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Abstract

Energy and transport demand can both be considered as being derived from an individual’s activ-
ity participation. As such, both energy and transport demand are inherently linked: completing
activities inside the home generates residential energy demand, where completing activities
outside the home generates transportation and non-residential energy demand. Whilst there
are several works in the literature that focus on either energy or transportation demand, there
remain very few studies which explicitly investigate their interaction. To address this need, in
this paper we conduct in-depth literature review of transportation and energy demand modeling.
The review analyses the methodologies employed within each domain in order to (a) establish
the state-of-research for energy demand modeling and (b) identify the suitable opportunities for
joining these two domains. Drawing on a review of the current papers, we identify four key
areas of practice: (i) activity scheduling, (ii) building energy demand, (iii) transportation energy
demand, and (iv) the integration of components. Finally, based on the findings from the review,
we propose a new framework for joint building and transportation energy demand modeling
at an urban scale.
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1 Introduction

Urban areas consume two-thirds of the global energy, which leads to over 70% of global
greenhouse emissions (IEA., 2008). Governments worldwide have pledged for ambitious
reductions in emissions in the short- to medium-term future. Achieving these targets will
require a much deeper understanding of urban energy demand in order to manage and reduce
consumption.

The energy consumption in cities can be largely categorised within three different sectors:
(i) residential buildings, (ii) non-residential buildings, and (iii) transportation. Of these three
sectors, transportation is now the largest emission producer in many countries worldwide,
including Switzerland (European Commission, 2021). The energy consumption across each of
these sectors is inherently linked. Understanding urban energy demand as a whole therefore
requires the interactions between each of these sectors to be considered. However, energy
demand models used in practice typically only focus on one element, with separate models for
domestic and non-residential buildings energy demand and transportation demand. There is
therefore limited understanding of the interactions between these sectors.

In the context of urban energy, Urban-scale energy modeling (USEM)has been introduced as
an integrating concept for joining energy models at an urban scale. As proposed by Sola et al.

(2018), USEM can be simulated using an integrated platform consisting of five sub-models:
(i) an urban meteorology model, (ii) a building energy supply model, (iii) a building energy
demand model, (iv) a transportation energy model, and (v) an energy optimization model. One
of the main challenges of USEM is studying the interdependencies of urban systems, which
requires co-simulating urban system models and coupling methods (Hong et al., 2020). In this
paper, we focus only on the energy demand elements of the USEM, specifically building energy
demand (subdivided into domestic and non-residential buildings) and transportation.

In the current state of practice in building energy demand, two main approaches have been
used:

1. building envelope models; in which the buildings energy consumption pattern is simulated
directly from aggregate historic energy values (Oneal and Hirst, 1980), and

2. active occupancy models; in which energy demand is modeled based on the number
of active occupants (present and not asleep) in the buildings (Richardson et al., 2010,

McKenna and Thomson, 2016),





            

In this paper, we consider an alternative approach to building energy demand modeling, by
modeling energy demand as resulting directly from people’s desire to participate in different
activities, either inside or outside the home. This extends the activity-based modeling paradigm
typically applied to investigate transportation demand. The proposed framework explicitly
models the energy demand in the three sectors as explicitly linked using the activity as the
central unit of analysis as follows:

• Activities completed at home; such as cooking, cleaning, and laundry which directly use
appliances resulting in direct domestic energy demand,

• Baseline domestic energy; lighting, hot water, space heating and cooling, ventilation, and
air-conditioning indirectly dependent on in-home activities (from occupancy),

• Out-of-home activities directly generate transport demand in which the transport energy
demand can be either directly dependent on travel demand (private transport) or indirectly
dependent on travel demand (public transport),

• Non-residential energy demand; which is indirectly dependent on out of-home activities.

Human activity is the main connecting element between these energy consumptions in urban
systems. Behavior is the key element affecting individuals’ activity scheduling and thus, energy
usage is highly dependent on individuals’ behavior. For example in the case of residential
buildings as one of the main energy consumption sources in urban areas, energy consumption
can vary dramatically from one household to another even in similar buildings. This reflects
the heterogeneity in occupants’ needs, behavior, and preferences (Liu et al., 2019). Occupants’
activity patterns also vary throughout the day and even days of the week (weekdays and
weekends). Therefore, occupants’ activity scheduling which is affected by individuals’ behavior
is a key input to domestic energy demand modeling. Out of home activity participation has
already been modeled extensively for transport demand modeling in form of activity-based
transport models in the last decades. Transportation modelers take advantage of daily activity
scheduling of individuals for agent-based transport modeling in which the demand for travel is
assumed to be driven by the need to complete activities which are distributed in space and time
(Axhausen and Gärling, 1992). This implies that well-established activity-based transportation
modeling tools are available. However, although behavior is the key element joining mobility
and energy use, the human behavior element is frequently neglected in the energy demand
literature (Sovacool et al., 2015) and the current energy demand models are mostly based on
active occupancy concept.





            

In order to address this gap, we propose an integrated model of disaggregate energy and
transport demand using activity-based approach to model complex individual behaviors due to
the multiplicity of individual actors, their multi-criteria objectives, and the multidimensionality
of relevant factors. By recreating individual activity schedules in a day, our research proposes
an integrating framework to co-simulate and study the interdependencies of energy demand and
transport modeling. This new modeling paradigm, can be used to directly model both energy
demand and transport demand derived from in-home and out-of-home activity participation.

To this aim, the following are the gaps in knowledge we need to address for our framework
to work, however, they are not the same as the review questions, but can be used to help form
them:

• How to incorporate in-home and out-of-home activity scheduling in a single scheduling
model?

• How to derive both direct and indirect domestic energy demand from in-house activities?

• How to derive direct and indirect transportation energy consumption from travel demand?

• How to derive indirect non-residential energy demand from out-of-home activities?

The literature review aims to answer the following questions:

• What approaches have been used to model transportation and building energy demand?

• What is the relation between building and transportation energy demand?

• How can we link building energy demand modeling to transportation energy demand
modeling?

• To what extent, the activity-based modeling has been applied to energy demand modeling
in fields of transportation and building energy modeling?

