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Abstract

The COVID-19 pandemic has highlighted the importance of understanding human mobility
patterns in controlling the spread of infectious diseases. While compartmental and network-
based models are used to analyze the transmission of infectious diseases, their level of
aggregation fails to capture individual heterogeneity and activity-travel behavior, which
plays a crucial role in the spread of infectious diseases. Therefore, in this paper, we
propose an agent-based Interdisciplinary Behavioural Model (IBM) that accounts for
individual behavior in both the epidemiological and mobility models. Our approach allows
for modeling individual-specific behavior in the selection for testing and measuring the
level of infection while tracking daily activities. We argue that this model can provide
a better understanding of human mobility and of the impact of activity-travel behavior
on infection rates, death rates, and the effectiveness of activity-specific limitations. We
also show that capturing behavioral assumptions is critical in analyzing the spread of
infectious diseases. To this end, we add latent states in our model to study the impact of
individual behavior on the spread of infectious diseases. Overall, our work highlights the
importance of interdisciplinary research to address the critical challenge of controlling the
spread of infectious diseases.

Keywords
activity-based model, epidemiology, activity-travel behavior, mobility, modeling, simula-
tion.
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1 Introduction

The global COVID-19 pandemic caused by the SARS-CoV-2 coronavirus has resulted in a
crisis with significant social and economic impacts. The prevention of infectious diseases
is a significant concern for public health officials, and recent events have highlighted
the urgent need for effective disease control strategies. To develop effective control
strategies, it is essential to understand human mobility patterns, including travel patterns
and contact networks. This information can drive the design of targeted interventions,
such as quarantine measures, and vaccination campaigns for different segments of the
population.

Human mobility is a key factor in the spread of the virus since infected individuals trans-
mit the disease across geographical regions and populations. For this reason, capturing
human mobility patterns requires accounting for individual behavior in both the epidemi-
ological and mobility models (Tuomisto et al. (2020)). However, developing accurate
models of human behavior is challenging as they require large-scale data collection and
sophisticated computational techniques. There are three categories of epidemiological
models: compartmental(Kermack et al. (1927) ), network-based (Mancastroppa et al.
(2020); Eubank et al. (2004)), and activity-based (Kerr et al. (2020)). Compartmental
models are fully aggregated and therefore mathematically simpler and faster to compute.
In contrast, network-based and activity-based models are more complex, detailed, and
computationally expensive, but they capture better individual behavior, allowing for more
accurate forecasting of disease spread.

Although activity-based models are computationally more expensive, they more accurately
capture individual behavior, making them an ideal choice for disease spread forecasting
(Kerr et al. (2020), Tirachini and Cats (2020)). However, current activity-based models
(see Kerr et al. (2020) and Tirachini and Cats (2020)) only model the probability of
infection and do not account for the individual choices, such as deciding to test or being
chosen for testing, making the validation process imprecise. Therefore, this study focuses
on activity-based models, proposing to include latent states to define the behavior of the
agents. Specifically, the spreading process is modeled as a combination of two processes
(i.e sub-models): the probability of infection and the probability of an agent being selected
for testing as a function of the individual’s health and socio-economic characteristics. The
two sub-models are coupled in a latter stage. The overall model allows for differentiating
between positive individuals that decide non to test and positive tests.

To account for individual choices that lead to different activity-travel or social behavior, a





       

dynamic fully-disaggregated model is used. Modeling every individual choice as a discrete
sequence of events allow us to model the individual-specific behavior of the agents in their
selection for testing and to estimate their level of infection while tracking them through
their daily activities.

2 Methodology

2.1 General framework

2.1.1 Input variables

The input variables consist of the agent’s characteristics and their daily schedule (activities
and transportation modes). The characteristics of each individual n ∈ 1, ..., N include
social, demographic, health, and economic information of the individual. To account for
the mobility of the population, we use the output of an Activity-Based Model (ABM) to
obtain the synthetic scheduling of every individual throughout the day. The scheduling
file includes, for every time step t ∈ 1, ..., D, with t = 30[min], the facility f where each
individual n is located. The discretization of time is fixed at 30 minutes to capture the
trade-off between computational cost and activity-travel behavior accuracy. The facilities
f ∈ 1, ..., F are defined as locations where agents can perform an activity, or transit. We
define a binary variable Ff,n,t as follows:

Ff,n,t =

1 if individual n is in f at time t

0 otherwise.
(1)

Moreover, we divide the agent characteristics in the following classes:

i) The agents’ social, economic, and demographic characteristics Xsoceco
n .

ii) The agents’ activity profiles: the time intervals when they perform each activity
Xact

n,t.
iii) The agents’ transportation profiles: time intervals when they use a mode of trans-

portation Xtran
n,t .





