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Abstract

The elevator dispatching problem with destination control (EDPDC) is a complex schedul-
ing problem that requires efficient allocation of elevators to handle passenger demand
in high-rise buildings. Traditionally, passengers enter the elevator and select their des-
tination floor. With destination control, passengers make a call in the lobby specifying
their destination floor. Afterwards, the interface assigns an elevator to the passengers.
Destination control provides additional information about destinations that can be used
to allocate elevators optimally.

In this paper, we consider the EDPDC as static and deterministic, where all the information
about passengers, arrival times, origin and destination floors is known beforehand. This
is a relaxation of the dynamic and stochastic case where this information is uncertain.
Hence, this formulation provides a lower bound on the dynamic problem.

We present a set partitioning formulation and propose a branch-and-price algorithm to
solve the EDPDC. To evaluate the performance of the approach, we conducted experiments
on small instances of the EDPDC with up to 3 elevators, 8 floors, and a maximum of 33
passengers. The results show that the branch-and-price algorithm was able to solve these
instances within 5 hours of running time, which is a promising first step towards solving
larger instances of the EDPDC. We suggest future research directions, including exploring
different branching rules, finding relaxations of the pricing problem, and incorporating
uncertainty in passenger demand.

Keywords
Elevator dispatching, destination control, branch-and-price, scheduling, labeling algo-
rithms, column generation, group control, combinatorial optimization
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1 Introduction

The Burj Khalifa stands at 828 meters tall, with a total of 57 high speed elevators. Large
buildings allow the use of vertical space without the need to expand and develop more
land. In addition, the world population continues to concentrate on large mega-cities
(i.e., cities with more than 10 million inhabitants) where the population density (i.e.,
the population per square kilometer) continues to rise (Kraas and Coy, 2016). With the
increasing number of tall buildings, the need for efficient vertical transportation systems
becomes more important. Early elevators were designed to have an elevator operator
(i.e., a human being) inside the elevator that would take the passengers to their desired
floors, similar to a bus driver that takes passengers to their destinations by driving the
bus (Bernard, 2014). Today, most elevators still have the floor controls inside, i.e., you
have to enter the elevator first before you can select your floor. However, destination
control (DC) is a system that allows passengers to choose their destination floor before
they get inside the elevator, within seconds they get assigned an elevator that will take
them to their destination. Destination control allows more information to be known by
the controller, and thus, a more efficient dispatching of elevators is possible.

In this paper, we consider the Elevator Dispatching Problem with Destination Control
(EDPDC). Elevators must be assigned to arriving passengers and must be routed to
minimize the average passenger journey time. While the EDPDC is naturally a highly
dynamic and stochastic problem, we consider the static-deterministic problem where all the
inputs are known in advance, i.e., passenger arrival times, service times and destinations.
The static-deterministic variant is useful for evaluating the performance of stochastic
multi-stage algorithms.

The static EDPDC has received little attention in the scientific literature. The EDPDC is
a variant of the more studied pickup-and-delivery problem with time windows (PDPTW),
where passengers must be picked-up at a location and delivered at their destination within
a specific time window. The most successful exact solution methods for routing problems
with time windows has been branch-and-price algorithms (e.g., Ropke and Cordeau (2009),
Torres et al. (2022b), Torres et al. (2022a)). Although branch-and-price algorithms are
usually used to solve the PDPTW, we have not been able to find any branch-and-price
algorithm for the EDP with destination control in the literature. In fact, due to the
complexity of the problem and the restriction of movement of elevators, the literature has
focused mostly in metaheuristics (e.g., Sorsa et al. (2018)).

In Ruokokoski et al. (2016) an assignment formulation for the EDP with destination





   

control is introduced. The problem considers the static-deterministic off-line problem
where there is a set of passengers already in the elevators, another set of passengers that
have already been assigned to elevators and a set of passengers that needs to be assigned
to elevators. A commercial solver is used to solve the model and only small instances
with at most 12 unassigned requests, 4 elevators and 22 floors. Nevertheless, the model
fails to find a relation between time and decision variables that allows elevators to bypass
some requests due to maximum elevator capacity. To over come this modeling issue, the
authors restrict the problem to cases where an elevator route length cannot exceed one
round trip. This limits the applicability of the model and it potentially excludes feasible
solutions.

