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Abstract

While fossil fuels currently dominate the energy landscape, the anticipated widespread
transition to electric vehicles (EVs) in the near future introduces challenges related to
infrastructure development and changing mobility patterns. This study explores the
obstacles and possibilities associated with the increasing use of EVs and the essential
charging station infrastructure. In contrast to studies relying on aggregated data, this work
emphasizes the significance of analyzing individual user behaviors, trip characteristics, and
socio-economic contexts based on microeconomic foundations. In this work, we provide a
literature review and reveal four key dimensions within the EV landscape: (i) competition
between users and energy providers, (ii) user travel behavior by integrating discrete choice
modeling, (iii) trip chain modeling to understand trip purposes and their relationship
to charging station infrastructure, and (iv) optimization of charging station location
and allocation to meet user needs. After positioning the existing works in the proposed
framework, we finally identify research gaps based on the framework, suggest potential
research directions, and provide a comprehensive view of the evolving EV landscape.
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1 Introduction

The adoption of electric vehicles (EVs) has gained substantial momentum due to their eco-
friendly nature, marked by the absence of harmful emissions, unlike internal combustion
engine vehicles (ICEVs). There exist two types of EVs: battery electric vehicles, which we
refer to as EV, and plug-in hybrid electric vehicles (PHEVs). The former relies solely on
the battery, which makes it all electric, while the latter involves both a fuel tank and a
battery. In this work, we center ourselves around EVs.

EVs are known for their superior efficiency compared to ICEVs, but they still face challenges
due to established infrastructure and longer driving ranges in ICEVs. Nevertheless, EVs
provide numerous environmental (at least at the use level), economic, technological, and
social advantages. Firstly, the reduced environmental impact of EVs, particularly when
powered by renewable energy sources, stands as a compelling motivator (Costa et al.,
2021). Secondly, the economic appeal of lower fuel costs and operational expenses, coupled
with government incentives, is accelerating EV adoption (Naumov et al., 2023). Thirdly,
the attraction of advanced technology and convenience, previously a resistance factor,
is being supported by advancements in battery technology and an expanding charging
infrastructure (Haustein et al., 2021). Finally, the reduction of noise pollution, the
potential to alleviate urban congestion, and the surge in environmental consciousness
contribute to the appeal of EVs in metropolitan areas (Corradi et al., 2023). All these
factors collectively drive the shift from ICEVs to EVs. In fact, according to FSO (2023b),
the share of EVs has increased exponentially since 2007 for the case of Switzerland.
Consequently, it is essential to understand what role these factors play in charging station
(CS) demand and, therefore, the design of its infrastructure.

In transportation, users define their trips by choosing their origins and destinations, the
path to go from origin to destination, the mode to be taken, the time of the day to start the
trip, etc. Each of these decisions is affected by several attributes. For example, path choice
can be affected by the path length, the time it takes to traverse, the extra costs (such
as tolls), and some other unobserved reasons. The user might also have constraints such
as time and budget limitations, which restrict the possible number of paths. Regarding
EVs, the vehicle range poses another restriction on the choices. These constraints result
in different user travel behaviors in EVs compared to ICEVs (Yang et al., 2016). Range
anxiety for EVs due to inadequate infrastructure and prolonged charging times compared
to ICEV refueling impedes widespread adoption of EVs. Notably, the scarcity of CSs is
a central concern, reflecting both insufficient battery capacity for extended ranges and
underdeveloped charging infrastructure. The literature finds evidence proving that even





          

though ICEV users plan to purchase an EV, they tend to keep their ICEV as the main
car and use it for occasional longer trips (Metais et al., 2022). This finding shows that the
behavior of the EV users should be further analyzed to both support the full transition to
EV adoption and optimize CS infrastructure.

