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Abstract

This paper uses unlabelled GPS tracking data, enriched by fusion with Automatic Vehicle
Location (AVL) data, to assess the rationality of individuals’ travel choices in the city of
Zurich, Switzerland. By examining thousands of public transport journeys, we introduce
trip metrics normalized by the respective shortest path, providing an intuitive method to
compare trips across diverse users and attributes. According to the patterns encountered,
we further classify trips into five distinct groups: i) the ’as fast as possible’; ii) too early
or too late for connections; iii) walking-prone; iv) sitting-prone; v) do not mind a bit
of walking. By employing a tree-boosting algorithm, we demonstrate that a statistical
model can learn to distinguish well between the five groups of trips. The findings suggest
that our approach is promising for aiding planners in optimizing routes and schedules
to enhance efficiency and meet passenger demand. This research also provides valuable
insights into user behaviour by showing that individuals exhibit a mix of different trip
patterns, rather than a single predominant behaviour, when choosing their trips. These
insights on individual behaviour heterogeneity can contribute to data-driven improvements
in public transportation systems.

Keywords
GPS Tracking data; Public Transport; Route Choice; Shortest Path; Rationality of
Travellers; Trip Clustering; Behavioural Patterns





         

1 Introduction

In recent years, research on travel behaviour and mobility patterns has greatly benefited
from massive sources of data, such as GPS tracking and smartcard data. The challenge
remains on how to use and analyse these data to better understand how socio-demographics,
trip attributes, network infrastructure, and personal preferences interact in the complex
travellers’ choice process. Modelling and extracting features that have a significant
influence on this complex travel choice process is pivotal for travel demand prediction and
improved travellers’ satisfaction. Previous research has shown that human trajectories
have a high degree of temporal and spatial regularity, with a high probability of returning
to a few highly frequented locations (Gonzalez et al., 2008) and that most individuals travel
short distances in a well-localized and finite neighborhood, exhibiting a high potential of
predictability (Song et al., 2010).

This repetitive nature of human mobility patterns has motivated many researchers to
depict travellers’ behaviour using clusters of individuals with similar characteristics towards
their travel decision-making process and/or activity patterns. While many works focus on
human or activity-based clustering, emphasizing groups of individuals, trajectory-based
clustering primarily addresses route choice and travel decisions, capturing movement
patterns and paths. In both cases, however, measuring multidimensional similarity is a
critical problem in applying clustering techniques (Zhai et al., 2019). Ultimately, one
seeks to quantify the interplay between the regular and thus predictable and the random
and thus unforeseeable (Song et al., 2010). Although human mobility patterns are known
to be repetitive, they are also highly dependent on temporal variables (e.g., the day of
the week (Thuillier et al., 2017)), as well as the activity-related variables (e.g., time taken
for different activities, characteristics of the activities, purpose, or sequencing of the event
(Krause and Zhang, 2019)).

Clustering groups of individuals or activities may not only require multiple travel features,
e.g., the sequence of location and time, duration, trip purpose, trip mode, accompanying
persons, etc., but also related socio-demographic characteristics, making it challenging
from the perspective of data acquisition (Zhai et al., 2019). In contrast, trajectory-
clustering usually relies on rich trajectory datasets, such as those acquired from passive
GPS tracking, mainly focusing on the spatiotemporal dimensions. From a route choice
perspective, research has shown that the underlying user behaviour varies by trip purpose,
and individual characteristics influence route choices even for the same trip purposes
(Dalumpines and Scott, 2017). Nevertheless, to describe route choice behavior, identify
potential navigation problems, design more readable cities, and provide understandable





         

travel information, it is important to understand how variations in urban wayfinding
behavior relate to everyday travel patterns Sivalingam et al. (2024). Hence, grouping
trips instead of individuals is better aligned with the goal of understanding the overlap
between the actual and the "optimal" (from a service provider point of view) journeys.
This work delves into the idea of trajectory-clustering. Still, instead of the trajectories
themselves, the idea is to group trips together based on route-specific attributes normalized
by their shortest path counterpart. We further limit the analysis to public transport
(PT) trips, with the objective of measuring PT route choice efficiency based on simple,
readily available metrics in the context of a network well-known for offering reliable,
high-frequency connections. Specifically, this paper adds to the state of the art:

i. it proposes an approach relying only on GPS tracking and AVL data to characterize
and distinguish different groups of trips with respect to their performance compared
to shortest path metrics. By choosing this research path, we can leverage passive
GPS tracking data and offer behavioural insights even when complementary data,
e.g., socio-demographics or trip purpose, are not available.

ii. it defines and summarizes trip behaviour efficiency/rationality in terms of five
distinct groups in the context of spatiotemporal patterns. By defining the trip choice
process in terms of proximity to the shortest path trip, we can make behavioural
inferences on the rationality of users using PT.