The remainder of this paper is divided as follows: In Section 2, we provide a description of
the static-deterministic problem and present a new set partitioning formulation. In Section
3, we model the previously described problem. In Section 3, we propose a branch-and-price
algorithm to find optimal solutions. In Section 4, we present some preliminary results
on small instances that show promise for the proposed method. Finally, in Section 5 we
present final comments and future research directions.

2 Problem Description

Let V be the set of all vertices, let P be the set of all pickup requests and let D be the set
of delivery locations, i.e., P ∪D = V . For each pickup request p ∈ P there is a delivery
location p+ n ∈ D, where the value n is the total number of pickup requests, i.e., n = |P |.
Each pickup request has an earliest pickup time, i.e., ep, and a latest pickup time, i.e.,
lp, for all p ∈ P . The earliest pickup time is equal to the moment the passenger makes
the call in the lobby by selecting the desired destination floor. The latest pickup time
represents some threshold time at which it is too long for a passenger to wait for an
elevator, e.g., lp − ep = 90 seconds. The time it takes to pickup a passenger once the door
opens is the service time at pickup, i.e., sp for p ∈ P and the total time to deliver once
the doors open is sd for d ∈ D.

Let F be the set of floors in the building and let A be the set of all arcs connecting each
floor, i.e., (i, j) ∈ A and i, j ∈ F . Let E be the set of homogeneous elevators and Q the
capacity of each.





   

In addition, to improve customer experience while ridding the elevator, the following rules
have to be respected when there is at least one passenger in the elevator:

• The elevator cannot change direction;
• The elevator cannot stop at a floor where no one enters or exits;
• A passenger cannot enter an elevator with passengers that are going in the opposite

direction to her destination floor.

2.1 Formulation

Let Ω be a set with all possible elevator pickup-and-delivery routes and let λr for all r ∈ Ω

be a binary variable that equals to one if route r ∈ Ω is part of the optimal solution. The
cost of a route, i.e., cr for r ∈ Ω, is equal to a weighted sum of the average waiting time
of all passengers in the route and the total energy consumption of the elevator. Let ai,r

be a binary parameter that indicates if passenger i ∈ P is picked up in route r ∈ Ω. The
set partitioning formulation is as follows:

min
∑
r∈Ω

crλr (1)

s.t.
∑
r∈Ω

ariλ
r = 1 ∀i ∈ P (2)∑

r∈Ω′

λr ≤ |E| (3)

λr ∈ {0, 1} ∀r ∈ Ω

The objective (1) is to minimize a weighted sum of the average journey time of all
passengers. Constraints (2) ensures that all passengers are picked up by exactly one
elevator. Finally, constraint (3) bounds above the total number of routes to the available
elevators.





   

3 Branch-and-Price

The exponential number of possible routes makes model(1)-(3), i.e., the master problem
(MP), rapidly intractable for even some small instances of the problem. Hence, Branch-and-
Price (BP) is a solution method that allows us to solve the model (1)-(3) by considering
a series of pricing sub-problems that generate routes. We consider a restricted version
of the MP called the restricted master problem (RMP) that only has a few number of
feasible routes. Unlike the master problem, the RMP is rapidly solved by any commercial
solver(e.g., CPLEX). With a solution of the RMP we can find routes in the pricing problem
by using the dual variables fromt the linear relaxation of the RMP.