       

iv) The agents’ health characteristics Xhealth
n .

2.1.2 State variables

At each time step t, we assume the state of the system to be defined by the following
variables:

• The location of each individual, i.e. Ff,n,t ∀n.
• The health state of each individual , i.e. Hn,t,

where Hn,t is captured by three binary variables Sn,t, In,t and Rn,t, such that:

Sn,t + In,t +Rn,t = 1 ∀n, t. (2)

Sn,t, In,t and Rn,t take the value 1 if individual n is susceptible, infected, or recovered
(respectively) at time t,

2.1.3 Output variables

The output variables of the simulation are:

• The infection status of each individual ZI
n,t, describing if individual n is infected at

time step t in facility f :

ZI
n,t =

1 if individual n is infected at time t

0 otherwise.
(3)

• The selection of testing of the individual, describing if the individual has been
selected (self-selection or imposed selection) to get tested:

ZT
n,t =

1 if individual n is selected for testing at time t

0 otherwise.
(4)





       

• The testing results:

Z+
n,t

1 if individual n testes positive at time t

0 otherwise.
(5)

2.1.4 Other modeling parameters

• The duration D of the simulation.
• The recovery rate γn,t. This recovery time is drawn from a log-normal distribution

with a mean of 384 periods, and a deviation of 96 periods of the normal distribution
(Wölfel et al. (2020)).

2.2 State transmission model for activity-travel behavior dependent
states

The framework we propose simulates the state of individuals, or agents, over a number of
discrete time steps. The model focuses on two types of calculations: the probability that
a given agent changes from one state to another at a given time step, and the selection of
individuals to be tested at a given time step.

Our primary goal is to model the transition probabilities between states based on the
agent’s activity and travel behavior. We use a logistic equation to model the activity-
travel-dependent transition probabilities, which are transitions that lead to an infectious
state, i.e. from Sn,t = 1, In,t = 0 to Sn,t+1 = 0, In,t+1 = 1. For the other transitions (such
as the recovering process) we refer to existing literature (Kerr et al. (2020); Wölfel et al.
(2020)). The recovery time for an individual n at time step t is computed by:

γn,t ∼ lognormal(384, 96) (6)

To capture the impact of individual behavior on the spread of infectious diseases, we
include two latent states in our model. The first latent state is a continuous variable
capturing the level of infection of each individual at each period of time. It is denoted as
I∗n,t. The second latent state is a continuous state capturing the likelihood of an individual





       

to be tested at a given point in time. It is denoted as T ∗
n,t. The structural equations of

the two latent states are defined below.

2.2.1 Level of infection

The level of infection is computed for every individual n, for every time step t, in a facility
f . We use four groups of explanatory variables to model I∗n,t:

• Socio-economic characteristics of individual n (Xsoceco
n ).

• Health characteristics of individual n (Xhealth
n ).

• The transportation profile of individual n (Xtran
n,t ).

• The activity profile of individual n (Xact
n,t).

where Xsoceco
n ,Xhealth

n ,Xtran
n,t ,X

act
n,t are vectors of the different characteristics. To model

the level of infection, we define the discrete model from Figure 1. I∗n,t is modeled by
Equation 7.

I∗n,t = βinf
infectious agents in f(t)

total number of agents in f(t)
+ βsocecoXsoceco

n + βhealthXhealth
n

+βtranXtran
n,t + βactXact

n,t + εI
∗

n,t.

(7)

where βsoceco, βhealth, βtran, βact are the parameters for Xsoceco
n ,Xhealth

n ,Xtran
n,t ,X

act
n,t, re-

spectively. βinf, is the parameter of the ratio between infected individuals in a facility f

at time t, and the total number of individuals. εI
∗

n,t is a random error term.

Figure 1: Discrete model for the level of infection.





       

2.2.2 Selection for testing

Figure 2 shows the modeling of the unobserved latent state of the selection for testing
T ∗
n,t. As previously mentioned, agents get infected depending on their surroundings, their

contacts and their health characteristics. We assume that agents do not modify their
schedule, except if they test positive. Hence, it is important to include the selection for
testing.

