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Abstract

Self-driving cars and delivery robots are set to shape the future of transportation, but
they still have to learn how to co-exist with humans in close proximity. Autonomous
systems need to detect pedestrians and understand the meaning of their actions before
making appropriate decisions in response. Action recognition is therefore an essential task
for transportation applications, and yet very challenging, as there is no control over the
distances of pedestrians or the real-world variations like lighting, weather, and occlusions.
In this paper, we focus on the action recognition task in the context of transportation
applications and deal with real-world variations and challenging scenarios by representing
humans through their 2D poses. Representing human postures as sparse sets of keypoints
allows focusing on essential details while providing invariance to many factors, including
background scenes, lighting, textures, and clothes. However, keypoints’ greatest strength
is also their main weakness, as such a low-dimensional representation risks neglecting
other essential elements in a scene. We propose a simple approach using keypoints as
intermediate representations and aim to shed light on which tasks keypoints are effective
representations for. We conduct experiments on two datasets related to autonomous
driving: TCG and TITAN.
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1 Introduction

Self-driving cars and delivery robots are set to shape the future of transportation, but
they still have to learn how to co-exist with humans in close proximity. Autonomous
systems need to detect pedestrians and understand the meaning of their actions before
making appropriate decisions in response. Action recognition is therefore an essential
task for transportation applications, and yet very challenging, as there is no control
over the distances of pedestrians or the real-world variations like lighting, weather, and
occlusions.

In this paper, we focus on the action recognition task in the context of transportation
applications and deal with real-world variations and challenging scenarios by representing
humans through their 2D poses. Human poses are an effective intermediate representation
for 2D and 3D human perception tasks. Representing human postures as sparse sets
of keypoints allows focusing on essential details while providing invariance to many
factors, including background scenes, lighting, textures, and clothes. Methods leveraging
keypoints have obtained state-of-the-art results and excellent generalization properties
on 3D pedestrian localization (Bertoni et al., 2019) and 3D pose estimation (Martinez
et al., 2017) tasks. However, keypoints’ greatest strength is also their main weakness,
as such a low-dimensional representation risks neglecting other essential elements in a
scene. We propose a simple approach using keypoints as intermediate representations
and aim to shed light on which tasks keypoints are effective representations for. We
first validate our approach on the TCG dataset (Wiederer et al., 2020), showing that
a simple method can achieve better results than temporal baselines using LSTMs, and
comparable results with complex attention-based graph convolutional networks. Then, we
compare our approach on the action recognition task on TITAN (Malla et al., 2020), a
new dataset for autonomous driving. We show that on atomic actions, such as walking or
standing, our keypoint-based approach outperforms an image-based method, validating the
effectiveness of human poses as intermediate representations for action recognition tasks
in transportation applications. We publicly share our source code to facilitate academic
communication.1

1Github repo: https://github.com/vita-epfl/pose-action-recognition
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2 Proposed Approach

We propose a simple method (Figure 1) to recognize human activities from images,
leveraging human poses as intermediate representations. This model is inspired by
MonoLoco (Bertoni et al., 2019) and Figure 1 presents the general network architecture,
consisting of two stages. We first extract 17 body keypoints for each person in an image
with OpenPifPaf (Kreiss et al., 2021), and transform them into 1 center point and 17
relative coordinates (18 in total, shown in Figure 1). Then, the model encodes the
keypoints with a feedforward network, and predicts the corresponding action from the
encoded representation. We also extend our method (i) to estimate actions from videos
and (ii) to predict simultaneous groups of actions (e.g., a person can walk while being on
the phone). For (i), we add a simple LSTM to process a temporal sequence of poses before
the final linear layer, and for (ii), we use a multitask approach, where multiple parallel
heads (instead of just one) process a shared representation to yield multiple predictions.

Figure 1: Model architecture inspired by MonoLoco. The input is a set of 2D joints
extracted from a raw image and the output is the estimated action of a pedestrian. We
use three different heads for image-based and video-based action recognition, and for
estimating simultaneous actions.





         

3 Experiments

3.1 Experiments on TCG

The TCG dataset (Wiederer et al., 2020) collects accurate 3D body keypoints for recogni-
tion of traffic control gestures, which we use to validate the design of our single-frame
model directly from error-free poses. Following the cross-subject and cross-view evaluation
protocols in TCG, Table 1 compares the performances of our single-frame and temporal
models with eight simple baseline methods as well as two more complex attention-based
graph convolutional networks (Pham et al., 2021). Our temporal model outperforms
the simple baseline models. Specifically, it performs better than the LSTM baseline,
which directly predicts actions from raw keypoint coordinates. This demonstrates the
effectiveness of processing raw keypoints with a feedforward network. Our models are
still outperformed by the two attention-based graph convolutional networks, but those
are much heavier and would likely be less suitable for applications with hard run-time
constraints (e.g., memory footprint, inference time), such as autonomous driving. Addi-
tionally, traffic control gestures are designed to be unambiguous actions that could easily
be understood without temporal context, which means temporal information should not
be crucial for these gestures. The close results of our single-frame and temporal models
confirm this observation.