This paper uses travel diaries collected by a smartphone application called ETH-IVT
Travel Diary consisting of 2909 trips of 172 users in the city of Zürich (Switzerland).
The application allowed (continuous) passive tracking, and activities, trips, and modes
were identified through a mode detection algorithm, as described in Marra et al. (2019).
Further information and some descriptive statistics on the survey questionnaire can be
found in the Appendix. The paper continues with a literature review. Then, Section
3 reports the methodology. Section 4 presents the clustering of trips and analyses the
results. Section 5 concludes the paper.

2 State of the art

A recent literature review indicated that travel behavioural research using GPS data
has been broadly investigated in recent years (Sivalingam et al., 2024). The results
demonstrated that GPS, which offers precise, time-stamped location data, is among the





         

most important technological advancements to address the shortcomings of conventional
travel surveys since the late 1990s and early 2000s. Compared with sensing data, survey
data is disadvantaged by high cost, low frequency, and small sample size. On the other
hand, because it often comes with socioeconomic and demographic information, survey data
provides rich information for exploring differences underlying human activity dynamics
(Jiang et al., 2012). Hence, many works combine some sort of passive tracking (GPS,
smartcard, mobile phone data, etc.) with socio-demographics (e.g., questionnaires or
official surveys) for better understanding travel behaviour.

Clustering methods are generally used to exploit human mobility patterns ranging from
spatiotemporal trajectories to trip characteristics (Zhou et al., 2021), and more recently,
there has been a lot of works centred on activity patterns, see table 1 for some an overview
of the literature on clustering techniques employed for extracting trajectory, activity or
user patterns.

Some other studies reinforce the importance of the spatial/temporal features chosen in
terms of passenger behaviour by using other methods. Song et al. (2010) measure the
entropy of individuals’ trajectory using mobile phone data, and find high predictability and
regularity of users’ daily mobility. Ortega-Tong (2013) also explores the similarity in travel
patterns from riders with smart cards combined with socio-demographic characteristics
to identify clusters with similar structures. Carrel et al. (2013) conclude that departure
regularity is the most important path-specific feature, and they show that PT passengers
gradually adapt upon changes to departure reliability and headway lengths, although
for short headways this adaptation consists mostly of a stochastic behaviour. Kusakabe
and Asakura (2014) use smart card data to analyse behavioural features to classify trip
purpose by utilising a naive Bayes classifier. For bus ridership, Kim et al. (2017) introduce
a metric called “stickiness index" to classify users according to the regularity in which they
choose their routes, which relates to the frequency of similar routes. Goulet-Langlois et al.
(2017) hypothesize that the order in which an individual engages in trips and activities is
an important characteristic of travel behaviour, so they propose an approach to measure
the regularity of travel behaviour based on the order in which travel events are organised
over time in travel sequences. They conclude that travel regularity may follow atypical
patterns which are not captured by either periodicity-based methods or activity-based
models.

All these studies take advantage of data available and apply methods that enable inference
about travellers’ behavioural characteristics. The need to complement passive data with





         

Table 1: Overview of literature on clustering techniques employed for extracting trajectory,
activity or user patterns

Authors
(Year)

(Main) Dataset Location Clustering
Method

Similarity Measure Objective

Joh et al.
(2001)

2-day activity di-
aries

Hendrik-Ido-
Ambacht and
Zwijndrecht,
Netherlands

Hierarchical
Clustering

Trajectory-based
multi-dimensional
sequence alignment

Compare performance of the
proposed multi-dimensional
sequence alignment meth-
ods for classifying travel
patterns with traditional
distance-based and signal-
processing approaches

Jiang et al.
(2012)

Activity-based
travel survey

Chicago, USA K-means Euclidean distance Explore the daily activ-
ity structure and its vari-
ation, and cluster individ-
ual behaviour with fur-
ther comparison with socio-
demographics

Zheng et al.
(2012)

Geotagged pho-
tos

Paris, London,
San Francisco
and New York

Hierarchical
Clustering

Similarity of tourist
travel routes based on
longest common subse-
quence of visited loca-
tions

Analysis of tourist move-
ment trajectories based on
a Markov chain framework

Ma et al.
(2013)

Smart card data Beijing, China DBSCAN,
K-
means++

Euclidean distance Fast data-mining procedure
that models the regular
travel patterns of transit rid-
ers

Goulet-
Langlois
et al.
(2016)

Smart card data London, UK Hierarchical
Clustering

Euclidean distance Identify clusters of users
with similar activity se-
quence structures

Ma et al.
(2017)

Smart card data Beijing, China Technique
for order
preference
by simi-
larity to
an ideal
solution
(TOPSIS)