The remainder of this manuscript is structured as follows. In the following section, a brief review
of the existing literature on activity scheduling of individuals and energy demand modeling
is presented. Section 3 presents the proposed integrated framework. Finally, the concluding
remarks and opportunities for future research are presented in section 4.





            

In the remainder of this manuscript, the following terminology has been used for household,
building, and domestic/residential energy demand. Household refers to the occupants living
together in a housing unit. Building includes both residential and commercial building stock
and refers to the building structure and its contents such as appliances and other plug loads.
Domestic/residential energy demand refers to energy used in residential buildings including
lighting, Heating, Ventilation, and Air-conditioning (HVAC), and appliances.

2 Literature Review

The aim of this section is to review the current literature on activity scheduling as well as
transport and energy demand modeling.

Activity-based models have been developed and extensively used over the past 50 years in
transportation modeling (Chapin, 1974, Hagerstrand, 1970, Horni et al., 2016, Roorda et al.,

2008, Scherr et al., 2020). Also, activity-based models have been used in integrated land
use-transport models (Miller et al., 2004, Waddell, 2002), which can predict travel and activity
patterns of all agents in the study area at high levels of spatial and temporal resolution, in
a behaviorally realistic and policy sensitive manner. These integrated models present new
opportunities for utilizing an activity-based approach in energy demand modeling (Keirstead
et al., 2012) as there have been limited attempts to model electricity and heat demand using these
approaches (Bustos-Turu et al., 2016). Extending such demand models to all energy resources is
one of the most promising opportunities in the field of urban energy system modeling (Keirstead
et al., 2012).

Moreover, occupants’ behavior is a substantial source of uncertainty in buildings energy mod-
eling as it can influence the energy consumption by as much as 100% for a given dwelling
(Clevenger and Haymaker, 2006, Emery and Kippenhan, 2006, Masoso and Grobler, 2010,

Seryak and Kissock, 2000, Yu et al., 2011, Palacios-García et al., 2018). Therefore, it is cru-
cial to take into account the difference in individuals’ daily behavior to avoid peaks in energy
consumption at unrealistic point in time (Wang et al., 2018).

In spite of the similarities between activity-based transport modeling and building energy
demand modeling, these two problems have not yet been considered together and there is not an
integrated framework.

In this section, we have conducted an extensive review into energy demand modeling. To identify





            

relevant papers, we search across three primary topics: building energy demand modeling,
transportation modeling, and activity-based modeling. We then review the literature which
attempts to bridge these three topics. We first discuss eight review papers in transportation
modeling, building energy modeling, and the current approaches to integrate these two domains
in Section 2.1. Then, Section 2.2 presents the existing research on energy demand modeling and
is subdivided into two areas; building energy demand models (Section 2.2.1) and transportation
energy demand models (Section 2.2.2). In Section 2.3, a review on activity-based models
and scheduling is provided, followed by Section 2.4 which presents the current literature on
integrating transportation and building energy modeling.

The review methodology of this review paper is such that we have identified the key papers in
this field through an unstructured search by following the references from the key papers. The
review is the exploration of the key themes and not an exhaustive review.

2.1 Summary of eight review papers in the field

In this subsection, eight review papers in transportation and building energy modeling and the
existing attempts to integrate these two domains are discussed. Table 1 provides a summary
of the key findings of these review papers. Then, based on the findings of these reviews, we
provide a high-level scheme of a framework that serves as a guide in reviewing the papers to
reach our ultimate goal (Figure 1).

Kotusevski and Hawick (2009) provide a thorough review of some of the available traffic
simulator software packages discussing their applications, their features and characteristics
as well as their short comes. Insights from this paper can be useful for selecting the most
appropriate simulation tool for traffic system simulation and thus mobility energy demand. In the
paper by Mahmud and Town (2016), the authors focus on Electric Vehicles (EVs). They propose
a thorough literature review on many of the current simulation tools for energy requirements
of EVs and their impact on power distribution networks. Their contribution can assist us in
selecting appropriate tools when integrating various means of transportation including EVs,
which are becoming more and more popular these days, in an integrated energy demand modeling
framework.

Swan and Ugursal (2009) provide a critical review on various residential sector energy consump-
tion modeling techniques; top-down and bottom-up approaches. They observe that bottom-up
engineering methods are the most suitable for examining different energy policies and strategies
as they have the capability to determine the impact of new technologies and discontinuities





            

Table 1: Summary of existing review papers
Topic Key findings Citation

Traffic simulator softwares Applications, features and short comes of traffic simulator softwares (Kotusevski and Hawick, 2009)
Review on modeling and managing impact of EVs on power distribution networks 125 simulation tools identified and 67 summarized, enable researchers select mix of tools to for their objectives. (Mahmud and Town, 2016)

Domestic energy modeling techniques Bottom-up approach is suitable for examining energy policies and the impact of discontinuous advances in technology (Swan and Ugursal, 2009)
Urban buildings’ energy modeling Bottom-up engineering approach provide detailed information to evaluate impact of new technologies on building energy use (Li et al., 2017)

Residential electricity demand modeling based on TUS data Residential electricity demand is predominantly driven by the timing of occupants’ activities that can be obtained from TUS data (Torriti, 2014)
Urban energy consumption Integrated LUT modeling is highly relevant to urban energy systems but overlooked by the literature, activity-based approach is a promising integrating framework for future of USEM (Keirstead et al., 2012)
Urban energy consumption Activity-based approach can be a feasible solution to overcome the challenge of interconnected urban system modeling in UBEM (Hong et al., 2020)

Classify the existing urban-scale energy systems simulation tools Provide available resources for implementing new co-simulation approaches in USEM and reduce future modeling efforts (Sola et al., 2018)

on building energy demand. Li et al. (2017) provide a more up-to-date review of the urban
buildings’ energy modeling. Compatible with the conclusion of Swan and Ugursal (2009), they
also state that as the bottom-up engineering approach has a high temporal resolution (daily,
hourly, and/or sub-hourly), it can provide detailed energy consumption information in order
to establish a solid foundation for evaluating the impact of new technologies on buildings’
energy use. Torriti (2014) proposes a focused literature review on residential electricity demand
modeling based on Time Use Survey (TUS) data. Among the current approaches for residential
electricity demand modeling, they rely on the assumption that residential electricity demand is
predominantly driven by the timing of occupants’ activities, which can be obtained from TUS
data. These reviews, give us insight on possible data and methods used in time-use studies and
building energy use modeling.