Nevertheless, the transition to EVs is entangled in a classic chicken-egg dilemma: does the
infrastructure (i.e., supply) come first, or does EV adoption (i.e., demand) (Metais et al.,
2022)? This challenge raises questions about the starting point of this transformation.
Although governments encourage users through incentives, overcoming this obstacle re-
quires a holistic approach that recognizes the symbiotic relationship between infrastructure
development and EV use. This paper focuses on EVs and how they are covered in the
literature. As a baseline assumption, we will consider personally owned cars and will not
take EVs used in public transportation or electric taxis into consideration. We present a
literature review in Section 2. Later, we identify the research gaps in the literature in
Section 3. Finally, we sum up with concluding remarks in Section 4.

2 Literature review

The literature consists of stated-preference (SP) experiment designs that explore EV user
behavior through route choice (Ashkrof et al., 2020), regular charging behavior (Ashkrof
et al., 2020), and occasional charging behavior (Visaria et al., 2022). These surveys
are then used to develop choice models such as mixed logit (ML) model to account for
unobserved heterogeneity (Ashkrof et al., 2020; Visaria et al., 2022), nested logit (NL)
model (Ren et al., 2022), and conditional logit model (Liu et al., 2022). Some factors
affecting EV user’s choice are found to be the route type, charger type, state-of-charge
(SOC) at the origin and destination, slow-charging availability at the destination, fast
charging duration, and waiting time. Regarding occasional charging, Visaria et al. (2022)
observe that facility availability at the charging location, higher likelihood of available
chargers, and lower costs encourage users to deviate from their original route. This
finding supports the need for smart location and allocation of CSs as well as pricing
schemes. There also exists works that jointly models several choices, such as activity
choice, duration, and in-travel productivity with respect to typical office conditions using
copula approach (Pawlak et al., 2017).

The studies point out the gap in understanding individual-level EV charging patterns (Ren





          

et al., 2022). Some simplistic approaches such as trip analysis based on floating car data
(Brancaccio and Deflorio, 2023), empirical charging behavior of PHEVs (Mandev et al.,
2022), and GPS-based travel survey data (Kontou et al., 2019) provide useful information
such as charging frequencies. The analysis can be conducted based on various factors
such as user groups and charging days (Mandev et al., 2022). For example, Mandev et al.
(2022) find that the users do not charge their PHEVs only on 3-7% of the nights. Following
this finding, we could expect that this ratio is even smaller for EV users as they solely
rely on the battery, implying that it is more crucial to have CS accessibility in the case of
unavailability of home charging.

We also observe works that take it a step forward and use agent-based simulation (Pagani
et al., 2019), trip chain modeling (TCM; Tang and Wang, 2015; Aghajan-Eshkevari
et al., 2023), agent-based TCM (Lin et al., 2019; Ren et al., 2022; Liu et al., 2022), and
multiple logistic regression Javid and Nejat (2017) to study the potential factors that
are relevant to purchasing an EV and consequences of user behavior on EV charging
infrastructure. Pagani et al. (2019) observe in their Swiss case study that competition
in the public charging marketplace can pose financial challenges and note that home
and work charging are major sources of increased electricity demand, with distinct usage
patterns, and accurate infrastructure modeling is essential for identifying necessary grid
upgrades. Tang and Wang (2015) consider both spatial and temporal distribution of
moving EVs. Their model, which is based on random trip chain and Markov decision
process, assesses the nodal charging demand. Lin et al. (2019) develop an agent-based
TCM that simulates the heterogeneous travel and charging patterns of EVs. This model
allows them to study complex transportation systems and associated energy consumption,
and identify strategies to optimize the use of grid load. Ren et al. (2022) use meter-level
real-world data and find that most EVs in the study area do not charge during one-day
trips, and users tend to maintain moderate SOC levels before departure, with factors
like distance, speed, and weather influencing charging choices. As expected, they find
that the longer the distance traveled, the more fast charging is adopted. By combining
realistic travel and charging behavior in their model, Liu et al. (2022) are able to analyze
high-resolution spatiotemporal demand and state that it is necessary to install CSs at
work/public locations as they are found to cover more than half of the total charging
demand. On the other hand, they highlight that their results should be supported by
real-world data. Aghajan-Eshkevari et al. (2023) also employ TCM for modeling EVs’
daily trips to optimize the routing and power management of EVs together with the power
distribution and transportation network whereas Wu and Pang (2023) focus on optimal
scheduling of charging and discharging of EVs through TCM. Javid and Nejat (2017) point
out that household’s income, maximum level of education in the household, the buyer’s





          

car-sharing status, CS density, and gas prices have a significant effect on EV adoption.
However, such studies only focus on demand and do not formally address the CS provider
economic problem.