Euclidean distance Investigate spatial and tem-
poral travel patterns in Bei-
jing

Zhang et al.
(2017)

Geotagged
tweets

Northern Vir-
ginia, USA

Sequential
model-
based
clustering

Gaussian distribution Extraction of travel be-
haviour using social media
location data and compari-
son to household survey data

Wang et al.
(2018)

GPS taxi trajec-
tory data

Wuhan, China Hierarchical
Clustering

Edit Distance Detecting anomalous taxi
trajectories

Thuillier
et al.
(2017)

Call detail
records (CDR)
mobile phone
data

Paris suburban
area, France

K-means Hamming distance Characterize human mobil-
ity patterns based on cellular
data with further validation
with a National Census

Zhai et al.
(2019)

Household trip
survey data

Puget Sound Re-
gion, USA

Affinity
propaga-
tion (AP)
clustering

Augmented space-
time-weighted edit
distance

Measuring similarities be-
tween human activities pat-
terns

Zhou et al.
(2021)

Household trip
survey data

Nanjing, China Markov-
chain
based mix-
ture model
clustering

Clustering of travellers
based on activity patterns

Costa et al.
(2023)

GPS Tracking
data

Zurich, Switzer-
land

DBSCAN Euclidean Distance Clustering of travellers (com-
muters) based on trip pat-
terns





         

socio-demographics relates to the inherently dynamic nature of human behaviour, which
from a trip planning perspective may involve many features not readily available with
passive tracking, such as trip purpose and characteristics of activities (daily routine
arrangement, activity schedule, relevance, etc.). Nevertheless, raw trajectory data such as
GPS tracking data (which provides very low-level information, comes with relatively low
quality and a non-systematic sampling rate), fused with AVL (Automatic Vehicle Location)
data (which describes the actual PT supply) is a promising solution to expand and develop
the investigation of spatiotemporal patterns pertaining urban mobility, especially those
directly related to route choice efficiency, which are further investigated in this paper. This
work differs from the others by presenting a methodology using complete trip itineraries
obtained from GPS tracking data to distinguish different groups of trips based on how
they deviate from the shortest path trip. Based on readily available spatiotemporal trip
metrics and further normalization of those metrics by the shortest path attribute, we
aim to classify different groups of trips and behaviours towards trips that measure how
“logically" users make decisions.

The next sections utilise the trips identified by the mode detection algorithm in the
ETH-IVT Travel Diary survey. The mode detection algorithm described in Marra et al.
(2019) derives travel diaries from GPS data. The algorithm identifies, for each user,
activities (done in a single location) and trips (movements between activities). Afterward,
each trip is divided into stages, and the mode for each stage is identified (walk, private
or public transport). For each public transport stage, the algorithm also identifies the
vehicle, line, departure and arrival stops and times. Without going into the details, the
main criteria to detect the mode are a low speed to identify walks, and a comparison with
AVL data to identify public transport stages. By comparing the path of a public transport
vehicle (from the AVL data) with the path of a user (from GPS data), it is possible to
detect the vehicle used. Finally, a private stage is identified by exclusion and can be
further distinguished into car or bike, if needed. Overall, the mode detection algorithm
has an average accuracy of 86.14% and has been validated in previous works on the same
dataset (Marra and Corman (2020); Marra et al. (2022)), identifying realistic mode share
and estimation of route choice models.





         

3 Methodology

The proposed methodology is a three-step procedure which incorporates machine learning
methods and statistical analysis of the results. The first step is the extraction of route
specific attributes, which are normalized to account for observations (trips) with different
lengths, times and transfer patterns. The second step is the clustering of trips based on
these route specific attributes and considering a Hierarchical Clustering approach. To
check the quality of the clusters, we employ some known methods, such as the Silhouete
score, elbow score and PCA visualization. The third and final step fits a tree-based
model and performs statistical analysis on the results, including measuring the impact
of variables through partial dependence plots (PDPs). The next subsections present a
detailed description of each step.

3.1 Route Specific Attributes

The normalized route specific attributes are expected to capture the overall characteristics
of the routes in a way that they can be compared to each other, not only in terms of the
scale, but also from the standpoint of a standard and logical perspective: how much they
deviate from their corresponding shortest path (i.e. the fastest realized trip). In order to
accomplish that, two shortest paths can be considered: the timetable shortest path and
the actual (realized) times shortest path. These shortest paths were derived in the work
of Marra and Corman (2020), and are based on fusion of GPS tracking data (the trip
information) with AVL information of PT. As explained in section 2, the algorithm had
very high accuracy and was validated in previous works. Hence, for each trip, information
on the actual path (route) of the user, could be contrasted with the timetable and actual
shortest paths. For the remainder of this study, we move forward only with the actual
shortest path from the PT provider. By inspection, it was found that many timetable trips
suffered changes causing the comparison with the user path to generate unrealistic ratios.
The actual shortest path could, therefore, more realistically capture the user behaviour
without extreme outliers, and is used herein.