Keirstead et al. (2012) provide a comprehensive and diverse literature review on urban energy
consumption which is of significant and growing interest. They claim that in spite of various
models with different temporal and spatial scales, there has not yet been a piece of work that
lightens up the full scope of activities in this area. The authors also point out the integrated Land
Use Transport (LUT) modeling as a field which is highly relevant to urban energy systems but
overlooked by the literature. Moreover, they highlight that the future of urban energy systems
modeling is in the use of an activity-based approach as an integrating tool. Hong et al. (2020)
state that studying the interconnected urban system modeling is still one of the remaining
challenges in Urban building energy modeling (UBEM). Therefore, tackling the challenges of
using activity-based approach to couple and co-simulate urban system is still a gap which has
not yet been filled by the existing research.

Sola et al. (2018) classify the existing urban-scale energy systems simulation tools according to
their capabilities and the analysis area(s) they cover in the urban energy system with the goal of
providing available resources for implementing new co-simulation approaches in Urban-scale
energy modeling (USEM) and reducing future modeling efforts.

Although these reviews point out to the potential of activity-based models as an integrating
framework to co-simulate interdependent urban systems (transport and building energy demand),
no one has done it so far. Therefore, in order to fill this gap, we have conducted a review on joint
mobility and building energy modeling with a focus on activity-based approach as an integrating





            

Figure 1: high-level scheme of the framework

framework. Using these ideas from transport, energy demand, and activity participation, we
come up with a framework that lastly generates buildings energy demand, transportation energy
and transportation flows within the same activity-based model. Figure 1 illustrates the high-level
scheme of the framework. This framework presents the building blocks together with the
relationships we need to review in the literature to overcome the challenge of interconnecting
urban system models using activity-based approach as an integrating tool.

2.2 Existing energy demand models

In this section, a review on the existing energy demand models is presented. The energy demand
models are studied under two groups: building energy demand models (section 2.2.1) and
transportation energy demand models ( section 2.2.2), which are discussed in the remainder of
this section.

2.2.1 Building energy demand models

Buildings are one of the substantial consumers of energy (Swan and Ugursal, 2009); about 40%
of global energy use (EIA, 2020). By the term buildings, we refer to both residential and non-
residential buildings. In this sub-section, we first review literature on domestic energy demand





            

and then go over some available research on non-residential buildings energy modeling.

Buildings’ energy use can be grouped as "active" energy use and "passive" energy use. People
use certain appliances in order to do activities. Therefore, appliance energy use comes from
individuals’ daily activities such as using washing machine and dryer for doing the laundries.
These building energy consumptions are categorized under the "active" energy consumption
group. Passive energy consumption can be classified into two categories: the first category
involves building energy use that do not directly depend on individuals’ activities but rather
depends on occupancy such as space heating, space cooling, ventilation, water heating, and
lighting which control the indoor environment, and the second category are for the electrical
appliances that operate all day without occupant intervention such as refrigerators and other
cold appliances.

There are two general techniques for modeling residential energy demand namely "top-down"
and "bottom-up" models (Swan and Ugursal, 2009). Top-down models treat the residential sector
as an energy sink and use historic aggregate total residential sector energy consumption together
with some other high-level variables in order to compute the energy consumption of the housing
stock as a function of its characteristics (Sola et al., 2018). The input data for developing these
models include aggregate historic energy values, characteristics of the dwellings, occupants and
their behavior, appliances’ characteristics, general climate, and macro-economic indicators such
as Gross domestic product (GDP), unemployment, and inflation (Muratori et al., 2013a). Time
series stochastic approaches such as auto regressive moving average techniques can also be used
to forecast domestic energy demand (Arghira et al., 2012). Although the top-down approach
is simpler than the bottom-up approach and requires only widely available aggregate historic
energy data, since it is mainly based on historical data, its predictions into the future is less
appropriate and it cannot model discontinuous advances in technologies (Wang et al., 2018).
Moreover, it lacks details regarding the energy consumption of individuals (Sola et al., 2018).

On the other hand, in the bottom-up models, the model calculates the energy consumption
of individuals or groups of households and then extrapolate these results to a wider urban
area by identifying the contribution of each end-use to the aggregate residential sector energy
demand (Muratori et al., 2013a). This aggregation is accomplished using a weight for each
simulated house or group of houses based on its representation of the sector (Swan and Ugursal,
2009). This approach has two advantages: first, it can determine the total energy consumption
of the residential sector without relying on historical data and second, its high level of detail
which allows it to model the effects of technological improvements, policy decisions, and
energy optimization techniques. The required input data for developing these models include
explicit energy consumption of end-uses, building characteristics (e.g., size and layout, building





            

materials, and characteristics of appliances), general climate, occupants’ behavior and appliance
usage, lighting use, and the characteristics of HVAC systems (Muratori et al., 2013a). Although
the bottom-up approach has the aforementioned advantages, it has a great model complexity and
requires more detailed input data compared to the top-down models.

The bottom-up approach can be sub-categorized into Statistical methods (SM) and Engineering
methods (EM). SM rely on types of regression analysis to attribute the dwelling energy consump-
tion to end-uses and climate. Once the relationships between end-uses and energy consumption
have been established, the model can be used to estimate the energy consumption of dwellings
representative of the residential stock. While EM explicitly account for the energy consumption
of end-uses based on the building physics, power ratings, and usage of equipment (Swan and
Ugursal, 2009). Figure 2 presents a summary of techniques for building energy demand model-
ing. Under the bottom-up engineering technique, there are mainly four approaches to quantify
appliance energy consumption in buildings (Yamaguchi and Shimoda, 2017, Yamaguchi et al.,

2020); (1) building envelope models (2) occupancy-based, (3) activity-based, and (4) time-based
approach. In the first approach, the behavior of energy consumption is simulated directly using
real sub-metering data to derive diversity profiles of occupants energy use and then used to
deduce buildings’ energy consumption (Seryak and Kissock, 2003, Yohanis et al., 2008). This
approach ignores occupancy patterns, activities, and behavior.