Table 1: Action recognition results on TCG (Wiederer et al., 2020) test set.

Method Cross-subject Cross-view

Accuracy (%) Jaccard (%) F1 (%) Accuracy (%) Jaccard (%) F1 (%)

RNN 82.81 57.40 69.45 80.94 57.21 69.98
GRU 84.44 58.16 70.45 83.47 56.25 68.59
LSTM 83.23 56.32 68.59 79.58 52.02 64.62
Att-LSTM 85.67 50.70 61.87 85.30 59.87 71.20
Bi-GRU 86.80 57.25 68.95 87.37 55.55 67.68
Bi-LSTM 87.24 67.00 78.48 86.66 65.95 77.14
TCN 83.44 62.06 74.23 82.66 63.97 75.95
GCN 65.42 38.55 50.73 62.40 35.05 48.51

AAGCN 91.13 - 85.81 90.22 - 85.21
Pham et al. 91.09 - 86.26 90.64 - 85.52

Ours (single-frame) 85.03 63.72 76.91 86.29 68.76 80.81
Ours (temporal) 87.31 69.15 81.15 87.74 70.11 81.89





         

3.2 Experiments on TITAN

The TITAN dataset (Malla et al., 2020) has 700 video clips captured by an on-board
camera, which are suitable for evaluating the complete recognition workflow starting from
raw images. All annotated actions belong to atomic, simple context, complex context,
communicative or transportive action groups. Notably, all the people in all the frames are
annotated with five action labels, i.e., one from each action group (including labels for no
action for any group).

In Table 2, we compare our multitask model, using five prediction heads to match the five
action groups of TITAN, with I3D (Carreira and Zisserman, 2017) and 3D ResNet (Hara
et al., 2018). We observe it has comparable accuracy to the other two methods. However,
TITAN is highly imbalanced (toward no action for almost all groups), thus the overall
accuracy is not a suitable metric to evaluate results. For this reason, we introduce mean
Average Precision (mAP), where Average Precisions (APs) are computed for all classes
separately and then averaged.

However, since the labels no action dominate most action groups, and some actions have
insufficient numbers of examples, we focus on a subset of actions where our multitask
model has reasonable mAP. We also merge actions biking and motorcycling with close
meaning, resulting in five classes: walking, standing, sitting, bending and biking. Table 3
compares the recognition performances of four models using mAP. Our multitask model
is trained on the original TITAN dataset, and we only keep the predictions corresponding
to the selected action subset. Since the original dataset contains considerable no action
samples, the training process of this model is dominated by this majority class, and
the model does not have satisfactory mAP. The following three models are trained and
tested on the selected action subset. The first of them is a ResNet50 (He et al., 2016)
classification network trained on image crops centered on detected pedestrians. For our
temporal model, we follow the procedure used in TITAN (Malla et al., 2020) and obtain
temporal sequences by associating detected poses using ground-truth track IDs. The
results show that our temporal model is better at walking and standing, two visually
close actions where temporal context should help disambiguation, while our single-frame
model is better for sitting, bending and biking, for which temporal information is not as
important. Figure 2 presents several qualitative examples from our single-frame model.





         

Table 2: Action recognition results on TITAN (Malla et al., 2020) test set.

I3D 3D ResNet Ours (multitask)

Action group Accuracy (%) Accuracy (%) Accuracy (%) mAP (%)

atomic 92.19 75.52 80.01 26.80
simple 53.18 31.73 47.97 20.27
complex 98.81 98.80 97.80 15.50
communicative 86.49 86.48 83.69 29.55
transportive 90.80 90.81 89.80 28.30

overall 84.29 76.67 79.85 24.08

Table 3: Action recognition results with selected actions on TITAN (Malla et al., 2020)
test set.

Average Precision (AP %) ↑ [Detection Recall ↑]

Method Inputs Walking
[75.4%]

Standing
[65.4%]

Sitting
[62.1%]

Bending
[71.8%]

Biking
[82.4%]

Average
[73.7%]

Ours (multitask) Keypoints 90.16 40.67 43.78 41.12 57.70 48.14

ResNet50 (He et al.) Crops 92.85 42.07 5.18 8.44 56.00 40.91
Ours (single-frame) Keypoints 96.87 64.55 81.22 64.59 88.30 79.11
Ours (temporal) Keypoints 97.83 73.02 65.78 47.31 84.98 73.78

Figure 2: Action recognition examples from our single-frame model on TITAN (Malla
et al., 2020) test set. Predicted actions and ground truths (GT) are shown at the bottom
of the boxes.





         

4 Conclusions

In this work, we present a simple method for action recognition based on 2D human
poses. We compare our method with an end-to-end network leveraging raw images as
input, and with various keypoint-based approaches. Our results show that processing
keypoints with a simple feedforward network is an effective approach for action recognition
in transportation applications.
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