Each one of the six metrics presented is then normalized by the respective actual shortest
path metric, so that each final metric is a ratio (proportion) of the shortest path counterpart,
thus allowing for all trips to be compared to each other in terms of how much they deviate
from the shortest path. These metrics are presented below.





         

3.1.1 Route Length Detour

The route length detour calculates, for each trip i, the percentage detour of the trip length
in kilometres, Di, to the corresponding shortest path length for that same trip, Di,SP .

RouteLengthDetouri =
Di −Di,SP

Di,SP

3.1.2 Route Directness Detour

The route directness detour calculates, for each trip i, the percentage detour of the number
of transfers in the trip, NTi, to the corresponding number of transfers in the shortest path
for that same trip, NTi,SP . If both the shortest path or the trip have no transfers a value
of 0 is attributed to this indicator, otherwise, if any of the trips does not have a transfer,
this indicator gets a value of "NaN" and is not further used.

RouteDirectnessDetouri =
NTi −NTi,SP

NTi,SP

3.1.3 Route Transfer Detour

The route transfer detour calculates, for each trip i, the percentage detour of the transfer
time (in minutes) of the trip, TRi, to the corresponding transfer time in the shortest path
for that same trip, TRi,SP . If both the shortest path or the trip have no transfers a value
of 0 is attributed to this indicator, otherwise, if any of the trips does not have a transfer,
this indicator gets a value of "NaN" and is not further used.

RouteTransferDetouri =
TRi − TRi,SP

TRi,SP





         

3.1.4 Route Time Detour

The route time detour calculates, for each trip i, the percentage detour of the trip total
time in minutes, Ti, to the corresponding shortest path total time for that same trip,
Ti,SP .

RouteTimeDetouri =
Ti − Ti,SP

Ti,SP

3.1.5 Route Walking Detour

The route time detour calculates, for each trip i, the percentage detour of the trip total
wwalking time in minutes, Wi, to the corresponding shortest path total walking time for
that same trip, Wi,SP .

RouteWalkingDetouri =
Wi −Wi,SP

Wi,SP

3.1.6 Route In Vehicle Detour

The route time detour calculates, for each trip i, the percentage detour of the trip total in
vehicle (i.e. bus, train, tram) time in minutes, IVi, to the corresponding shortest path
total in vehicle time for that same trip, IVi,SP .

RouteInVehicleDetouri =
IVi − IVSP

IVi,SP





         

3.2 Hierarchical Clustering

The second step identifies routes with similar patterns in terms of their normalized route
characteristic attributes by means of clustering. We run an agglomerative hierarchical
clustering algorithm (Nielsen and Nielsen, 2016) using Ward’s distance (see equation 1).
In this clustering approach, each trip is defined as a vector of its normalized features and,
at each step, two clusters merge given they provide the smallest increase in the combined
error sum of squares (Ward’s distance). This type of clustering starts from a single cluster
(single trip or data point) and merges until all trips are combined into one or k clusters.
Hence, it is necessary to choose a stop criterion (number of clusters, k).

d(u, v) =

√
|v|+ |s|

|T |
· d(v, s)2 + |v|+ |t|

|T |
· d(v, t)2 + |v|

|T |
· d(s, t)2 (1)

where:

• d(u, v) is the distance between clusters u and v,
• u is the newly joined cluster consisting of clusters s and t,
• v is an unused cluster in the forest,
• T = |v|+ |s|+ |t|, and | ∗ | is the cardinality of its argument.

The Hierarchical clustering technique can be visualized using a dendrogram, which is
a tree-like diagram that records the sequences of merges or splits. Inspection of the
dendrogram is helpful for determining a good cut-point for k, but other methods should
also be considered, such as the silhouette score (see equation 2) and the elbow method
(or k-elbow score). The silhouette score measures how close the samples are to their
cluster centroids, and how far away the samples are to their neighboring clusters (Yao
and Bekhor, 2020) . The score falls within the range of [−1, 1], where 1 indicates that the
data point is far away from its neighborhood cluster (a desirable characteristic), and −1

indicates that the data point has been assign to the “wrong” cluster. The elbow method
involves plotting the within-cluster sum of squares (WCSS) against the number of clusters;
the “elbow point" corresponds to the number of clusters for which the rate of decrease in
the metric sharply decreases, indicating that adding more clusters does not significantly
decrease the WCSS (i.e. an “optimal" number of clusters is reached).