Figure 2: Selection for testing.

T ∗
n,t is measured by the level of infection of the individual and its socioeconomic charac-

teristics (see Equation (8)):

T ∗
n,t = βsocecoXsoceco

n + βacttypeacttypen,t + γLII∗n,t + εT
∗

n,t (8)

Where βsoceco andXsoceco
n are vectors of the socio-econommic characteristics of the indi-

vidual and the corresponding parameters, respectively. βacttype and acttypen,t is the type
of activity performed during the time step, and its parameter. I∗n,t is the level of infection
of the individual, and γLI is its parameter. εT

∗
n,t is a random error term.

2.2.3 Measurements of the LI and ST models

The LI and ST models are connected by means of a measurement equation that uses as
an observation the probability of testing positive for an individual n at time step t (see
Equation (9)).





       

P (Z+
n,t = 1) =

P (Z+
n,t = 1|ZT

n,t = 1 andHn,t = I)P (Z+
n,t = 1 andHn,t = I)+

P (Z+
n,t = 1|ZT

n,t = 1 andHn,t = R)P (ZT
n,t = 1 andHn,t = R)+

P (Z+
n,t = 1|ZT

n,t = 1 andHn,t = S)P (ZT
n,t = 1 andHn,t = S)

(9)

The joint probability of the sequence of T observations for the same individual is (Equation
(10)):

P
(
Z+

n,t, Z
+
n,2, . . . , Z

+
n,T

)
= ΠT

t=1Π
N
n=1P

(
Z+

n,t = 1
)ytest+

n,t . (10)

2.3 Dynamics of the model

This section describes the full methodology to update agents schedule and health state.
As described in Section 2.1.3, the output variables of the simulation are ZI

n,t, ZT
n,t and

Z+
n,t describing the infection status, the selection testing, and the testing result for each

individual, at each time step. The full procedure is summarized in Algorithm 1.

First, we update the location f of each agent based on their daily activities (obtained
from the output of an activity-based model), and we update the health state of each agent
as follows:

• If an agent n is in health state S, that is if Hn,t = S, there are two possibilities: to
remain in state S (susceptible) or to transition to state I (infected). The probability
that agent n transitions to state I at time t+ 1 conditional on S at time t is given
by a logistic model, (see Equation ( 11)):

P (Hn,t+1 = I|Hn,t = S) =
1

1 + e−µI∗n,t
(11)

P (Hn,t+1 = S|Hn,t = S) = 1− P (Hn,t+1 = I|Hn,t = S) (12)

where I∗n,t is defined in Equation (7). Then, we draw a random binary variable ZI
n,t

from the probabilities defined by Eq. (11) and (12), which is an indicator that takes





       

Algorithm 1 Dynamics of the model
1: procedure
2: Input: Population, scheduling, etc.
3: for each t ∈ 1, . . . , D do
4: Update the location Ff,n,t∀f, n
5: for each n in the population do
6: Update the Health state Hn,t:
7: if Hn,t = S then
8: Compute P (Hn,t+1 = I|Hn,t = S) with Eq. (11)
9: Draw a binary variable ZI

n,t with P (Hn,t+1 = I|Hn,t = S)
10: end if
11: if Hn,t = I then
12: Consider the recovery time distribution γ from (Wölfel et al. (2020))
13: Draw the recovery time γn for n randomly from the distribution γ
14: if Hn,t−γn = I then
15: Set Hn,t = R
16: else
17: Set Hn,t = I
18: end if
19: end if
20: if Hn,t = R then
21: Keep Hn,t = R
22: end if
23: Evaluate the selection for testing:
24: Compute P T

n,t,f by means of Eq. (8)
25: Draw a random binary variable ZT

n,t with probability P T
n,t,f

26: Compute Z+
n,t using Equations (14)-(16)

27: end for
28: Output: ZI

n,t, Z
T
n,t and Z+

n,t for all n a time t
29: end for
30: end procedure

a value of 1 if individual n is infected, and 0 otherwise.
• The process of an agent moving from the Infectious state to the Recovered state

does not depend on activity-travel behavior (the transition from In,t to Rn,t). For
this reason, we base it on a predetermined recovery time, γn, assigned to each agent
upon entering the Infectious state. This healing time is drawn randomly from a
log-normal distribution with a mean of 8 days and a standard deviation of 2 days
(Wölfel et al. (2020)). Specifically, if the agent n is infected at time t, we draw
γn from the log-normal distribution and define Hn,s = I for s = t, . . . t + gn, and
Hn,s = R for s = t+ gn+1, . . . , T. While personal health characteristics do influence
the severity of the disease and the healing time, this model simplifies the process
to reduce the number of parameters to calibrate. The model may consider more





       

detailed states in the future but, for now, the objective is to estimate the impact of
behavior on the spread of the virus.

