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Abstract

This paper presents an Activity-Based Restriction Model (ABRM) for modeling epidemio-
logical responses during or after a pandemic. The objective of the model is to include
pandemic-related restrictions, such as imposed curfews or other activity-restriction policies,
when computing activity schedules. Building upon the ABM developed by Pougala et al.
(2022), this study presents an updated formulation capable of including pandemic restric-
tion and typical responses. In particular, we integrate two key aspects: first, we estimate
latent factors that capture the psychological and emotional sensitivity of people to the
pandemic’s effects, integrating these into the optimization problem. Second, we account
for the direct impact of restrictions on activity participation and the adaptive strategies
individuals might employ, such as altering the time, location, or nature of their activities.
This dual approach allows for a more comprehensive understanding of population behavior
in response to public health policies. Moreover, we introduce a dynamic programming
algorithm to efficiently solve the updated optimization problem. The use of dynamic pro-
gramming allows for efficient handling of large-scale populations and numerous activities,
a significant advancement over the limitations identified in Pougala et al. (2022) using
cplex as a solver. This methodological improvement ensures accurate representation of
all possible contacts, capturing the true dynamics of infection transmission within the
population.

Keywords
Activity-based modeling, agent-based simulation, decision-making, interdisciplinary, and
policies.





       

Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Latent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Activity-Based Mobility Restriction Model . . . . . . . . . . . . . . . . . 6

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 Validation of the results in an aggregated and disaggregated way . . . . . 9

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C Computational Complexity and Dynamic programming algorithm . . . . . . . 17

List of Tables

1 Explanatory variables for the Latent Model . . . . . . . . . . . . . . . . . . . . 14
2 COVID-19 Attitudes and Risk Perception Indicators. Coding for agreeing in-

dicators: 1=Strongly disagree, 2=Somewhat disagree,3=Neutral, 4=Somewhat
agree, 5=Strongly agree, -1= Question not displayed to respondent. Coding for
risk indicators:1=Extremely low risk, 2= Low risk, 3=Medium risk, 4=High risk,
5=Extremely high risk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Tested scenarios, each one considering different NPIs as input to the ABM. . . 15





       

List of Figures

1 Aggregated visualization of total count of individuals’ in each activity throughout
the day under various scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Individual daily schedules in the baseline scenario validate the model’s ability to
simulate realistic and diverse activity patterns. . . . . . . . . . . . . . . . . . . 11

3 Demographic distribution of survey respondents. . . . . . . . . . . . . . . . . . 16





       

1 Introduction

The global COVID-19 pandemic has demonstrated how a disease can deeply disrupt
individual daily schedules. On one hand, there are the direct restrictions imposed by
governments to contain the spread of the virus, such as lockdowns and curfews. On the
other hand, a more subtle but equally significant effect arises as individuals, influenced
by their own perceptions of risk, voluntarily adjust their routines and activities. Both
government restrictions and personal choices have reshaped daily life patterns, directly
influencing how diseases spread. For this reason, it is necessary to understand these
changes and introduce them into epidemiological models to study and manage disease
transmission more effectively. This paper presents an Activity-Based Model (ABM)
developed to simulate and explore the complex interactions between public health policies
and individual behaviors during and after pandemics, specifically for the integration with
an epidemiological model.

The relationship between human mobility and epidemiology, particularly in the context of
COVID-19, has been a focus of significant research. Studies such as those by Hancean
et al. (2021), Mazzoli et al. (2020), and Palguta et al. (2022) have explored how human
movement patterns influence the transmission dynamics of diseases. Further investigations
by Tuomisto et al. (2020), Kerr et al. (2020), and Aleta et al. (2020) have employed
detailed mobility data to simulate virus propagation, aiding in the forecasting of outbreak
scenarios and the assessment of control measures. Despite these advances, existing
models fail to account for how individuals adjust their behaviors in response to health
risk perception and restrictions. Furthermore, data privacy policies make the access to
real-time GPS tracking data complicate, making it hard to directly capture individuals’
actual responses. Indeed, the models proposed by those on the literature (Tuomisto et al.
(2020), Kerr et al. (2020), and Aleta et al. (2020)) do not adequately predict changes in
activity schedules influenced by personal risk perception. Moreover, they often overlook
the potential for activity swapping, such as people frequenting dance classes more often
when restaurants are closed, which can significantly alter the dynamics of public space
usage and virus transmission. Furthermore, the computational complexity of solving these
models increases dramatically with the number of facilities and individuals involved. This
rapid escalation in complexity renders the problem quickly intractable, as expanding the
scope to realistically represent entire populations interacting with a multitude of facilities
demands advanced computational techniques and innovative modeling approaches to
remain feasible.