3.1 Pricing

The pricing problems are called Elementary Shortest Path Problem with Resource Con-
straints (ESPPRC). Labeling algorithms that use dynamic programming are considered
the state-of-the-art to solve these types of problems. Let L = (f, l, t, c, d, D̄, P̄ , R̄) be a
label that represents a partial path (or state) of an elevator. Each label has a current
floor, i.e., f , a total load, i.e., l, a time, i.e., t, a total cost, i.e., c, a direction, up or down,
i.e., d, a set of destination floors, i.e., D̄, a set of passengers that have been picked up,
i.e., P̄ , and a set of passengers that are currently inside the elevator, i.e., R̄. The cost is a
weighted sum of the average journey time of passengers. The following equation defines
the reduced cost:

c =
∑
i∈P̄

ti/|P | − µ (4)

The time ti is the time passenger i ∈ P̄ has been waiting and µ is the value of the dual
variables in the current solution of the RMP.

We start with an empty label and extend to all possible pickup requests. The resources
are calculated with Resource Extension Functions (REFs), e.g., if extending from pickup
i ∈ P to pickup j ∈ P , we can calculate the cost by adding the time passengers travel
in the elevator to go from the origin of i to the origin of j. Similarly, all resources are
tracked and extended from one node to the next. At each extension we must check for
feasibility to be sure that unfeasible solutions are not created. For example, the elevator
cannot change directions while the load is more than zero, thus, an extension to pickup a





   

passenger that is going in the opposite direction is not feasible. Feasibility checks at each
extension can guarantee that all the constraints are not violated.

3.2 Dominance rules

The labels created in the labeling algorithm grow exponentially with the number of
possible combination of pick up and delivery requests. To reduce the number of labels,
dominance rules are used to eliminate labels that are not going to lead to the optimal
solution. Label L1 dominates label L2 if the following conditions are met:

1. f1 = f2

2. d1 = d2

3. t1 = t2

4. l1 ≤ l2

5. c1 ≤ c2

6. D1 ⊆ D2

7. P1 ⊆ P2

8. R1 ⊆ R2

Rules (6)-(8) lead to the exponential growth of labels. If these rules are eliminated, a
relaxation of the problem is obtained where the labels are not increasing exponentially,
however, passenger can potentially be visited several times, producing cycles in the solution.
Cycles can then be eliminated gradually through branching.

3.3 Branching

In a Branch-and-Price algorithm the branching has to be done carefully. If we branch on
the fractional variables of the RMP, the pricing problem will become intractable rapidly
as setting a variable to zero will lead to a pricing problem with forbidden paths.

In this initial version of the algorithm we branch on the total flow between two nodes in
the graph, i.e., between pickup nodes or delivery nodes. This branching strategy does not
increase the complexity of the pricing problem, and it can be easily applied. However, it
is usually not the best method to use and it is generally used as a last resort (e.g., Torres





   

et al. (2022b)).

4 Preliminary results

To test the proposed framework, we run computational experiments in an instance with
mixed traffic flow of passengers. In a mixed traffic flow instance, some passengers are
entering the building, thus their origin floor is 0, while other passengers are exiting the
building, thus, their destination floor is 0, the remaining passengers are traveling inside
the building, i.e., neither the origin nor the destination floors are floor 0.

The building has 8 total floors and 3 elevators with a capacity of 13 passengers each.

Table 1: Results on small instances

Passengers CPU Ave. Destination time
9 0.3 32.77
13 0.9 35.23
15 0.8 35.7
17 1.3 36.98
21 48.1 38.76
25 755.2 38.96
30 3630.3 39.94
33 17290.0 40.66

5 Conclusions and Future Research

We formulated the static Elevator Dispatching Problem with a set partitioning formulation
and developed a branch-and-price algorithm to solve the problem. The preliminary results
show that using the proposed method out preforms the assignment formulation by solving
larger instances.

Future research directions can be to explore different branching strategies to improve the
performance of the algorithm. Branching has to be done carefully to avoid increasing the
complexity of the pricing problem.





   

More efficient dominance rules could be developed. Dominance rules are the main actor
in preventing the exponential growth of labels. Better dominance rules would improve the
algorithm making the solution of larger problems more likely.

Lastly, extending this research to the dynamic case, where the arrival of passengers is
uncertain, can be an interesting avenue for research. Adapting the proposed branch-and-
price algorithm to dynamic instances could be challenging.
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