Once the health state is updated, we run the testing model to estimate whether the agents
get tested or not. To evaluate the selection for testing of n we use a binary choice model.
We obtain P T

n,t,f (see Equation (13)):

P T
n,t,f =

1

1 + e−µT ∗
n,t

(13)

We draw a random binary variable ZT
n,t with probability P T

n,t,f , and observe the test result
where ZT

n,t is an indicator that takes a value of 1 if individual n is tested, and 0 otherwise.

The test output can be positive or negative if an agent is selected for the testing process.
This output can be determined by a logical combination of the output of the two models.
We simulate Z+

n,t as a random variable with two values: positive 1 and negative 0. For
the sake of simplicity, we define the probabilities constant through the simulation, across
n and t (Ai et al. (2020)). The ranges in parentheses correspond to the 95% confidence
intervals.

P (Z+
n,t = 1|ZT

n,t = 1 andHn,t = I) = 0.65± (0.62− 0.68) (14)

P (Z+
n,t = 1|ZT

n,t = 1 andHn,t = S) = 0.17± (0.10− 0.23) (15)

P (Z+
n,t = 1|ZT

n,t = 1 andHn,t = R) = 0.17± (0.10− 0.23) (16)

Finally, we apply activity reduction policies, such as quarantine or social distancing
measures, which modify the probability of disease transmission across the contact network
of each infectious agent.





       

3 Results and discussion

3.1 Data availability

The model requires input data that includes activity-travel behavior information, socioeco-
nomic and health characteristics, and COVID-19-related data about individuals. However,
no single dataset in the literature includes all the necessary features, so different datasets
are used:

• The Federal Office of Public Health (FOPH) dataset, covering mid-February 2020 to
mid-September 2021, contains information on positive COVID-19 tests in Switzer-
land and the tested individuals. This dataset includes age, gender, municipality,
vaccination doses, hospitalization, and casualties (Office of Public Health (2020)).

• Open-source data from Google was used to determine the share of positive tests per
age group, with age groups defined in intervals of 10 years (CloudPlatform (2021)).

• The Swiss Health Survey provides information on the health status of the Swiss
population, including physical, mental, and social well-being, physical disorders
and diseases, accidents, disabilities, lifestyle and health behaviors, use of health
system services, living conditions, health determinants, health resources, and health
insurance (fédéral de la statistique (2016)).

• A calibrated MATSim simulation output from ETH Zurich was used, which includes
synthetic information about the population’s attributes, activities, and trips (Horl
and Balac (2021)).
By combining these datasets, the model is able to account for each individual’s daily
activity plan, socioeconomic characteristics, health characteristics, and COVID-19-
related medical information.

3.2 Validation and evaluation

The proposed approach is validated using a simplified case study of the canton of Vaud.
Due to the unavailability of health data from the OFS, we use the MATSim and FOPH
data mentioned in Section 3.1 to produce a disaggregated database, taking advantage
of the methodology developed in Balcells et al. (2022). The contact mechanisms are
computed using a calibrated MATSim simulation from ETH Zurich, which includes the





       

socio-economic characteristics of individuals such as gender, age, municipality, and daily
schedules. The epidemic trajectory, as shown in Figure 3, is obtained by coupling the
private and public data.

Only age is considered as agent characteristic, so that Equation (7) can be simplified as
follows:

I∗n,t = βinfshareinfectedindividualst + βage
inf agenshareinfectedindividualst, (17)

where βinf and βage
inf are coefficients, agen is the age of the individual, and shareinfectedindividualst

(see Equation (7)) is the proportion of infected individuals at time t. Considering only
the age as a characteristic of the individual, Equation (8) becomes:

T ∗
n,t = βageXage

n + γLII∗n,t. (18)

where βage and γLI are coefficients, agen is the age of the individual, and I∗n,t is the level
of infection.