In the second approach, the occupants’ presence is modeled using Time use data (TUD) and then
converted into the operation of appliances. Therefore, occupant behavior is a critically important
component to replicate the dynamic behavior and intensity of energy demand (Yamaguchi and
Shimoda, 2017). Richardson et al. (2008) proposed an occupancy-based model for simulating
domestic building energy demand. Their model has been expanded and frequently applied in
buildings energy demand modeling (McKenna et al., 2015, Evins et al., 2016). They established
a discrete-time first-order Markov chain model dealing with the number of active occupants
(being at home and awake) as transition states and developing transition probabilities, Ni, j/Ni

(Ni, j is the number of samples whose state change from i to j, and Ni is the number of samples at
transition state i), at each time step based on TUD categorised by household size. Therefore, first,
a time series of changes in the active occupancy schedule is determined which is then converted
into appliance switch-on probability. Appliance switch-on probabilities can be used for modeling
the first category of building energy use: active energy consumption. Their model is developed
using Excel Virtual Basic for Applications (VBA). Richardson et al. (2010) quantified the
switch-on probability using appliance TUD and annual total electricity consumption, defining
switch-on probability as the product of activity probability and a calibration scalar, adjusting the
total number of switch-on events per year to avoid appliance use overestimation. Richardson
et al. (2009) further used their occupancy model as an input to simulate lighting demand. The





            

Figure 2: Building energy demand modeling

model accounts for shared light use, weekday and weekend pattern, and outdoor irradiance; so,
it takes into account seasons. Richardsons’ model is known as the CREST model. This approach
can be applied to the first category of second group of building energy use: passive energy use
that depends on occupancy.

However, Richardson’s model has the following opportunities to be improved: (1) it does not
account for the heterogeneity between households, (2) variations in the number of switch-
on events per day cannot be replicated, and (3) it is only for electrical and lighting energy
demand. These limitations have been addressed by other researchers. Baetens and Saelens
(2016) improved the model representing heterogeneity between households by categorising





            

TUD based on occupancy pattern as well as household size. Flett and Kelly (2017) determine the
number of switch-on events in a simulated day based on empirical data and then allocate them
to the timeline based on occupancy. Therefore, they have addressed the second shortcoming.
McKenna and Thomson (2016) extended the CREST model to integrate thermal demand to
electric demand such that they are correlated.

Other authors such as Tanimoto et al. (2008), Widén et al. (2009), Muratori et al. (2013b), and
Subbiah (2013) have adopted occupancy-based approach as well. However, there are some
drawbacks in the existing models using this approach:

• First, even though they correlate occupancy schedules to appliance use-patterns and
consumption, neither of the existing approaches establish the link between occupants’
daily living needs and their related energy consumption.

• Second, they do not generate energy demand profiles based on the activities performed in
each household and by each household member. Therefore, they do not have the capability
to depict use-situations such as sharing phenomena of appliance and activities.

• Third, they are not exhaustive in representing the household’s socio-demographic attributes
and the main variable considered in representing households is the number of active
occupants.

• Fourth, the appliance use is modeled independently from other appliances resulting in
unrealistic energy peaks and appliance use sequence.

Consequently, these models cannot assess the energy consumption variability between different
population segments.

To overcome these limitations and enhance the flexibility in modeling households, activity-based
approach explicitly simulate the activities of household members which are then converted to
appliance switch-on occurrences. Widén and Wäckelgård (2010), Widén et al. (2012) proposed
a discrete-time Markov chain model with a number of activities are defined as transition states,
which will be converted to appliance use. However, their model can not replicate activities’
durations coherently since the durations are randomly determined as a result behavior transitions.
Wilke et al. (2013) proposed a discrete-event model in which individuals’ activities are simulated
by selecting an activity to start at the first vacant slot and selecting its duration. They use
multinomial logit models for the activities starting probability and predict their duration by
means of survival analysis. Tanimoto et al. (2008) proposed a discrete-event model in which





            

activities’ duration are determined based on a time-dependent probability equal to the ratio of
TUD on each activity over the total number of TUD at each time of day. Moreover, Zaraket
(2014) proposed an activity-based model which aims at forecasting occupant-related energy
consumption in residential buildings while accounting for variability in consumption patterns
due to heterogeneity in occupants’ socio-economic and demographic profiles. This model is
known as SABEC which stands for Stochastic Activity-Based Energy Consumption. Their
model can be applied to active energy consumption in residential buildings.

The fourth approach for modeling energy consumption in buildings is the time-based approach.
In the time-based approach neither the occupancy nor the activity is simulated. Instead, time is
an indicator of activities and appliance switch-on probabilities. Authors such as Gruber et al.

(2014) and Paatero and Lund (2006) have adopted this approach.

As such in residential buildings, there is a close relationship between occupancy patterns and
energy consumption in economic sectors as well. Palacios-García et al. (2018) propose a
stochastic model for the generation of daily occupancy patterns using a Markov Chain approach
in nine economic sectors with a high temporal resolution. They distinguish between the type
of day and type of working hours. Building occupancy data rather than activity data is the
key input to simulating non-residential buildings’ energy demand. This occupancy model is a
stepping-stone for the estimation of energy demand in the commercial sector and the assessment
of various energy policies.

In summary, considering all the aforementioned approaches in building energy demand mod-
eling, activity-based approach provides a more accurate estimate of energy demand and has
attractive qualities such as the ability to capture complex use situations (e.g., multi-tasking,
interaction/sharing between the members of a household). Also, it enables predicting resource
demand at high spatial and temporal resolutions to the extent of being able to produce building-
by-building resource needs. It has the ability to predict resource demands along different
dimensions while at the same time retaining the dependencies and links between these resource
demands. Moreover, this approach enables us to observe the energy substitution effects between
the use of different equipments and participation in different activities (Ghauche, 2010). It also
has the ability to capture the effect of temporal and cultural changes on human behavior which
affects energy demand (Keirstead et al., 2012, Wilke, 2013). A user-focused activity-based
model which correlates occupantsâ profiles such as socio-demographics to activities, appliance
ownership, and use trends is a suitable approach for an accurate and realistic estimation of
building energy demand simulation and provides an effective test-bed for examining various
scenarios.