Supported by findings in the literature, we see the importance of infrastructure planning
and CS density. The optimization models in the literature concerning the location and
allocation of CSs leverage aggregate demand data such as the number of trips between
an origin and destination (OD; e.g., Arslan and Karaşan, 2016). However, since the
travel behavior of EV users depends on the CS locations, user activity patterns, and
socio-economic characteristics, the effect of these attributes should be examined at an
individual level to reach a more representative infrastructure (Ashkrof et al., 2020). The
studies consider three primary methods for CS location optimization: (i) node-based
approach formulates the problem as a facility location problem and usually uses aggregate
data, (ii) path-based approach captures the flows of the EVs and places CSs on the links
rather than nodes, and (iii) tour-based, also known as activity-based, approach does
not only consider the EV flows but also the activity patterns of the EV user (Metais
et al., 2022). The tour-based approach is able to combine advantages of both node-based
and tour-based with the help of disaggregate information, which implies that it requires
very detailed data. Furthermore, adopting a supply side approach requires rich input
data (Patil et al., 2023). Data from surveys and simulations can be used to achieve the
necessary level of detail in designing such formulations.

Solution methodologies proposed in the literature include the extension of Flow Refueling
Location Problem to efficiently locate CSs for both EVs and PHEVs (Arslan and Karaşan,
2016), and a nonlinear integer programming problem to solve fast CS location and sizing
while maximizing operator’s profit (Gan et al., 2020). Most of the works develop efficient
solution methodologies based on their models such as Benders decomposition (Arslan and
Karaşan, 2016) and genetic algorithm-based heuristic (Gan et al., 2020). Gan et al. (2020)
also incorporates demand elasticity with respect to distance to the CS and waiting time at
the CS. The cut selection techniques proposed by Arslan and Karaşan (2016) demonstrate
the efficiency of the Pareto-optimal cut generation scheme in reducing solution times.

In addition to single-dimension frameworks, some studies in the literature showcase holistic
approaches. Combining CS network optimization and discrete choice modeling (DCM),
Fazeli et al. (2020) aim to design CS networks within urban communities by considering
both uncertainty and EV driver behavior. Their comprehensive framework incorporates CS
and charger type choice, two-stage stochastic programming, and data-driven simulations.
Results from a case study representing Detroit, Michigan, in the US indicate a preference





          

for a mix of charger types, with level 2 chargers being favored when budgets are larger.
Riemann et al. (2015) investigate the optimal location of wireless charging facilities for
EVs and model the route choice. Their mixed-integer nonlinear program aims to locate
a given number of facilities out of a set of candidate locations while trying to capture
the maximum traffic flow on the network. They use linearization techniques to improve
computation time.

Competition in oligopolistic markets is usually modeled using three models: (i) Bertrand,
(ii) Cournot, and (iii) Stackelberg. They consider identical products. Decisions are made
simultaneously among the competitors in Bertrand and Cournot whereas there is a leader
and a follower in the Stackelberg model. In Bertrand model, the price is the output of
the model whereas in Cournot and Stackelberg, the output is the quantity of the product.
Nash equilibrium represents a stable state where each participant’s strategy, such as pricing
or quantity decisions, is optimal given the strategies chosen by others. Competition among
EV users (Xiong et al., 2017) and CS operators (Li et al., 2021; Bernardo et al., 2016;
Lee et al., 2018) are usually studied in combination with another aspect and stands as
an important module as it affects pricing, hence EV users’ choices. The works search for
a Nash equilibrium within the given system environment. The competition among CS
operators can be modeled as a Bertrand game (Bernardo et al., 2016), as a Cournot game
(Li et al., 2021), and as a Stackelberg game (Lee et al., 2018). In addition, collaboration
or coordination among the CS operators is another interesting dimension to assess the
value of interoperability of charging networks (Visaria et al., 2022).