To address these gaps in the literature, our model incorporates a latent model to simulate





       

individuals’ risk perceptions across different activities embedded with an ABM that
generates daily schedules of large scale populations taking into account imposed activities
restrictions and the the choices of the individuals due to risk perception. The ABM builds
on the groundwork established by Pougala et al. (2022), expanding its capabilities to
include dynamic elements like imposed curfews and other activity-restriction policies.
These enhancements are valuable for simulating various public health strategy scenarios,
thus supporting policymakers in devising effective, sensitive interventions. Additionally,
this paper introduces a sophisticated dynamic programming algorithm that significantly
optimizes the activity scheduling problem for large-scale populations. This methodological
advance overcomes previous computational challenges, as the problem becomes critically
complex as the number of facilities and individuals increases. It is specifically suited for
integration with an epidemiological model, effectively linking individual risk perceptions
and policy impacts to mobility patterns and disease transmission dynamics.

2 Data

This study uses a detailed survey dataset (see Chauhan et al. (2022)) collected during the
COVID-19 pandemic to analyze the impacts on individuals’ mobility patterns and travel
decisions. This dataset allows for the calibration of the latent model which integrates
behavioral responses to COVID-19.

The survey dataset includes responses from a diverse demographic, providing detailed
information on their mobility patterns, including the frequency of performing activity
during the pandemic. Attitudinal variables of the individuals Yan reflect individuals’ risk
perceptions and concerns regarding the pandemic. These answers are the key in modeling
the psychological underpinnings influencing activity-travel behavior during a public health
crisis. Each demographic information k of the individual n is represented as xkn in the
dataset, as visualized in Appendix B, in Figure 3.

As input for our ABM model, we need to provide a synthetic population that includes
individual-level demographic and socio-economic characteristics, as well as a network
outlining the spatial layout of activities. In this case, we use the open-source synthetic
population provided by He et al. (2020), which includes data on individuals’ age, gender,
employment status, and education level. Additionally, this synthetic dataset integrates a
geographic network that assigns coordinates to nodes, each tagged with specific activity
types such as leisure, education, shop, work, and home, xf .





       

3 Methodology

This section describes the methodology behind our ABRM, which simulates individual
responses to public health policies during pandemics. We combine data analysis and
simulation to predict changes in mobility and activity based on perceived health risks and
regulations.

3.1 Latent Model

Given a dataset containing both attitudinal and explanatory variables, we estimate a
latent variable model that captures individuals’ perceived risk of COVID-19. The model
consists of a structural equation representing the latent construct and a set of measurement
equations linking this latent variable to observable indicators.

Structural Equation for the Latent Variable The latent variable for each individual,
denoted as X∗

n, represents the high perceived risk and is estimated by the following
structural equation:

X∗
n = β∗

0 +
K∑
k=1

β∗
kx

∗
kn + σϵ∗ (1)

where: i) β∗
0 is the intercept, ii) β∗

k are the coefficients for the explanatory variables x∗
kn

for each individual n, iii) σ is the standard deviation of the error term, iv) ϵ∗ represents
the error term associated with the latent variable.. The list of the explanatory variables
x∗
kn can be found in Appendix A, Table 1.

Measurement Equations The indicators, measured on a Likert scale from 1 to 5, indicate
the risk perception of performing an activity a by an individual n. This indicators are
associated with the latent variable through the following measurement equations:

Y ∗
an = α∗

0a + α∗
aX

∗
n + σ∗

aξ
∗
a (2)

where: i) α∗
0a is the intercept for the a-th indicator, ii) α∗

a is the coefficient relating the
latent variable to the a-th indicator, iii) σ∗

a is the standard deviation of the error term for
the a-th indicator, iv) ξ∗a is the error term for the a-th indicator, v) τj are the thresholds





       

that define the categories of the Likert scale.

Yan =



1 if Y ∗
an < τ1,

2 if τ1 ≤ Y ∗
an < τ2,

3 if τ2 ≤ Y ∗
an < τ3,

4 if τ3 ≤ Y ∗
an < τ4,

5 if τ4 ≤ Y ∗
an.

(3)

The list of indicators can be found in Appendix A, Table 2. Note that we consider the ones
related to risk perception in specific activities. The thresholds τj are defined symmetrically
around zero to facilitate interpretation. For this reason, we define two positive parameters
δ∗1 and δ∗2 as:

τ1 = −δ∗1 − δ∗2,

τ2 = −δ∗1,

τ3 = δ∗1,

τ4 = δ∗1 + δ∗2.