            

2.2.2 Transportation energy demand models

Transportation modeling has been widely developed in the last decades. This implies that
well-established transportation modeling tools are available. Although their focus is not on the
modeling of transportation energy consumption, transportation energy demand can be quantified
based on them. The models for simulating transportation energy demand can be classified in two
groups (Sola et al., 2018): (1) vehicle-based models, in which energy consumption is calculated
based on the outputs of a microsimulation transport model (such as multi-agent simulation and
particle system simulation), and (2) macrosimulation models based on average speed philosophy
and aggregate energy consumption data. Figure 3 presents this classification. In general terms,
macroscopic models have low spatial and temporal resolution, while microsimulation modeling
tools provide more accurate estimates of fuel consumption for a limited network application
context. In any of the cases, this calculation is commonly done in an exogenous manner (as a
post-process with the use of fuel consumption factors/ratios). To date, transportation modeling
tools have been scarcely integrated into wider urban-scale energy models (Sola et al., 2018). The
choice between both approaches will be based on the required level of details, data availability,
computational time, and model accuracy (Sola et al., 2020). In the microsimulation models, in
order to calculate the transportation energy demand, we should first model travel demand. Travel
demand models can be either categorised as (1) trip-based or (2) activity-based (Yamaguchi
et al., 2020). Trip-based modeling has a top-down approach which uses the overall person
trips in the studied area, disaggregated into trips with different characteristics such as origins,
destinations, travel modes, and routes consisting of four sequential processes: trip generation,
trip distribution modal split, and trip assignment.

While activity-based modeling has a bottom-up approach in which travel demand is modeled
as an aggregation of trips made by individuals. Activity in transportation demand modeling
is modeled as a sequence of in-home and out-of-home activities (Sivakumar, 2013). In this
approach, the decision to travel is considered as a choice among alternatives known as discrete
choice set with a set of exhaustive and mutually exclusive alternatives. Discrete choice models
such as multinomial logit, nested logit, and mixed logit models are used to model the likelihood
of choosing an alternative based on certain input variables (Ben-Akiva and Lerman, 1985). The
influence of various factors such as socio-demographics and household type, land-use, and
travel conditions can be included in the predicted likelihoods. Hazard-based models can be used
for modeling the time to the next event. The models provided by Mannering et al. (1994) for
modeling travelers’ home-stay duration, and the duration of shopping activity while returning
from work to home are examples of this approach.

Activity-based approach has been developed and extensively used in transportation modeling





            

Figure 3: Passenger transportation energy demand modeling

over the past 50 years (Hagerstrand, 1970, Chapin, 1974, Roorda et al., 2008, Horni et al., 2016,

Scherr et al., 2020). Also, activity-based models have been used in integrated land use-transport
models (Waddell, 2002, Miller et al., 2004), which can predict travel and activity patterns of
all agents in the study area at high levels of spatial and temporal resolution, in a behaviorally
realistic and policy sensitive manner accounting for the constraints individuals encounter during
travel activities. Activity-based approach has been also used in simulating trip-chains (Pitombo
et al., 2009), which if known, will be useful for modeling more accurate transport energy
consumption. Moreover, joint travels with other household members is another significant factor
in modeling travel demand which has been studied in the literature (Srinivasan and Athuru, 2005,

Srinivasan and Bhat, 2005a, Kato and Matsumoto, 2009).

The advantages of the activity-based approach are as followed (Yamaguchi et al., 2020):

• It captures the link between activities and the need to travel,





            

• It captures relationships between various activities and dependencies between events,

• High temporal resolution,

• Complex behaviors such as joint travels can be considered,

• Decisions are analysed at the level of the household as opposed to seemingly independent
individuals, and

• The effect of factors such as socio-demographics, built-environment, and travel conditions
on individuals’ travel decisions can be included.

Therefore, activity-based models are more behaviorally realistic than trip-based models. Activity
scheduling is central to these models. However, whenever this approach has been used, either
econometric models (random utility maximization) or empirical rule-based methods (using
decision rules and heuristics) have been used to determine individuals’ choice of activity
schedules, instead of theory-driven behavioral models. These methods rather do not consider
behavior explicitly but implicit to the full process (econometric models) (Timmermans, 2003)
or cannot be generalized to situations not observed in the data (rule-based models) (Joh et al.,

2004).

2.3 Activity-based models and scheduling

Activity scheduling is a key input to the activity-based models. Individualsâ activities have a
strong impact on the energy consumption of a building and are a substantial source of uncertainty
in building energy demand modeling. Daily scheduling of individuals also influences their
travel behavior. This strongly influences the mobility energy demand. As such, individualsâ
behavior, including both in-house and out-of-house activity participation, is an integral input to
energy demand simulation models in urban areas and is a key factor in understanding energy
consumption (Kashif et al., 2013). Therefore, we divide this section into two sub-sections;
we first discuss in-house activity schedule and occupantsâ behavior in Section 2.3.1. We then
present the literature on out-of-house activity scheduling and travel behavior in Section 2.3.2.





            

2.3.1 In-house activity scheduling and occupantsâ behavior

In addition to the building physics, building energy consumption is highly dependent on the
behavior of its occupants (Masoso and Grobler, 2010, Palacios-García et al., 2018). Existing
literature shows that energy consumption can vary dramatically from one household to another
even in similar buildings, which reflects the heterogeneity in occupants’ needs and preferences
(Liu et al., 2019). Also, occupants’ activity patterns vary throughout the day and even days of
the week (weekdays and weekends). Therefore, occupants’ activity scheduling is a key input to
building energy demand modeling either for individual building or the whole building sector.
It is noteworthy that individuals’ activity data might not be easily accessible due to personal
privacy issues and regulations (Liu et al., 2019). Therefore, simulating occupants’ activity
schedules is a viable way to generate user activities. We present some of the existing in-home
activity scheduling models available in the literature.

Wilke et al. (2013) present a stochastic bottom-up modeling approach using a first-order in-
homogeneous Markov process to predict the activities of occupants in a residential building based
on time-dependent activity start probabilities and their corresponding duration distributions.
A general model calibration based on individuals’ behavioral homogeneity assumption is
followed by successive refinements accounting for variations in the behaviors of sub-populations.
It is notable that there is a strong correlation between households’ attributes and domestic
appliances ownership levels, energy rating, and use pattern. Therefore, socio-economic and
demographic attributes that influence energy consumption trends should be taken into account
when considering occupants’ behavior for modeling occupant-related energy consumption.
However, the authors have just accounted for a few socio-economic characteristics recorded in
the TUS database influencing occupants’ activities. Proposing sub-population dependent activity
transition probabilities in addition to modeling concurrent and correlated activities between
household members are among other opportunities for enhancing this model.

