both schemes are able to dissipate perturbations as they are string
stable by design. However, the centralized ACC algorithm shows lower changes in space and





             

time headway relative to the proposed VTG ACC algorithm. The reason is that the former
scheme assumes a centralized cooperative structure; therefore, has global information about
all platoon vehicles. In contrast, our proposed control scheme is completely decentralized
via predecessor-follower topology and only needs sensor measurements of spacing and lead
velocity; thus, it is more computationally efficient with comparable performance.

Figure 5: Simulated trajectories of the (a) first and (b) last followers in a platoon of 5
vehicles along a straight road using CTG ACC, VTG SMC and the proposed VTG ACC.
Platoon leader velocity is the black dashed line.

(a) Centralized H2/H∞ ACC scheme

(b) Proposed VTG ACC scheme

5 Conclusion

In this article, a variable time gap strategy is designed to guarantee string stability
in the strict sense for vehicle platoons. The control architecture is modular; where a
constant time gap component τ ⋆ and a variable time gap component u(t) is designed





             

as the control policy for disturbance attenuation. Strict string stability is guaranteed
through nonlinear H∞ control to dissipate perturbations from the leading vehicle to the
prescribed penalty variables; space headway and ego vehicle’s velocity. The string stability
problem is decoupled from equilibrium flow dictated by τ ⋆; which may define driver
comfort settings or a minimum time gap value for traffic efficiency. The performance of the
proposed scheme is validated through numerical simulations. Due its projected benefits,
the proposed ACC algorithm is yet to be validated versus commercially available ACC
systems through both numerical and microscopic traffic simulations in multiple scenario
to compare these benefits in terms of traffic efficiency, safety and energy consumption.

6 References

Apostolakis, T. and K. Ampountolas (2023) Physics-inspired neural networks for parameter
learning of adaptive cruise control systems, 9 2023.

Bekiaris-Liberis, N. and A. I. Delis (2021) Pde-based feedback control of freeway traffic
flow via time-gap manipulation of acc-equipped vehicles, IEEE Transactions on Control
Systems Technology, 29, 461–469, ISSN 15580865.

Bian, Y., Y. Zheng, S. E. Li, Z. Wang, Q. Xu, J. Wang and K. Li (2018) Reducing time
headway for platoons of connected vehicles via multiple-predecessor following, IEEE
Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-November,
1240–1245, 12 2018.

Ciuffo, B., K. Mattas, M. Makridis, G. Albano, A. Anesiadou, Y. He, S. Josvai, D. Komnos,
M. Pataki, S. Vass and Z. Szalay (2021) Requiem on the positive effects of commercial
adaptive cruise control on motorway traffic and recommendations for future automated
driving systems, Transportation Research Part C: Emerging Technologies, 130, 103305,
9 2021, ISSN 0968-090X.

Gunter, G., D. Gloudemans, R. E. Stern, S. McQuade, R. Bhadani, M. Bunting, M. L. D.
Monache, R. Lysecky, B. Seibold, J. Sprinkle, B. Piccoli and D. B. Work (2021)
Are commercially implemented adaptive cruise control systems string stable?, IEEE
Transactions on Intelligent Transportation Systems, 22, 6992–7003, ISSN 15580016.

Huang, J. and C. F. Lin (1995) Numerical approach to computing nonlinear H∞ control





             

laws, Journal of Guidance, Control, and Dynamics, 18, 989–994, ISSN 07315090.

Kesting, A., M. Treiber, M. Schönhof and D. Helbing (2008) Adaptive cruise control
design for active congestion avoidance, Transportation Research Part C: Emerging
Technologies, 16, 668–683, ISSN 0968090X.

Lin, T. W., S. L. Hwang and P. A. Green (2009) Effects of time-gap settings of adaptive
cruise control (acc) on driving performance and subjective acceptance in a bus driving
simulator, Safety Science, 47, 620–625, 5 2009, ISSN 0925-7535.

Makridis, M., K. Mattas, A. Anesiadou and B. Ciuffo (2021) Openacc. an open database
of car-following experiments to study the properties of commercial acc systems, Trans-
portation Research Part C: Emerging Technologies, 125, 103047, ISSN 0968090X.

Milanés, V. and S. E. Shladover (2014) Modeling cooperative and autonomous adaptive
cruise control dynamic responses using experimental data, Transportation Research
Part C: Emerging Technologies, 48, 285–300, ISSN 0968090X.

Mousavi, S. S., S. Bahrami and A. Kouvelas (2023) A mixed H2/H∞ controller design for
a platoon with multiple human-driven and connected and automated vehicles, 2023
European Control Conference, ECC 2023.

Ntousakis, I. A., I. K. Nikolos and M. Papageorgiou (2015) On microscopic modelling of
adaptive cruise control systems, Transportation Research Procedia, 6, 111–127, ISSN
23521465.

SAE (2021) Society of Automotive Engineers J3016: Taxonomy and definitions for terms
related to driving automation systems for on-road motor vehicles, https://www.sae.
org/standards/content/j3016_202104/.

Shang, M. and R. E. Stern (2021) Impacts of commercially available adaptive cruise
control vehicles on highway stability and throughput, Transportation Research Part C:
Emerging Technologies, 122, 102897, 1 2021, ISSN 0968-090X.

Spiliopoulou, A., D. Manolis, F. Vandorou and M. Papageorgiou (2018) Adaptive cruise
control operation for improved motorway traffic flow, Transportation Research Record,
2672, 24–35, ISSN 21694052.

Swaroop, D. and K. R. Rajagopal (1999) Intelligent cruise control systems and traffic



https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/


             

flow behavior, ASME International Mechanical Engineering Congress and Exposition,
Proceedings (IMECE), 1999-J, 373–380.

Treiber, M. and A. Kesting (2013) Traffic Flow Dynamics, ISBN 9783642324598.

Wang, J. and R. Rajamani (2002) Adaptive cruise control system design and its impact
on highway traffic flow, Proceedings of the American Control Conference, 5, 3690–3695,
ISSN 07431619.

Wang, J. and R. Rajamani (2004) Should adaptive cruise-control systems be designed
to maintain a constant time gap between vehicles?, IEEE Transactions on Vehicular
Technology, 53, 1480–1490, ISSN 00189545.

Wang, M., W. Daamen, S. P. Hoogendoorn and B. van Arem (2014) Rolling horizon
control framework for driver assistance systems. part i: Mathematical formulation and
non-cooperative systems, Transportation Research Part C: Emerging Technologies, 40,
271–289, ISSN 0968090X.

Wu, C., Z. Xu, Y. Liu, C. Fu, K. Li and M. Hu (2020) Spacing policies for adaptive cruise
control: A survey, IEEE Access, 8, 50149–50162, ISSN 21693536.

Zhou, J. and H. Peng (2004) Range policy of adaptive cruise control for improved flow
stability and string stability, Conference Proceeding - IEEE International Conference
on Networking, Sensing and Control, 1, 595–600.




	Introduction
	Preliminaries
	Synthesis of H-based Variable Time Gap Control Policy
	Numerical Simulations
	Conclusion
	References