Finally, the contribution to the likelihood for the ordered probit model is given by:

Pr(Yjn = ja) = Pr(τj−1 ≤ Y ∗
n ≤ τj)

= Pr

(
τj−1 − α∗

0a − α∗
aX

∗
n

σ∗
a

< ξa ≤
τj − α∗

0a − α∗
aX

∗
n

σ∗
a

)
= Φ

(
τj − α∗

0a − α∗
aX

∗
n

σ∗
a

)
− Φ

(
τj−1 − α∗

0a − α∗
aX

∗
n

σ∗
a

)
.

where Φ denotes the cumulative distribution function of the standard normal distribution.

3.2 Activity-Based Mobility Restriction Model

Modeling elements The ABRM operates with three main inputs: individual characteris-
tics, facility characteristics, and imposed policies. The input xe

n includes characteristics of
the individual, such as the personal identifier, city of residence, age, employment status,
and home and work identifiers along with their corresponding coordinates. The second
input, xf , details the characteristics of the facilities, where each facility is characterized by
its identifier, type (education, shop, or leisure), type identifier, and geographic coordinates
in the Swiss projection system. The third input is the Non-Pharmaceutical-Intervention





       

(NPI), or policy p, where every policy p consists of the activation of the set of parameters
belonging to P . Each element of P is defined as a parameter φrestriction,a, which takes value
1 if the restriction is activated for activity a, and 0 otherwise. This includes new convex
constraints reflecting multiple interventions, such as closure of activities, management of
peak hours, travel-time restrictions, curfew restrictions, and outside time limits. Addition-
ally, another critical input of the model are the parameters κa and τa for all activities,
representing the desired starting time and duration of activity a, respectively. To ensure
that these simulations reflect realistic and coherent behavior patterns, we derive these
parameters from distributions that are calculated based on sub-populations segmented by
age and employment status.

Linking the latent with the ABMR Model The integration of the latent model with the
ABMR model allows for the capturing on how individual perceptions of pandemic-related
risks influence their activity scheduling decisions. The latent model quantifies individual
psychological and emotional sensitivities towards various activities through the latent
variable X∗

n (Equation (1)). This variable is used to assess risk perception, which is then
mapped to a categorical variable (Equations (2) and (3)).

The discretized risk perception categories directly influence the ABMR model by altering
the desired duration of activities τa for every individual. Specifically, a higher perceived
risk associated with an activity leads to a proportional reduction in the time individuals
are willing to allocate to that activity. This adaptive behavior is modeled by adjusting
the desired activity durations τa based on the risk category assigned to an individual,
reflecting a realistic modification of daily routines in response to personal risk assessments.
For this reason, we define the frequency adjustment coefficient for every individual n and
activity a as:

ιan = 1− Frequency of a per week for individual n
Max frequency observed for any activity

, (4)

and the new desired duration τ ′a becomes:

τ ′a = τa(1 + (Yan − 1)ιan). (5)

Note that the frequencies of each activity per week an individual are observed in Chauhan
et al. (2022). Through this mechanism, the ABMR model dynamically incorporates
individual-level responses into the simulation of mobility and activity patterns.

Optimization problem definition The foundational structure of the utility function is
adapted from Pougala et al. (2022). This work builds upon the existing framework by intro-





       

ducing additional terms in the objective function, including the latent class for high-risk per-
ception, and incorporating new constraints to address the mobility restrictions. We define
the set of restrictions as P where each element is defined as φrestriction,a, ∀ restriction ∈ R,
where restrictions is a vector where each element corresponds to a specific type of restric-
tion as restrictionsi = {1 : closure restrictions, 2 : time slot starting time restrictions, 3 :

time slot closing time restrictions, 4 : peak hour restrictions, 5 : travel time restrictions, 6 :

curfew restrictions}, where i is the index of the vector element. Given a set of activities
A, and a set of restrictions P , the optimization problem can be defined as:

max
ω,Z,x,τ

U0 +
A∑

a=0

Z0
a(χa + V 1

a + V 2
a + φ5,aV

3
ab) +

A∑
a=0

A∑
b=0

Zab · θt · ωab (6)

subject to:∑
a

∑
b

(Z0
a · x2a + Zab · ωab) = 24 (7)