Yamaguchi and Shimoda (2017) propose a stochastic model to predict occupants’ activities at
home for community-/urban-scale energy demand modeling which is designed to overcome the
two weaknesses of prevalent models; the consideration of interactions among household mem-
bers and the enhancement of specificity and consistency in the generated occupant behavior.

Later, Liu et al. (2019) propose a stochastic model and a data generator which generates the
activity sequences based on a Markov chain technique for residential households of one and
two members. They suggest expanding the model to simulate a household of more than two
members as a future research opportunity. Although their proposed model can generate an
activity sequence of households of one and two members with high precision, there still is





            

a gap in knowledge for generating activity sequence based on theoretical behavioral models
rather than the rule-based Markov chain technique which will add a behavioral foundation to
the simulated activity patterns. The rule-based models use hard-coded decision rules to derive
feasible solutions. Although this makes them easier to implement, it limits their generalisation
(Pougala et al., 2021).

In order to address the issues associated with Markov chain technique and capture the underlying
behavior patterns that shape activity schedules, Ramírez-Mendiola et al. (2019) propose a new
approach in the form of a stochastic process with memory of variable length for modeling
residential users activity patterns. They implement a new methodology for the analysis of
empirical TUD with a view to identifying the behavioral patterns within them.

In summary, the studies that incorporate individuals activity scheduling into energy models,
mainly use a rule-based Markov chain approach, which cannot fully capture the variability in
activity patterns and their underlying behavioral patterns. Moreover, the current approaches to
simulate the activity patterns focus on either time-use in home or out-of-home activities and not
both.

2.3.2 Out-of-house activity scheduling and travel behavior

Individuals’ daily travels are organized based on activities, which are temporally and spatially
distributed. When treating the demand for travel as being driven by the need or desire to
conduct activities (Castiglione et al., 2014), activity-based travel demand modeling captures
the relationship between activity and travel behavior (Fu and Juan, 2017). The travel behavior
of individuals has a direct impact on their transportation demand. Travel behavior provides
information such as number of daily travels, distance traveled, and travel mode. The travel
behavior of individuals is affected by their socio-demographics, which also affects their activity
participation. According to Lu and Pas (1999), we can explain travel behavior better if activity
participation (activity scheduling) is included endogenously in the travel behavior model rather
than taking into account its effect through socio-demographics. To this aim, Lu and Pas (1999)
propose a structural equation model relating socio-demographics, activity participation, and
travel behavior in which activity participation and travel behavior are endogenous to the model.
Variables normally included in the existing travel behavior models can be broadly categorized
into socio-demographics, household characteristics, travel conditions, and residence location
and land-use accessibility (Pas, 1984).

In this sub-section, we point out to some of the existing activity-based travel behavior models





            

in the literature together with their contributions and limitations. Bowman and Ben-Akiva
(2001) propose an activity-based discrete choice model system for integrated activity and travel
schedule. One of the limitations of their model is that it lacks in-home activities. This limits the
ability of the model to fully capture the activity basis of travel demand. In the paper by Fu and
Juan (2017), the authors present a comprehensive framework using a structural equation model
(SEM) that accommodates the complex interactions among activity and travel choice dimensions.
Their approach explicitly reveals the behavioral pattern underlying the activity-travel decisions.
However, they have included only private cars and buses as transportation alternatives due to the
computational complexity in SEM with a higher number of alternatives. More advanced models
should be used to be able to incorporate more discrete alternatives. Moreover, a combination of
personal and household characteristics has been developed and used in their model rather than
incorporating them separately. This limits the information regarding the direct effect of specific
socio-demographics and household characteristics on behavioral decisions.

Whilst these models provide detailed disaggregate simulations of people’s travel behavior outside
the home, there is little to no understanding of in-home activities from these models. This has
two primary limitations: firstly, it is difficult to capture the trade-offs between in-home and
out-of-home activities, which is relevant in the post-Covid era such as the increase in remote
working from home. Secondly, they are of limited value for studying domestic energy demand,
aside from for determining building occupancy.

2.4 Integration of components

Integrated transport and energy modeling can be established using consistent activities people
are engaged inside and outside their homes. Most existing activity-based models have not been
applied to integrated energy analysis between buildings and transportation as these two domains
have been developed independently.

Among the current literature, we have identified three key papers trying to integrate mobility
and home energy profiles in their energy simulation models, which are all for the very recent
years. Kandler (2017) presents a modeling approach for the synthesis of electrical, thermal, and
mobility-related energy profiles of households based on a German time-use analysis; MOHEMA;
using a probability distribution instead of rule-based Markov chains for generating activity
profiles. However, the mobility model used in their research is highly simplified. To address the
limitations of this model, Muller et al. (2020) develop an integrated and consistent model with a
bottom-up approach with an activity model based on the Markov-chain process for simulating
the electrical and thermal load profiles of private households and their mobility behavior focused





            

on EVs. Yamaguchi et al. (2020) demonstrate an energy management system modeling approach
integrating house and electric vehicles using consistent data between in-house and out-of-house
activities taking a Japanese dataset as a case study.

We have identified two limitations across these works. First, from a methodological point of view,
all of these works use empirical rule-based or randomized processes to determine individual
choices and activity scheduling. Therefore, it cannot easily be generalized to situations not
observed in the data. Second, the primary investigation of these papers is evaluating the effect
of electrification of the mobility on the electricity load profiles of households and thus, they
contain only the modal split to the journeys made by car. So, to the best of our knowledge, there
is no integrated framework to predict the daily activity schedule of individuals and their mode
choice behavior based on behavioral variations.

2.5 Summary

We have observed in the literature that while the motivation and fundamentals for activity-based
transportation and energy demand models are closely linked, these two domains have not yet
been modeled jointly. Therefore, the ultimate goal of this research is a joint simulation of
transportation and domestic energy demand. To make this ultimate goal achievable, we have
broke down the research into different work packages.