         

SilhouetteScore =
1

n

n∑
j=1

b(xj)− a(xj)

max{a(xj), b(xj)}
(2)

where:

• a(xj) is the average distance from data point xj to all other data points in the same
cluster,

• b(xj) is the minimum distance from data point xj to all other data points in a
different cluster.

Once clusters have been identified, statistical analysis on the classified patterns is performed
to assess the different groups within the context of route choice efficiency/rationality.

3.3 Tree-based model

Following the clustering algorithm, a tree-based learning algorithm (LightGBM) with
negative log-likelihood loss (equation 3) for multiclass classification is trained. This
machine learning method minimizes the loss function by adjusting the parameters of the
decision trees. This method has an advantage over traditional classification methods in
modeling co-linear and interacting features, besides high predictive accuracy, since the
principle of gradient boosting is to train a series of weak models and to combine their
predictions to create a stronger prediction.

Negative Log-Likelihood Loss = −
N∑
i=1

K∑
k=1

yik log(pik) (3)

Where:

• N is the total number of samples,
• K is the total number of classes,
• yik is a binary indicator (0 or 1) of whether sample i belongs to class k,
• pik is the predicted probability that sample i belongs to class k.





         

While clustering helps identifying patterns and, in general, any structure within the
data, by fitting a tree-based model on the clustered data we can further explore and
understand the relationships between variables and how they contribute to the identified
clusters. For instance, we can know how much each variable (e.g. walking route detour)
impacts a specific cluster of trips. Hence, having a model is key for statistical analysis,
predictions and further visualization, for example, in the form of partial dependence
plots (PDPs), which help understanding how individual features influence predictions and
provide insights into the relationships between features and the target variable within
each cluster.

4 Results and Discussion

Figure 1 shows all origin and destinations pairs of the 2909 PT trips from all 172 users
in the study. The histograms in the x- and y-axis indicate the geographical distribution
of points, showing that trips with either origin or destination around the city centre are
predominant.





         

Figure 1: Distribution of origin and destination points of trips.

Following the methodology, each trip is first represented by a set of route specific attributes
normalized by the actual shortest path. The final feature set was selected based on the
combined clustering approach and resulting accuracy of the tree-based model, after
enumeration of the possible combinations of features. The four features selected were:
RouteTimeDetour, RouteTransferDetour, RouteWalkingDetour, RouteInVehicleDetour.
For the number of clusters, the methods highlighted in section 3 were used, with k = 5

clusters being the final choice. Figure 2 shows the dendrogram with the separation given
the five clusters selected. The dashed black line shows the cut off selected, which resulted
in the 5-cluster division. A trade-off between granularity and interpretability has to be
taken into consideration: overfitting (increasing the number of clusters) can lead to more
details being captured, but results may be hard to interpret and generalize. It is possible
to check that cluster 0 (purple square) is the largest one, with also the highest variability.
The other clusters are smaller and capture specific patterns of interest as we show in the
upcoming analyses.





         

Figure 2: Dendrogram.

The Silhouette score (figure 3) and K-elbow score (figure 4) also indicated that setting
k = 5 was a reasonable choice, given the interpretability vs. granularity trade-off and, in
particular, the choice was suitable for the extraction and analysis of features of interest.





         

Figure 3: Silhouette score for different values of k.





         

Figure 4: K-elbow score for different values of k.

The final clusters can be visualized in the PCA (Principal Components Analysis) space
considering the first three principal components (see figure 5). This visualization is
interesting as PCA transforms the original features into a set of uncorrelated variables
(or the principal components). Hence, it helps in reducing the dimensionality of the data
while retaining most of the variance, making it easier to visualize and interpret the results.
The three first principal components shown in figure 5 account for approximately 95%
of the accumulated variability in the data, revealing a good separation between clusters,
which is desired for the following analyses.





         

Figure 5: PCA Space Visualization of Clusters.

From the five clusters obtained, some initial interpretation can be achieved with statistical
visualization tools. Figure 6 shows scatter plots for the four features (RouteTimeDetour,
RouteTransferDetour, RouteWalkingDetour, RouteInVehicleDetour) and the different data
points coloured by the cluster number. From this figure, it is possible to identify patterns
linked to each cluster depending on the feature. In particular, clusters 2 and 4 seem to
be associated with higher walking times detours (at least two times over the standard
shortest path), cluster 3 seem to be associated with higher in-vehicle detour times (also at
least 2 times over the standard shortest path), and cluster 1 seems to be associated with
higher transfer times (ranging from 4 to 10 times higher than the shortest path). Cluster





         

0, our default cluster, seems to be linked with values very close or even lower than the
standard shortest path. To get a better sense of these numbers, figure 7 complements
figure 6 by showing, for each feature (row), the five corresponding boxplots of the different
clusters statistics. The colour scheme for both pictures (and throughout this paper) is
kept the same for each cluster, for better visualization.