Xiong et al. (2017) study the competitive and strategic charging behaviors of EV users,
as an EV user’s charging cost depends on the choices of others, i.e., the availability of
chargers. They formulate a bilevel optimization problem to determine the best CS location
and allocation. They later transform it into a single-level nonlinear optimization problem
by exploiting the equilibrium of the EV charging game. Li et al. (2021) aim at predicting
EV charging demand and optimizing the competitive charger allocation through a Cournot
competition. They also compute the number of necessary chargers at each zone of the
city, i.e., optimal sizing of the CSs. They simplify the problem definition by assuming
that the charging demand of a specific zone is linearly proportional to its traffic flow.
In other words, the authors do not account for disaggregated demand when modeling
the competition. On the other hand, Bernardo et al. (2016) put DCM and competition
together in their framework and simulate entry and location of fast CSs in a full game
of strategic interaction based on Bertrand model. They incorporate two choice models,
a logit model for simulating the entry of firms and an MNL for an EV user selecting a
CS to charge their vehicle. They state that lower EV penetration rates do not offer a





          

solution for range anxiety, whereas starting from a 3% EV penetration rate, a “unique”
stable equilibrium is reached. They observe spatial differentiation among firms when the
firms compete on location and price. They conclude with the claim that the social welfare
would improve with a policy intervention in the form of a uniform price lower than the
one obtained in the free-pricing competitive scenario.

In conclusion, the reviewed literature provides a comprehensive understanding of EV user
behavior, charging patterns, and the complex interaction between infrastructure planning
and user choices. The studies delve into diverse methodologies, ranging from stated-
preference experiments to agent-based simulations and trip chain modeling, shedding
light on factors influencing EV adoption and charging decisions. The critical role of CS
accessibility, location, and pricing schemes emerges as a common theme. Furthermore, the
integration of competition models among users and CS operators underscores the need
for strategic planning and policy interventions to enhance social welfare. The reviewed
works collectively emphasize the necessity of individual-level analyses, detailed data, and
sophisticated optimization models for informed decision-making in the rapidly evolving
landscape of EV charging infrastructure. This comprehensive literature review sets the
stage for Section 3, where we detail the research gaps and recommendations for future
work.

3 Research gaps and recommendations

Following our literature review, we identify four main topics relevant to EVs: (i) compe-
tition, (ii) discrete choice modeling, (iii) trip chain modeling, and (iv) optimization of
CS location and allocation. The first topic can happen both among users and among
energy providers. Examining the strategic interactions and decision-making processes in
accessing charging infrastructure provides crucial insights into the competitive landscape.
The second examines the behavioral aspects of EV usage, shedding light on the factors
influencing individual decisions such as charger selection, route preferences, and charging
station choices. The third investigates the close relationship between travel behavior
and EV usage. Understanding how mobility patterns, distances, and charging choices
interconnect contributes to a better comprehension of the EV ecosystem. Finally, the
fourth is concerned with the need for efficient charging infrastructure planning, i.e., optimal
CS location and allocation. We present a diagram, illustrated in Figure 1, that positions
the reviewed works with respect to their content and shows the research gaps in the





          

Figure 1: Summary of the literature review and positioning of our proposal
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literature. We see that the four main topics are widely studied independent from each
other. However, we see very few works investigating a combination of these main topics,
which shows that multidimensional approaches suggest a promising research avenue.