ωdawn = ωdusk = 1 (8)

x2a ≥ Z0
a · τmin

a ∀a ∈ A (9)

x2a ≤ Z0
a · T ∀a ∈ A (10)

Zab + Zba ≤ 1 ∀a, b ∈ A, a ̸= b (11)

Za,dawn = Zdusk,a = 0 ∀a ∈ A (12)∑
a

Zab = Z0
b ∀b ∈ A, b ̸= dawn (13)∑

b

Zab = Z0
a ∀a ∈ A, a ̸= dusk (14)

(Zab − 1) · T ≤ x1a + x2a + Zab · ωab − x1b ∀a, b ∈ A, a ̸= b, (15)

(1− Zab) · T ≥ x1a + x2a + Zab · ωab − x1b ∀a, b ∈ A, a ̸= b (16)

x1a ≥ χ−
a ∀a ∈ A (17)

x1a + x2a ≤ χ+
a ∀a ∈ A (18)∑

a∈Fa

Z0
a ≤ 1 ∀a ∈ A (19)

φ1,aZ
0
a = 0 ∀φ1,a ∈ P, a ∈ A (20)

φ2,ax
1
a ≥ φ2,at

1
Θ ∀φ2,a ∈ P, a ∈ A (21)

φ3,a(x
1
a + x2a) ≥ φ3,at

2
Θ ∀φ3,a ∈ P, a ∈ A (22)

φ4,a(x
1
a + x2a) ≤ φ4,a(t

3
Θ + 24 ∗ (1− Z2)) ∀φ4,a ∈ P, a ∈ A (23)

φ4,ax
1
a ≥ φ4,a(t

4
Θ − 24 ∗ (1− Z1)) ∀φ4,a ∈ P, a ∈ A (24)

φ4,a(Z1 + Z2 − 1) ≥ 0 ∀a ∈ A (25)





       

φ5,a(Zab · ωab) ≤ φ5,at
5
Θ ∀φ5,a ∈ P, a ∈ A (26)

φ6,aτdawn ≤ φ6,at
6
Θ ∀a ∈ A (27)

φ6,axdusk ≥ φ6,at
7
Θ ∀a ∈ A (28)

where:

V 1
a = θearly

a ·max(0, κa − x1a −∆early
a ) + θlate

a ·max(0, x1a − κa −∆late
a ) (29)

V 2
a = θshort

a ·max(0, τa − x2a −∆short
a ) + θlong

a ·max(0, x2a − τa −∆long
a ) (30)

V 3
ab = θt · ωab (31)

Note that restrictions from (7)–(19) are directly taken from Pougala et al. (2022). To efficiently
handle problem (6)–(28), we employ a dynamic programming approach. A detailed explanation
of the latter is provided in Appendix C.

4 Results

To analyze the effectiveness of our model and ensure that the outputs are logical and accurate,
we conduct simulations for a sample of 1,000 individuals, and 1236 facilities. We explore seven
different scenarios, each representing a different imposed NPI, as detailed by Table 3 in Appendix
A. These results show the model’s computational robustness.

4.1 Validation of the results in an aggregated and disaggregated way

Aggregated Validation of Activity Patterns Throughout Scenarios In the aggregated
analysis, we check for the total number of individuals engaged in each activity type across
different intervention scenarios throughout the day. Figure 1 allows us to assess whether the
simulated activity patterns align with the restrictions we have imposed. The ’Normal Life’
scenario (Subfigure 1(a)) provides a baseline for comparison, depicting a typical day without
restrictions. In the ’Outings Limitation’ scenario (Subfigure 1(b)), we observe a reduction in
non-essential activities, while the ’Early Curfew’ scenario (Subfigure 1(c)) reveals a significant
decline in evening activities, reflecting adherence to the curfew. Finally, the ’Secondary Facilities
Closure’ scenario (Subfigure 1(d)) shows the closing of secondary activities, corresponding to the
targeted policy action. The changes across these scenarios align with the constraints imposed in
our simulation, providing initial validation that the model behaves as expected. These aggregated
results demonstrate coherent and realistic adjustments in the population’s activity patterns in
response to the different NPIs.





       

Figure 1: Aggregated visualization of total count of individuals’ in each activity throughout
the day under various scenarios.

(a) Normal life (b) Outings limitation

(c) Early curfew (d) Impact of secondary facilities closure

Disaggregated Validation of the Baseline Scenario To further validate the model, we
examine the schedules of different individuals in the baseline scenario, ensuring that the simulation
captures the variability inherent in real-world behavior. Figures 2(a), 2(b), and 2(c), each display
the typical daily schedules for a student child, working adult, and university student, respectively.
These schedules show that the model accurately reflects individual variations in activity patterns,
which is critical for the realistic simulation of disease spread. The ability of the model to
capture such detail at the individual level underscores its robustness and suitability for further
epidemiological analysis.