3.3 Inital conditions

The initial conditions of the framework have an impact on the results of simulation, as
the trajectory of an epidemic is directly linked to the number of initial cases. We assume
the model to be run after a few days from the start of the pandemic. For this reason, the
initial conditions for the first days of simulations, are not determined by the model, but
rather taken directly from the data. This allows the model to best capture the actual
initial conditions of a wave of COVID-19, and the number of infected individuals at the
end of D is relatively close to the actual number. However, one significant drawback of
this method is that it is only possible to know the number of confirmed cases and not the
actual number of infections. Therefore, the initial infections in the model will always be
lower than in reality, leading to deviation in the simulation results.

In Figure 3, we show the geographical distribution of new infections at the beginning of the





       

Figure 3: Evolution of infected people over time in the canton of Vaud.

pandemic in the canton of Vaud. The figure indicates that areas with higher population
density tend to generate more contacts between agents, resulting in a greater number of
infectious individuals. These findings underscore the critical role of human mobility in
studying pandemic evolution.

3.4 Calibration

This study aims to test the model rather than draw any conclusions from the results.
Nonetheless, the data preparation stage of this calibration can be useful for future model
calibration. The calibration procedure involved isolating FOPH data from mid-August
2020 to October 29, 2020, the rising phase of the second wave of Covid-19, with no
restrictions or vaccination at that time. The simulation and target data are geographically
limited to the canton of Vaud, which has approximately 800,000 inhabitants. The 7-day
rolling average of the target data is used instead of the raw data to reduce computation
complexity. The model is constructed without additional infection risk factors or test
probabilities, relying only on the strength of infection, the baseline probability of being
tested, and the additional test factor related to the risk of infection, with only the baseline





       

probability of being tested being calibrated. As it is out of the scope of this paper to
provide a full methodology on how to calibrate such models, the parameters: βage, γLI

and βage
inf are considered constant during the calibration process. Their value is obtained

following the methodology developed in Balcells et al. (2022).

First, we initialize the model as explained in Section 3.3. Then, the Mean Squared
Error (MSE) is considered as objective function to estimate the difference between the
simulation’s predicted trajectory and the trajectory that real data follow for the positive
tests, in order to calibrate βinf.

MSE =
∑
d

(
Z+

n,t − Z+sim
n,t

)2
. (19)

Figure 4: Calibration of βinf using the positive tests (upper figure) and the share of positive
tests (lower figure) over time in the canton of Vaud.

The results, visible in Figure 4, demonstrate the proposed approach’s efficacy using two
distributions in a case study. The daily total number of positive tests over one month for
various simulations and the confirmed cases are shown in the upper plot, with peaks on
Mondays, indicating laboratory closures over weekends. A rolling average over a week is
computed to improve interpretability, demonstrating that the simulation results followed
the actual data trend.

The lower plot represents the positive test proportion data on the aggregate level and the
disaggregated FOPH data on age, gender, and municipality. As the parameters related to





       

the selection for testing are not calibrated but taken from the literature, the simulated
scenarios do not correspond to the measured data. This underlines the need for a more
accurate calibration process, taking into consideration many parameters and a more
complex objective function.

4 Conclusions

In conclusion, this paper addresses the critical issue of human mobility and its role in the
spread of infectious diseases, with a particular focus on the COVID-19 pandemic. The
paper proposes an activity-based epidemiological model that accounts for the heterogeneity
of individual behavior and its impact on the dynamics of disease spread. By tracking
individuals through their daily activities, the model enables the analysis of the impact
of activity-travel behavior on the infection mechanism and testing process. The paper
argues that a better understanding of human mobility is crucial for developing effective
control strategies to mitigate the impact of infectious diseases and that interdisciplinary
research is essential for addressing this critical challenge.

The proposed model provides a preliminary framework for future research that includes
adding relevant parameters to define the level of infection and the selection for testing,
introducing activity restrictions, and considering the vaccination effect. We propose
for the first time the coupling of different latent states (i.e. I∗ and T ∗) to explain the
spreading of infectious disease, even if more data is required to provide full validation of
the disaggregated model. Once the input of the model is pre-processed, the computational
time for Vaud with a time step of 30 min for a period of 2 months, is around 8 min
with a processor of 2.6 GHz 6-Core. Even though the model is not fully calibrated,
the computational time suggests that disaggregated models can be used to capture the
influence of human behavior for epidemiological purposes. In addition, future work aims
to explore the change in activity-travel behavior due to the presence of a virus. By
accounting for the heterogeneity of individual behavior and its impact on disease spread,
this paper contributes to the development of more accurate and effective disease control
strategies.
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