Range anxiety is one of the main resistance factors that prevent high EV adoption.
Therefore, the literature should focus more on innovative solutions, such as the development
of choice models in the light of stated- and revealed-preference surveys, as well as the
optimization of CS locations and allocations of different charger types, e.g., slow and fast
charging, in those CSs. This research avenue is essential to satisfy the charging demand
and facilitate the effective integration of EVs into our transportation ecosystem through
reduction of range anxiety.





          

We see that the literature focuses on daily activities of users. However, according to
FSO (2023a), the average distance per day per person traveled by car is found to be 20.8
kilometers in 2021 in Switzerland. We believe that taking this into account is essential as
it is way less than the driving range of a standard EV. Therefore, daily simulations and
activity-travel plan analysis are not sufficient. There exists two ways to tackle this issue:
(i) multi-day structures can be incorporated (Zhang et al., 2020) and (ii) the demand can
have a probabilistic definition for a single day.

The literature usually considers homogeneous vehicles and homogeneous charging power
levels. Nevertheless, accounting for variety allows for a better representation of the
ecosystem. For example, one can define p types of batteries, allowing for representation
of different vehicle types and brands, including hybrid vehicles, and k levels of charging
power. Including these in the modeling framework is important as it changes the charging
duration, therefore spatial and temporal demand for CS.

We fail to see works that combine competition and TCM. For example, Lin et al. (2019)
uses a TCM to study the distribution of charging patterns. Including competition as
another dimension in this framework would allow identifying high-demand areas and the
times of the day, which would result in a better pricing strategy. When these two are also
combined with DCM, the trip purposes are revealed, allowing the operator better analyze
the trends.

Although we see works that combine (i) optimization and DCM and (ii) optimization and
TCM, we do not find any study that combines the three of them. As discussed before,
DCM and TCM aid in helping to explain the behavioral aspects of the users. Combining
the two with optimization, one can solve the inefficiencies in the system such as pricing,
CS location and allocation.

The combination of competition and optimization is already studied in the literature (Li
et al., 2021; Xiong et al., 2017). These studies provide with an understanding the dynamics
among users and among energy providers. Then, the prices are optimized accordingly.
We could add TCM or DCM to this. The former would identify the disaggregate behavior
and more precise modeling. Bortolomiol (2022) does the latter and make a connection
to the trip purpose not on EV usage but in a parking choice study. They work on a
framework where supply and demand interactions are considered through a Stackelberg
game. They utilize advanced DCMs, multi-product offer by the suppliers, and price
differentiation. Then, the competition between suppliers and the market are modeled
using MILPs. Their model-based heuristic finds approximate equilibria of a deregulated





          

competitive market. This approach enables them to determine market shares based on
different pricing schemes.

In the ideal world, it is interesting to study all the aspects mentioned above in one
framework. That is, combining (i) disaggregate demand information to model the demand
through choice models, (ii) use the developed demand model to optimize the location,
sizing, and pricing of CSs, and (iii) formally model competition among users and across
operators, while incorporating (iv) modeling of heterogeneity of users’ preferences, would
represent the real-world from all aspects.

4 Conclusion

This paper presents a literature review and an analysis of research gaps in the literature
related to EVs. Our review shows that there is no empirical industrial organization
framework that jointly models disaggregate EV charging behavior through DCM and
TCM, market structure (number and types of competitors, competing schemes) and
optimal supply strategies (CS locations, charging power and prices). Therefore, any
sensitivity analysis or scenario simulation do not lead to realistic results. We point out
some future research directions. These include understanding the causes of range anxiety,
multi-day modeling, and considering heterogeneous vehicles and charging power levels.
Furthermore, we emphasize the importance of a holistic approach to the problem.

5 References

Aghajan-Eshkevari, S., M. T. Ameli and S. Azad (2023) Optimal routing and power
management of electric vehicles in coupled power distribution and transportation
systems, Applied Energy, 341, 121126.

Arslan, O. and O. E. Karaşan (2016) A Benders decomposition approach for the charging
station location problem with plug-in hybrid electric vehicles, Transportation Research
Part B: Methodological, 93, 670–695.