5 Conclusions

This study has successfully developed an Activity-Based Model (ABM) that integrates individual
risk perceptions with mobility patterns under different Non-Pharmaceutical Interventions (NPIs).
The model demonstrates a high level of computational robustness, efficiently managing a large-
scale simulation of activity patterns across various public health scenarios. Our results indicate
that the model operates coherently, producing both aggregated and disaggregated activity
schedules that are realistic and sensible under imposed conditions. However, the model’s current
validation is based on a limited sample size and scenario range. Future work will extend this





       

Figure 2: Individual daily schedules in the baseline scenario validate the model’s ability
to simulate realistic and diverse activity patterns.

(a) Daily schedule of a student child, reflecting a balance between education and
time spent at home.

(b) Daily schedule of a working adult, showing a clear division between work hours
and time at home.

(c) Daily schedule of a university student, indicating a mixture of educational
activities and personal time.

to a larger population sample, although this expansion introduces computational complexities
due to the increased number of interactions and the detailed level of data required. Additionally,
integrating the latent model for risk perception more deeply will allow us to refine the simulation
of activity durations based on individual behavioral responses to perceived risks. To further
validate our model, we aim to align our simulation outputs with mobility data from sources
like Google, which will provide empirical insights into how restrictions and risk perceptions
actually impact mobility patterns. This step is critical for enhancing the model’s accuracy
and applicability in real-world scenarios. Ultimately, by embedding this refined model within
the epidemiological framework proposed by Cortes Balcells et al. (2023), we can simulate and
evaluate the effectiveness of various public health policies. This will enable policymakers to design
interventions that are not only effective but also adaptive to the public’s behavioral responses,
optimizing health outcomes in future pandemics.
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A Tables

Table 1: Explanatory variables for the Latent Model

Variable Name Description Type
age_above_60 Is the individual above 60 years old? Binary
age_bw_30_60 Is the individual between 30 and 60 years old? Binary
age_under_30 Is the individual under 30 years old? Binary
gender_female Is the individual female? Binary
notCaucasian Is the individual not Caucasian? Binary
bachelors_or_more Does the individual have a bachelor’s degree or more? Binary
technical_school Did the individual attend technical school? Binary
high_school Did the individual graduate from high school? Binary
worker Is the individual currently employed? Binary
zone_Midwest Is the individual located in the Midwest zone? Binary
zone_Northeast Is the individual located in the Northeast zone? Binary
zone_South Is the individual located in the South zone? Binary
zone_West Is the individual located in the West zone? Binary
income_below_35 Is the individual’s income below $35,000? Binary
income_35_to_100 Is the individual’s income between $35,000 and $100,000? Binary
income_above_100 Is the individual’s income above $100,000? Binary
hh_single Is the household single? Binary
hh_partner Is the household in partnership? Binary
hh_children Does the household have children? Binary
hh_parents Does the household have parents? Binary
single_only Is the individual single only in the household? Binary
partner_only Is the individual in partnership only in the household? Binary
children_only Is the individual responsible for children only in the household? Binary
parents_only Is the individual responsible for parents only in the household? Binary
partner_and_children Is the individual in partnership and responsible for children in the

household?
Binary

partner_and_parents Is the individual in partnership and responsible for parents in the
household?

Binary

children_and_parents Is the individual responsible for both children and parents in the
household?

Binary

multiple_automobiles Does the household own multiple automobiles? Binary
hhsize_1 Is the household size 1? Binary
hhsize_2 Is the household size 2? Binary
hhsize_3 Is the household size 3? Binary
hhsize_4 Is the household size 4? Binary
hhsize_4plus Is the household size more than 4? Binary
hhfamilyhouse Is the household a family house? Binary
hhapartment Is the household an apartment? Binary
covid_positive Is the individual COVID-19 positive? Binary





       

Table 2: COVID-19 Attitudes and Risk Perception Indicators. Coding for agreeing in-
dicators: 1=Strongly disagree, 2=Somewhat disagree,3=Neutral, 4=Somewhat agree,
5=Strongly agree, -1= Question not displayed to respondent. Coding for risk indica-
tors:1=Extremely low risk, 2= Low risk, 3=Medium risk, 4=High risk, 5=Extremely high
risk.