First, a general framework is needed, which provides a holistic perspective of the elements that
should be considered in order to integrate transport and energy demand modeling. Therefore,
in this manuscript, we first propose a general framework on integrated transport and energy
simulation. This framework gives an overview on the components needed to integrate transport
and energy as well as the relations between the components. Section 3 provides the details on
this framework. The proposed framework is a guide throughout our research. We will then focus
on a specific component in the next steps of the research.

3 Proposed Framework

In this section, we present our proposed framework for integrating transport and energy demand
at an urban scale together with its details. Energy demand is derived from activity participation
and travel between activities. Therefore, right at the centre of this framework is the activity

scheduling module and all the energy demand (including both in-home and out-of home energy





            

demand) is derived from activities and traveling between the activities which are distributed in
time and space. Individuals’ behavior affect their activity scheduling. Therefore, accounting for
the heterogeneity in individuals’ behavior give flexibility and viability to the energy demand
profiles.

Figure 4 illustrates the outline of the proposed framework. Then, the detailed presentation of
each module in the framework is provided in Figures 5 to 8. In Figure 4, the four modules present
different elements of the proposed framework for urban system energy demand; among which
the white modules illustrate different energy consumer layers and the green module represents
the connecting element between these energy consumer layers: the activity scheduling module.
In this section, we will introduce each module within the framework in detail. In this diagram
we have first summarized different methodologies within the chosen approach in each module
together with the one selected for our framework. In the proposed framework presented in figure
4, the orange arrows represent intra-level interaction which presents information flow between
different modules in the framework. The purple arrows present the inter-level interactions
between different parts within the same module. The interactions can be in one-way or both-
ways. One-way interaction means that the results of one component affects the other component.
This also can be considered as one component feeding the other. A two-way interaction between
the components show that they both affect each other/ interact with each other. The black arrows
show the information flow between the modules and the USEM platform.

The proposed framework has two dimensions. The first dimension presents the modeling layout.
In this dimension, as in every modeling framework, the first step is gathering data. Then, these
data will be used as input to the models. Lastly, the outputs of the models can be analyzed and
used for testing and comparing various policies, strategies, and decision-making. The second
dimension of the framework introduces different energy consumer sectors in an urban system,
which can be categorised into domestic buildings energy demand, non-domestic buildings energy

demand, and transportation energy demand; together with a connecting module between energy
layers; activity scheduling. Therefore, different elements in the second dimension are connected
via a common module called activity scheduling. Activity scheduling is at the core of the
proposed framework, giving input data to all other modules. The outputs of the domestic,
non-domestic, and transportation energy demand modules can be then used to estimate the urban

system energy demand.

First, we go through the connecting module within the energy demand layers: activity schedul-

ing. Figure 5 illustrates the activity scheduling module in details. In our framework, activity

scheduling is at the center giving input to the energy consumer layer modules. This is based on
the idea that energy-use comes from actions which are driven by the desire or need to pursue





            

activities that are temporally and spatially distributed. Activity scheduling includes both in-

home and out-of-home activities. Out-of-home schedule includes time passed traveling between
consecutive activities which are not at the same location, as well as the time participating in
out-of-home activities. In-house and out-of-house schedules are interconnected as spending
more time on one can restrict the time budget for the other one. In addition, out-of-home activity
schedule has a direct influence on the travel behavior of individuals as the out-of-house activities
directly trigger travelling.

There are significant interactions between in-home and out-of-home activities (Lu and Pas, 1999,

Srinivasan and Bhat, 2005b) and thus, it is important to capture this trade-off. Daily activities
can generally be categorized into three groups: subsistence (work, school, and business),
maintenance (shopping, personal service, professional service, and medical care), and recreation
(entertainment, religion/civil services, and visiting). As all types of in-home activity duration
increase, out-of-home subsistence duration decreases (Lu and Pas, 1999). Interestingly, people
who spend more time on in-home subsistence spend less time on out-of-home subsistence,
however, individuals who spend more time on out-of-home subsistence also spend more time on
in-home subsistence. This can be explained as the workaholic people tend to bring more work
home. Furthermore, in-home maintenance is positively related to out-of-home maintenance but,
individuals who spend more time on out-home maintenance, are likely to spend less time on
in-home maintenance. Also, there is a strong interaction between out-of-home maintenance
and recreation with out-of-home subsistence; the more time spent on out-of-home subsistence,
the less time is spent on these two types of activities. This can be interpreted as considering
the time budget, the workaholic people tend to spend most of their time on work and have
less time to spend other activities. There also is a complex interaction between individuals’
activity and travel choice dimensions (Fu and Juan, 2017). For example, the mode choice for
recreation activities are conditional on subsistence activities duration. Therefore, considering the
interaction between in-home and out-of-home activities and the complexity in the activity-travel
behavior patterns, they should be addressed within the same scheduling model. This scheduling
model will then contribute to the transport and energy models. As such, this activity scheduling
paradigm addresses the limitation in the existing research concerning the interaction between in-
and out-of-home activities and their corresponding transport and energy demand.

Activity scheduling can be utilized for two applications: energy modeling approaches and travel

behavior modeling approaches. In the former application (energy demand modeling approaches),
TUS data is used as an input to the models. On the other hand, in the travel behavior modeling

application, historic trip diary data is used as inputs to activity-based transport models. Finally,
daily scheduling behavior of individuals including both in-home and out-of-home scheduling, as
well as their travel behavior are estimated as the outputs of this module.





            

The scheduling module presented in this framework, captures the choice of a valid schedule for a
day made by an individual as a member of a household. It is noteworthy to mention that although
focusing only on one-day scheduling will ignore day-to-day correlations (Arentze et al., 2011),
the implementation and validation of single-day models are already complex. Additionally,
the required information to implement multi-day schedule is usually not readily available and
requires additional data collection and fusion of multiple data sources (Aschauer et al., 2019).