Figure 6: Scatter plots: clusters vs. features.





         

Figure 7: Histograms: clusters vs. features.

Following the colour scheme, figure 7 also highlights, inside rectangles, the naming
convention for each cluster obtained, based on the observed patterns. It also confirms
some of the suggestions arising from the previous scatter plots in figure 6. Hence, we further
define the five clusters names with respect to their main observed and distinguishable
patterns, as follows:

0. The ’as fast as possible’ cluster: trips targeted at shortest path or even faster (e.g.
faster walking/transfer/in-vehicle times than predicted), in general total time is very





         

close to the shortest path counterpart;
1. The ’too early or too late for connections’ cluster: trips with significantly higher

transfer times than the shortest path, indicating longer waiting times for connection;
in general total transit time is slightly higher than shortest path, but not too much
affected;

2. The ’walking-prone’ cluster: trips with significantly higher walking times than the
shortest path, and lower in-vehicle and transfer detour times; as a consequence, total
times also tend to be significantly higher;

3. The ’sitting-prone’ cluster: trips with significantly higher in-vehicle times than the
shortest path, indicating preferences for longer connections with decreased walking
and transfer detour times; in general the total detour time is only slightly impacted;

4. The ’do not mind a bit of walking’ cluster: trips with slightly higher walking times,
but very close to shortest path in-vehicle and transfer detour times; in general this
only slightly impacts total transit detour time.

Although the visualization of the results is important for gathering knowledge about the
data and the differences among clusters, a proper statistical model is desired to evaluate
if the patterns exhibited and inferred can be learned by a model (i.e. can a model learn
to distinguish well between the different clusters based on the features provided?). By
fitting a model, we can also explore how much the features contribute to each cluster.

For this purpose, the tree-boosted model with negative log-likelihood loss (as discussed in
section 3) is employed. We first tune the model parameters (learning rate, max depth of
trees, minimum data in each leaf and number of leaves) with a grid-based search approach
and then train the model with 70% of data and test it with the remaining 30%. The
multiclass confusion matrix for the test data is shown in 8, with a corresponding log-loss
of 0.12.





         

Figure 8: Tree model confusion matrix.

In terms of accuracy, the model achieves almost 0.98 on test data, showing a great ability
to learn the patterns and to classify the test points into the correct cluster. In terms of
the model’s ability to capture the relevant features, the recall (the ratio of true positive
predictions to the total actual positives) is 0.98 for cluster 0, 1.00 for clusters 1 and 3, 0.85
for cluster 2, and 0.97 for cluster 4. Similarly, precision metrics convey the model’s ability
in identifying positive instances, and the results are 1.00 (clusters 2 and 3), 0.99 (cluster
0), 0.95 (cluster 4) and 0.82 (cluster 1). The f1-score, a balanced measure of precision and
recall, reinforces the model’s robustness and the results are 1.00 (cluster 3), 0.99 (cluster
0), 0.96 (cluster 4), 0.92 (cluster 2) and 0.90 (cluster 1). In general, these results affirm
the efficacy of the tree-based model in capturing the patterns in each cluster. The model’s
ability to distinguish between clusters with high precision and recall indicates well-defined
and separable clusters, highlighting its utility in data analysis tasks. To further explore
these relationships between clusters and features, figure 9 shows, for each feature and
each cluster, the corresponding Partial Dependence Plot (PDP) (here with a different
colouring scheme, but still ordered from 0 -left- to 4 - right).





         

Figure 9: Partial Dependence Plots for each feature.





         

PDPs are a valuable tool for interpreting the effect of individual features on the predictions
of machine learning models. For multiclass classification, each plot shows information for
one class/cluster (starting from class 0 on the left side to class 4 on the right side). Each
feature corresponds to one full row with all classes, the order from top to bottom being:
RouteWalkingDetour, RouteInVehicleDetour, RouteTransferDetour, RouteTimeDetour.
Then, the x-axis represents the range of values for the feature of interest given the class.
The y-axis represents the average predicted probability or outcome for the target class.
The direction and slope of the line indicate the effect of the feature on the predicted
probability of the target class; a positive slope indicates that increasing the feature value
tends to increase the predicted probability of the target class, while a negative slope
indicates the opposite. A flat line suggests that the feature has little to no effect on the
predicted probability of the target class over its range of values.