Ashkrof, P., G. H. de Almeida Correia and B. Van Arem (2020) Analysis of the effect of





          

charging needs on battery electric vehicle drivers’ route choice behaviour: A case study
in the Netherlands, Transportation Research Part D: Transport and Environment, 78,
102206.

Bernardo, V., J.-R. Borrell and J. Perdiguero (2016) Fast charging stations: Simulating
entry and location in a game of strategic interaction, Energy Economics, 60, 293–305.

Bortolomiol, S. (2022) Optimization and equilibrium problems with discrete choice models,
Ph.D. Thesis.

Brancaccio, G. and F. P. Deflorio (2023) Extracting travel patterns from floating car data
to identify electric mobility needs: A case study in a metropolitan area, International
Journal of Sustainable Transportation, 17 (2) 181–197.

Corradi, C., E. Sica and P. Morone (2023) What drives electric vehicle adoption? Insights
from a systematic review on European transport actors and behaviours, Energy Research
& Social Science, 95, 102908.

Costa, C., J. Barbosa, H. Castro, R. Gonçalves and S. Lanceros-Méndez (2021) Electric
vehicles: To what extent are environmentally friendly and cost effective? – Comparative
study by European countries, Renewable and Sustainable Energy Reviews, 151, 111548.

Fazeli, S. S., S. Venkatachalam, R. B. Chinnam and A. Murat (2020) Two-stage stochastic
choice modeling approach for electric vehicle charging station network design in urban
communities, IEEE Transactions on Intelligent Transportation Systems, 22 (5) 3038–
3053.

FSO, F. S. O. (2023a) Population’s mobility behaviour, https://www.bfs.admin.

ch/bfs/en/home/statistics/mobility-transport/passenger-transport/

travel-behaviour.html. Accessed on 29.08.2023.

FSO, F. S. O. (2023b) Stock of passenger cars by fuel
type, https://www.bfs.admin.ch/bfs/en/home/statistics/

mobility-transport/transport-infrastructure-vehicles/vehicles/

road-vehicles-stock-level-motorisation.assetdetail.23907817.html. Ac-
cessed on 28.08.2023.

Gan, X., H. Zhang, G. Hang, Z. Qin and H. Jin (2020) Fast-charging station deployment



https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/passenger-transport/travel-behaviour.html
https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/passenger-transport/travel-behaviour.html
https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/passenger-transport/travel-behaviour.html
https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/transport-infrastructure-vehicles/vehicles/road-vehicles-stock-level-motorisation.assetdetail.23907817.html
https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/transport-infrastructure-vehicles/vehicles/road-vehicles-stock-level-motorisation.assetdetail.23907817.html
https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/transport-infrastructure-vehicles/vehicles/road-vehicles-stock-level-motorisation.assetdetail.23907817.html


          

considering elastic demand, IEEE Transactions on Transportation Electrification, 6 (1)
158–169.

Haustein, S., A. F. Jensen and E. Cherchi (2021) Battery electric vehicle adoption in
Denmark and Sweden: Recent changes, related factors and policy implications, Energy
Policy, 149, 112096.

Javid, R. J. and A. Nejat (2017) A comprehensive model of regional electric vehicle
adoption and penetration, Transport Policy, 54, 30–42.

Kontou, E., C. Liu, F. Xie, X. Wu and Z. Lin (2019) Understanding the linkage between
electric vehicle charging network coverage and charging opportunity using GPS travel
data, Transportation Research Part C: Emerging Technologies, 98, 1–13.

Lee, W., R. Schober and V. W. Wong (2018) An analysis of price competition in hetero-
geneous electric vehicle charging stations, IEEE Transactions on Smart Grid, 10 (4)
3990–4002.

Li, C., Z. Dong, G. Chen, B. Zhou, J. Zhang and X. Yu (2021) Data-driven planning
of electric vehicle charging infrastructure: A case study of Sydney, Australia, IEEE
Transactions on Smart Grid, 12 (4) 3289–3304.