Indicator Name Description
att_covid_1 If I catch the coronavirus, I am concerned that I will have a severe reaction.
att_covid_2 I am concerned that friends or family members will have a severe reaction

to the coronavirus if they catch it.
att_covid_3 Everyone should just stay home as much as possible until the coronavirus

has subsided.
att_covid_4 Society is overreacting to the coronavirus.
att_covid_5 Shutting down businesses to prevent the spread of coronavirus is not worth

the economic damage that will result.
att_covid_6 My friends and family expect me to stay at home until the coronavirus

subsides.
att_covid_7 Everyone should wear a mask when in public indoor spaces.
att_covid_8 The COVID-19 vaccines available in the U.S. are safe.
att_covid_9 Getting vaccinated will protect me from COVID-19.
risk_percp_1 How do you perceive your COVID-19 risk from going to work?
risk_percp_2 How do you perceive your COVID-19 risk from shopping at a grocery store?
risk_percp_3 How do you perceive your COVID-19 risk from riding public transportation?
risk_percp_4 How do you perceive your COVID-19 risk from walking or bicycling?
risk_percp_5 How do you perceive your COVID-19 risk from taking a taxi or ride-hailing

service?
risk_percp_6 How do you perceive your COVID-19 risk from traveling in an airplane?
risk_percp_7 How do you perceive your COVID-19 risk from sending children to school?

Table 3: Tested scenarios, each one considering different NPIs as input to the ABM.

Tested Scenarios Closure Constraints

Leisure Education Work Curfew

No restrictions
Outing limitations x
Early curfew 5pm
Economy preservation x x
Work-education balance x x
Leisure facilities closure x

B Figures

Figure 3 includes histograms that illustrate the distribution of respondents’ characteristics. The
top-left histogram displays the age distribution, indicating a wide range of participant ages with
a concentration in the middle-age individuals. The top-right histogram categorizes respondents





       

Figure 3: Demographic distribution of survey respondents.

by gender, showing a higher count of female participants compared to male. The middle-left
histogram provides a summary of household income, with the majority of respondents reporting
an income of less than 35, 000 or between 35, 000 and 99, 999. Education levels, plotted in the
middle-right histogram, reveal that most participants have completed some college or obtained
a bachelor’s degree. The bottom-left histogram depicts housing tenure, with the predominant
categories being ’Own with a mortgage’ and ’Rent.’ Finally, the bottom-right histogram classifies
respondents by race, with a notably higher representation of White/Caucasian individuals.





       

C Computational Complexity and Dynamic programming
algorithm

Since the goal of the ABM is to be included in an epidemiological activity-based model, the
facility choice set needs to match the population size. This need arises from the fact a limited
number of facilities can result in overcrowding, thereby escalating the virus transmission, whereas
an excessively large number of facilities can spread out the gatherings, consequently reducing the
virus spread. The problem with increasing the number of facilities is that the execution time is
affected by the choice set size, growing exponentially with more options. In fact, solving model
(6)-(28) with commercial solvers is slow and the model is intractable even for small instances
with a few activities. To address this problem, we make the assumption that an individual only
considers the closest facilities to them. This assumption is restrictive but does not impact the
ABM results, since there is no benefit in traveling further to do an activity that could have been
done closer. The number of nearby facilities to work and home is user-defined. In addition, we
use an advanced dynamic programming algorithm to solve the problem, by representing model
(6)-(28) in a network allowing us to reduce computation complexity, as discussed in the following
paragraph.

The problem can be described as an elementary shortest path problem with resource constraints
which is a common sub-problem for the solution of vehicle routing problems. The method used
to solve this variant of the shortest path problem is usually a dynamic programming method,
also known as labeling algorithms (e.g., Torres et al. (2022a,b)). To describe the Dynamic
Programming algorithm, we first discretize the time into 288 intervals for every 5 minutes. We
define a state using a label L = (a, U, t, x3a, u,R), where a is the current activity, U is the total
utility collected including the current activity, t is the time interval, x3a is the duration of the
activity, u is the cumulative cost, and R is the set of activities that cannot be reached either
because they have been completed or are mutually exclusive with completed activities.

The algorithm starts with an initial label that represents the start of the day. In each iteration, it
explores all possible activities, creating new labels with updated states. Resources are extended
through resource extension functions which keep track and update resource consumption. To
extend a label Lk to a new activity aj , we first check if the extension is feasible, ensuring that no
constraints (such as time or budget) are violated and aj is not in Uj . If feasible, we create a new
label Lj with updated resource states.
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