By inspecting figure 9, it is possible to confirm many of the patterns suggested before,
bearing in mind that PDPs show only marginal effects of individual features and may
not capture complex interactions between features. Nevertheless, for the first feature
RouteWalkingDetour, negative or close to 0 deviations in comparison to the shortest path
are linked to very high (close to 1) probability of predicting class 0 (the ’as fast as possible’
cluster). On the other hand, deviations from 0 to 2 make the likelihood of predicting
cluster 4 (’do not mind a bit of walking’) very high, whereas big deviations of over 2 make
the prediction of cluster 2 (’walking-prone’) very likely. Walking deviations do not seem to
have significant effect for predictions of clusters 1 (’too early or too late for connections’)
or 3 (’sitting-prone’).

The second row/feature is RouteInVehicleDetour and, by similar analysis, we see that the
effects of this feature are more pronounced in clusters 0 (negative deviations to positive
deviations up to 2 make it very likely to predict the ’as fast as possible’ cluster) and 3
(high values of deviation starting from 2 make it very likely to predict the ’sitting-prone’
cluster). Cluster 4 (’do not mind a bit of walking’) is also fairly affected by detours from
0 to about 3.

The third row/feature is RouteTransferDetour, which has great effects on the predictions
of clusters 0 (’as fast as possible’) and 1 (’too early or too late for connections’), and
moderate effects on cluster 4 (’do not mind a bit of walking’) predictions. In particular,
detour values below 4 make it very likely to predict either 0 or 4 clusters, and detour
values above 4 make the prediction to be cluster 1 with probabilities very close to 1.

Lastly, we see that the variations in the feature RouteTimeDetour do not seem to have a





         

great effect in the class prediction. However, this feature was included for interpretability
reasons and because, in combination with the others, it increased the accuracy of the
tree-based model. In general, however, cluster predictions are impacted by changes in
the other features. Differences in total time happen as a consequence, but such feature
does not seem to have, by itself, great prediction power to distinguish between clusters.
It is interesting to analyse, however, how different route choices impact the total time,
e.g. trips with higher walking time deviation will lead to a much higher total time, on
average, than trips with higher in-vehicle time or transfer time deviations. Hence, from a
route choice efficiency perspective, walking time is more relevant than the other features
because of its potential to dramatically increase total times.

From all the analyses made before, the clusters characteristics seem to be well-defined
in terms of the four variables chosen. In particular, we can highlight, for each cluster, a
combination of feature values which is very likely to predict that cluster. Then, based
on the resulting transit times, it is easy to visualize which features and choices are more
efficient and, on the contrary, which choices are more penalizing in terms of transit times.
Nevertheless, these trip attributes do not reveal whether there is an underlying user
effect. As an illustrative exercise, we investigate if some users are more prone to certain
behaviours when choosing their trips, i.e. we assess the proportion of each cluster among
the users’ trips. The results for the top-50 users (ranked based on number of trips) are
plotted in figure 10.





         

Figure 10: Top-50 users trips segmented per cluster type.

Figure 10 shows, as expected, that clusters 0 (’as fast as possible’) and 4 (’do not mind a
bit of walking’) are the most predominant ones, encompassing most of the trips for each
user. This behaviour suggests that users are aware of the shortest path trips, and aim
for such trips (or trips close to them) for the most part. However, figure 10 also reveals
that, in general, the user behaviour can be translated by a mix of different clusters, and
not a single behaviour. Possibly other factors are impacting such decisions, such as trip
purpose and other socio-demographic characteristics. This investigation would require
complementing the GPS tracking data in the study with other sources of data, which is
out of the scope of this paper. Nevertheless, this shows that, in a scenario where other
sources of complementary data is not available, grouping trips, instead of users, is a way
to measure PT route choice efficiency and some of the main attributes linked to it.

5 Conclusions and Further Research

This paper explored PT route choice efficiency in terms of metrics derived from passive
GPS tracking data records. Our study employed a clustering algorithm on trajectory-based





         

metrics to capture route choice patterns, considering both spatial and temporal dimensions.
The methodology involved a three-step procedure combining machine learning methods
and statistical analysis of results. Firstly, we extracted route-specific attributes from travel
diaries collected by the ETH-IVT Travel Diary smartphone application, which provided a
dataset comprising 2909 PT trips of 172 users in Zurich, Switzerland. These attributes
were normalized to account for variations in trip lengths, times, and transfer patterns.
Subsequently, we applied hierarchical clustering to group trips based on these normalized
route attributes. Finally, we fitted a tree-based model to the clustered data and conducted
statistical analysis to understand how deviations from the shortest path influence the
likelihood of predicting different trip clusters according to the features analysed.