Next, we go through the domestic building energy modeling module presented in Figure 6.
In order to translate the activities to energy demand in the buildings, we need to model how
the activities are translated to energy usage. Domestic energy use can be grouped into active

energy consumption (i.e., electricity consumption of appliances which is directly connected to
occupantsâ activities) and passive energy consumption (i.e., buildingâs baseline energy con-
sumption which does not directly depend on occupantsâ activities). Household and individualsâ

characteristics, appliance ownership, and appliance energy rating influence the active energy

consumption. While the external environment, building characteristics, and domestic HVAC

system and energy rating, and lighting system are among the influencing factors of passive

energy consumption. We should relate the usage of electrical appliances to the activities in order
to determine the active energy consumption. This can be done using the existing approaches
to relate the use of electrical appliance to the activities performed such as the one proposed by
Wilke (2013). Finally, the output of the domestic building energy modeling module (total energy
demand of domestic buildings in the simulated area) feeds into the USEM platform.

Next, we go through the microsimulation transportation energy demand modeling module
presented in Figure 7. Among the existing approaches for transport modeling, we have chosen
microsimulation in the proposed framework as microsimulation is at a disaggregated level and
provides detailed energy demand profiles of vehicles. Therefore, the transportation energy
demand model can be coupled with building energy demand models by utilizing the activity

scheduling module as a linking element between these two energy consumption domains.
Within the microsimulation transportation energy demand modeling, we see two predominant
approaches: top-down and bottom-up, from which the latter is chosen for this framework.
Activity-based models follow a bottom-up approach in which travel demand is modeled as an
aggregation of trips made by the individuals. The input to these models is the travel behavior of
individuals which is generated by the activity scheduling module. This input data is then fed
into an agent-based transport simulator such as MATSIM (Horni et al., 2016). The output of
this module is the total transportation energy demand in the simulated area, which feeds into the
USEM platform.

As presented in Figure 8, another module in this framework is the non-domestic building energy





            

demand. In this module, the total energy demand of non-domestic buildings in the simulated
area is estimated using out-of-house activity schedule as an input into the models of econometric
analysis and end-use methods. Then, the output of this module feeds into the USEM platform.

The proposed framework presents seven key advantages compared to the already existing ones:
(1) it integrates the human behavior to the models by including activity scheduling in the core so,
it can be generalized to complex scheduling and mobility situations, (2) it captures the trade-offs
between in-home and out-of-home activities and thus their corresponding energy demand, (3) it
provides a detailed activity scheduling as an input to building energy demand simulators rather
than using building occupancy profiles which will address the limitations of occupancy-based
models in which behavior of individuals are lost, (4) it includes transportation energy demand
which is most of the time disregarded in urban energy models (except the LUT models which
also do not normally include engineering arguments and calculations) (Sola et al., 2020), (5)
it is based on the activity-based modeling paradigm which is a significant new opportunity
for the development of bottom-up urban energy demand models (Sola et al., 2020), (6) it is
based on a bottom-up approach and thus, is suitable for future scenario testings; and (7) it
uses co-simulation approach (instead of integrated approach) which reduces implementation
and modeling effort and increases reliability as a result of using established packages for each
module.





            

Figure 4: Urban system energy demand framework





            

Figure 5: Activity participation framework





            

Figure 6: Domestic building energy modeling framework





            

Figure 7: Non-domestic building energy demand modeling framework





            

Figure 8: Microsimulation transportation energy demand modeling framework





            

4 Conclusion and Future Work

In this paper, we have reviewed the literature on transport and energy modeling. Through the
review of the available literature, we have identified a lack of unified approach to simultaneously
model transport and energy demand. In spite of a number of different methodologies to simulate
each domain separately, there have not been a joint view on these two domains. We have
identified an approach to co-simulate these two domains in order to capture their interdependence.
Our proposed solution is using activity-based approach. We have seen that although activity-
based models have been extensively used in transportation modeling, there have been limited
attempts to model energy demand using this approach. This approach will enable us to assess the
trade-off between in-home and out-of-home activities and their subsequent energy demand.

Then we have presented a holistic framework from an activity-based point-of-view for transport
and energy demand modeling. Simultaneously with the literature review, the architecture and
components of the framework have been set accordingly. We have introduced a new modeling
framework for energy demand modeling, where the activity is the central unit of analysis. This
framework bridges the traditional energy demand domains (domestic and non-domestic building)
and transportation by incorporating a new element: activity scheduling. The contribution of
this paper is to provide a holistic methodological map to joint transport and energy demand
modeling, understand their inherent link, identify the existing approaches for each element,
introduce a new modeling paradigm for integrating them, and identify the gaps in knowledge
which should be addressed to get the framework running.

From the framework we can see that in order to fill the gap in joint modeling of transport and
energy demand, first, an activity scheduling model which jointly model time-use in the home
as well as the activities outside the home is needed. The sequential structure of econometric
scheduling models does not represent the true nature of the scheduling process and makes it
difficult to capture complex trade-offs and household interactions. Moreover, the hard-coded
nature of rule-based scheduling models make them unable to generalise to situations which are
significantly different to input data. Furthermore, the existing scheduling models focus either on
in-home or out-of-home activities and not both.

Driven by the presented framework and gaps, we have identified the first research question
that we should tackle next. The next step in this research is to formulate and implement a
daily schedule model that covers both time-use whilst at home and activities outside the home.
To achieve this, we plan to build on a current ongoing research at TRANSP-OR, which has
developed an optimization-based scheduling model of time-use for out-of-home (Pougala et al.,

2020a,b), by incorporating time-use for activities in the home (e.g., sleeping, cooking, showering,





            

etc) as well. This approach treats individuals as maximising their total utility from completed
activities in order to schedule their day, in which the first results show that this methodology
is able to generate stable and reliable activity schedules (Pougala et al., 2020a,b). There are a
number of phenomena that should be addressed in this scheduling model such as the interactions
between the members of a household, behavioral heterogeneity, and different behavioral patterns
throughout times of the day and even days of the week. The model will be calibrated using
detailed TUS data.

In the next steps, we will look for applying the model to the already existing energy simulation
models and assess the effect of various policies, technological changes, and behavioral changes
on energy demand.

It is noteworthy that this research intends to provide a generic framework for integrated transport
and energy demand modeling. Therefore, the non-domestic building block has also been
included in the framework to make it generic. However, in this research, transportation and
in-house energy demand modeling have been chosen as the first sub-models to integrate. An in-
depth investigation of integrating other sub-models of USEM such as industrial and commercial
buildings energy demand to the proposed framework, can be done in a future research.
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