Lin, H., K. Fu, Y. Wang, Q. Sun, H. Li, Y. Hu, B. Sun and R. Wennersten (2019) Char-
acteristics of electric vehicle charging demand at multiple types of location-Application
of an agent-based trip chain model, Energy, 188, 116122.

Liu, Y. S., M. Tayarani and H. O. Gao (2022) An activity-based travel and charging
behavior model for simulating battery electric vehicle charging demand, Energy, 258,
124938.

Ma, J., Y. Hou, W. Yang and Y. Tian (2020) A time-based pricing game in a competitive
vehicle market regarding the intervention of carbon emission reduction, Energy Policy,
142, 111440.

Mandev, A., P. Plötz, F. Sprei and G. Tal (2022) Empirical charging behavior of plug-in
hybrid electric vehicles, Applied Energy, 321, 119293.

Metais, M.-O., O. Jouini, Y. Perez, J. Berrada and E. Suomalainen (2022) Too much or
not enough? planning electric vehicle charging infrastructure: A review of modeling
options, Renewable and Sustainable Energy Reviews, 153, 111719.





          

Naumov, S., D. R. Keith and J. D. Sterman (2023) Accelerating vehicle fleet turnover to
achieve sustainable mobility goals, Journal of Operations Management, 69 (1) 36–66.

Pagani, M., W. Korosec, N. Chokani and R. S. Abhari (2019) User behaviour and electric
vehicle charging infrastructure: An agent-based model assessment, Applied Energy, 254,
113680.

Patil, P., K. Kazemzadeh and P. Bansal (2023) Integration of charging behavior into
infrastructure planning and management of electric vehicles: A systematic review and
framework, Sustainable Cities and Society, 88, 104265.

Pawlak, J., J. W. Polak and A. Sivakumar (2017) A framework for joint modelling of
activity choice, duration, and productivity while travelling, Transportation Research
Part B: Methodological, 106, 153–172.

Ren, Y., Z. Lan, H. Yu and G. Jiao (2022) Analysis and prediction of charging behaviors
for private battery electric vehicles with regular commuting: A case study in Beijing,
Energy, 253, 124160.

Riemann, R., D. Z. Wang and F. Busch (2015) Optimal location of wireless charging
facilities for electric vehicles: Flow-capturing location model with stochastic user
equilibrium, Transportation Research Part C: Emerging Technologies, 58, 1–12.

Tang, D. and P. Wang (2015) Probabilistic modeling of nodal charging demand based on
spatial-temporal dynamics of moving electric vehicles, IEEE Transactions on Smart
Grid, 7 (2) 627–636.

Visaria, A. A., A. F. Jensen, M. Thorhauge and S. E. Mabit (2022) User preferences for
EV charging, pricing schemes, and charging infrastructure, Transportation Research
Part A: Policy and Practice, 165, 120–143.

Wu, S. and A. Pang (2023) Optimal scheduling strategy for orderly charging and discharg-
ing of electric vehicles based on spatio-temporal characteristics, Journal of Cleaner
Production, 392, 136318.

Xiong, Y., J. Gan, B. An, C. Miao and A. L. Bazzan (2017) Optimal electric vehicle fast
charging station placement based on game theoretical framework, IEEE Transactions
on Intelligent Transportation Systems, 19 (8) 2493–2504.

Yang, Y., E. Yao, Z. Yang and R. Zhang (2016) Modeling the charging and route choice





          

behavior of BEV drivers, Transportation Research Part C: Emerging Technologies, 65,
190–204.

Zhang, A., J. E. Kang and C. Kwon (2020) Multi-day scenario analysis for battery electric
vehicle feasibility assessment and charging infrastructure planning, Transportation
Research Part C: Emerging Technologies, 111, 439–457.




	Introduction
	Literature review
	Research gaps and recommendations
	Conclusion
	References