From the clustering algorithm, five clusters could be isolated based on four features of
interest, namely RouteTimeDetour, RouteTransferDetour, RouteWalkingDetour, RouteIn-
VehicleDetour. A tree-based model and subsequent statistical analysis in the form of PDP
plots and other visualization tools confirmed the following cluster types and patterns
associated with each cluster:

0. The ’as fast as possible’ cluster: trips targeted at shortest path or even faster (e.g.
faster walking/transfer/in-vehicle times than predicted), in general total time is very
close to the shortest path counterpart;

1. The ’too early or too late for connections’ cluster: trips with significantly higher
transfer times than the shortest path, indicating long waiting times for connection,
in general total time is slightly higher than shortest path, but not too much affected;

2. The ’walking-prone’ cluster: trips with significantly higher walking times than the
shortest path, and lower in-vehicle and transfer detour times; as a consequence, total
times also tend to be significantly higher;

3. The ’sitting-prone’ cluster: trips with significantly higher in-vehicle times than the
shortest path, indicating preferences for longer connections with decreased walking
and transfer detour times; in general the total detour time is only slightly impacted;

4. The ’do not mind a bit of walking’ cluster: trips with slightly higher walking times,
but very close to shortest path in-vehicle and transfer detour times; in general this
only slightly impacts total transit detour time.

Overall, our study contributes to travel behaviour analysis by offering a framework for
understanding and modelling route choice efficiency from the perspective of easy, readily
available metrics from passive GPS tracking data. We focus on clusters of trips instead of
clustering users. By choosing this research path, we can leverage passive GPS tracking data
and offer behavioural insights even when complementary data, e.g., socio-demographics or





         

trip purpose, are not available.

As shown in the analysis (see figure 10), users exhibit mixed behaviour towards their route
choices. Although most trips will be targeted on efficiency (defined here as the shortest
path), all users have some percentages of their trips that fall in some other category (e.g.,
longer walking times, longer in-vehicle times, etc.). Given the limitations of this study, it
is not possible to know whether those choices are made rationally (on purpose) or not,
and not even the factors triggering such choices. However, if we define rationality in
terms of targeting the shortest path trip, we can infer that most users try to optimize
their PT transit times by picking trips that do not significantly deviate from the actual
shortest path trips. Most importantly, our analysis showed that the five clusters are
well-defined in their feature space, so that predictions from a machine learning model
are made with high accuracy. This means that the features can be used to investigate
how the selected factors affect transit times. For instance, an increase in the share of
cluster 1 (’too early or too late for connections’) could reveal that either PT information
provision is not effective, or that the planned connections are not well-adjusted. Similarly,
an increase in the share of cluster 2 (’walking-prone’) could indicate a behavioural shift
from users (towards active-commuting) or even indicate that some connections may not be
so attractive/convenient from the user standpoint (so that they still prefer to walk). For
policy-makers, establishing and validating those shares and monitoring them over time
can provide valuable information and metrics. On top of that, our approach is promising
for aiding planners in optimizing routes and schedules to enhance efficiency and meet
passenger demand.

On the basis of these findings, further research efforts should seek to explore the application
of the method in a policy context, for example, identifying different clusters with varying
sensitivity to policy initiatives, as suggested in Joh et al. (2001). Another clear direction
for future research relates to complementing GPS tracking data with activity and socio-
demographic information, which would provide a more comprehensive understanding of
transit user behaviour and route choice dynamics, including, for instance, inference on
route choice and trip patterns motivated by trip purpose and other activity-based travel
features.
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A Appendix

Table 2: Sociodemographic and behavioural characteristics of travellers in the ETH-IVT
Travel Diary survey

Variable Category Counts

Main Occupation

Employed / self-employed 107
Student 41

Student and Employed / self-employed 11
Other 11

Average time spent from home to work [min]

[0, 15] 51
(15, 30] 72
(30, 45] 25
> 45 21

Work/School days
Weekdays Only 145

Everyday 10
Weekdays and Saturday 7

Driver’s license ownership Yes 119
No 50

PT subscription Yes 127
No 38

Frequency of use (PT and Private Modes)

PT = almost daily; bike/car/private = 1-3 days per week 58
PT = almost daily; bike/car/private = 1-3 days per month 26

PT = almost daily; bike/car/private = almost daily 20
PT = 1-3 days per week; bike/car/private = almost daily 14

PT = almost daily; bike/car/private = rarely to never 13
PT = 1-3 days per week; bike/car/private = 1-3 days per week 12

PT = 1-3 days per month; bike/car/private = almost daily 8
PT = 1-3 days per month; bike/car/private = 1-3 days per month 5
PT = 1-3 days per week; bike/car/private = 1-3 days per month 4

PT = 1-3 days per month; bike/car/private = rarely to never 3
PT = 1-3 days per month; bike/car/private = 1-3 days per week 2

PT = 1-3 days per week; bike/car/private = rarely to never 2
PT = rarely to never; bike/car/private = almost daily 1

PT = rarely to never; bike/car/private = 1-3 days per week 1
PT = rarely to never; bike/car/private = rarely to never 1
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