
A Resilience-based Perimeter Control Strategy for
Urban Roadway Systems with Internet of Vehicles

Chunli Zhu

Jianping Wu

Anastasios Kouvelas

Conference paper STRC 2020

STRC  20th Swiss Transport Research Conference
Monte Verità / Ascona, May 13 – 15, 2020



           

A Resilience-based Perimeter Control Strategy for Urban Road-
way Systems with Internet of Vehicles

Chunli Zhu
IVT
ETH Zürich
CH-8093 Zurich
chuzhu@ethz.ch

Jianping Wu
Civil Engineering
Tsinghua University

Anastasios Kouvelas
IVT
ETH Zurich

Abstract

Besides the daily traffic congestion, external disruptions of the urban roadway systems,
such as heavy rainfall, is one of the most important causes that can lead local congestion
to large-scale cascading failure. This paper proposes a resilience-oriented perimeter control
strategy under the framework of the Internet of Vehicles (IoV). A PI feedback controller
is proposed that considers a time-dependent resilience index and tested in a two-region
urban city with normal congestion and rainfall disruption scenarios using micro-simulation.
The parameter of maximum inflow ratio (umax in this paper) is tested. Results show that
in this case study, when umax is set to 0.52, 0.61 and 0.69, respectively, the system can
treat daily congestion well, while in the case of severe rainfall disruption umax=0.52 deals
with the heavy rainfall well. umax=0.61 demonstrates good mobility performance in both
daily congestion and rainfall disruptions. The capacity of the number of flowing vehicles
per second in a network is a crucial metric for the choice of umax in this resilience-based
perimeter controller. This study is a promising first step towards the development of
urban resilience management strategies.

Keywords
Resilience; perimeter control; internet of vehicles.





           

1 Introduction

Global and rapid urbanization around the world aggravated the unbalance between supply
and demand for our urban mobility. This unbalance becomes even more severe when
dealing with external disruptions, such as heavy rainfall, which propagate congestion from
local events to large-scale cascading failure. In recent years, “urban resilience” is a topic
receiving attention, which aims at improving the city’s absorption, adaption and recovery
ability when dealing with emergencies. Resilience is an overall umbrella for the full life-cycle
of system performance (Gritzalis et al. (2019)). Most of the studies on the urban roadway
systems resilience are from the perspectives of assessment (Henry and Ramirez-Marquez
(2012); Nogal and Honfi (2019)). A review on definition and measurement of system
resilience can be found in (Hosseini et al. (2016)). The enhancement of urban resilience can
be conducted by improving redundancy, structure reinforcement, and management (Zhang
et al. (2019)), which are related to consideration of network topology, infrastructure,
and operations, respectively. Nevertheless, the management of urban roadway systems
resilience is more complex among the critical infrastructures of a city, which is caused
by uncertainty due to the dynamic interactions among individuals, vehicles, the roadway
system, and information.

Meanwhile, it is worth noting that Internet of Vehicles (IoV), is an indispensable compo-
nent of future intelligent transport systems, similarly to Vehicle-to-Infrastructure (V2I),
Infrastructure-to-Vehicle (I2V), and other radio frequency identification (RFID) tech-
nologies (Arena and Pau (2019)). Compared to traditional vehicles, each vehicle in
IoV environment can be regarded as a data source (Joy et al. (2018)). That emerging
technologies provide a new direction on state awareness and intelligent control, while
the vehicles can also change their routes dynamically by the real-time updated travel
times. Currently, studies on IoV cover a variety of aspects, such as vehicular cloud
(Gerla et al. (2014)), cognitive intelligence (congestion awareness) (Paul et al. (2015)),
and congestion avoidance (rerouting) (Yaqoob et al. (2019)). However, the studied control
problems are of small scale, either from multiple intersections(Chen and Chang (2016)) or
heterogeneous crowded vehicle levels (Wang et al. (2018)); few investigations have been
done on large-scale traffic control utilizing the IoV environment.

Perimeter control (also known as gating) is a practical and frequently employed tool
against over-saturation of significant or sensitive links or urban network areas (Keyvan-
Ekbatani et al. (2012)), which regulates the transfer flows across boundaries to prevent
congestion or stabilize flow in the protected network (PN)(Geroliminis et al. (2012)).
Regarding its effectiveness in real-time and large-scale management, perimeter control





           

could have similar performance in traffic resilience enhancement. Essentially, perimeter
control is conducted with the use of macroscopic fundamental diagram (MFD), which is
a widely observed relation between network-wide space-mean vehicles flow and density
(Daganzo and Geroliminis (2008)). Among previous studies, solution approaches such as
traditional feedback schemes (Keyvan-Ekbatani et al. (2012)), model predictive control
(MPC), (Geroliminis et al. (2012)), piecewise affine approximations (Kouvelas et al. (2019)),
multivariable feedback regulators (Aboudolas and Geroliminis (2013)), and Proportional-
Integral (PI) perimeter controllers with data-driven online adaptive optimization (Kouvelas
et al. (2017)), have been used for tackling this challenging control problem. The objectives
of perimeter control can be either to maximize network throughput (Keyvan-Ekbatani
et al. (2012)), maximize number of trips that reach their destination (Geroliminis et al.
(2012)), minimize total time spent (TTS) (Sirmatel and Geroliminis (2017)), or desired
accumulations (Haddad and Mirkin (2017)). Those objectives represent traditional traffic
networks mobility indices. Finally, in the work of Yang et al. (2017), a multi-scale perimeter
control in a connected-vehicle environment has been proposed, in which connected vehicles
(CV) serve as the only data source.

In this paper, we proposed a resilience-oriented perimeter control methodology that utilizes
the IoV concept. A microscopic simulation model is adopted, in which CV is not only
acting as a data source for control purposes, but also have the ability to reroute according
to real-time network information updates. The rest of this paper is organized as follows:
Section 2 describes the main concept of the developed resilience-based perimeter control
framework; Section 3 conducts a two-region case study for a large-scale city network in
China; finally, Section 4 concludes the paper and some future research directions are
presented.

2 Resilience-based perimeter control

In this novel idea, described here as resilience-based perimeter control, the average speed
of the entire network is chosen as the Figure-of-Merit F (·), namely F (t) = vm(t), where
m is the set of all flowing vehicles in the network. The open-source microscopic simulator
SUMO and its Traffic Control Interface (TraCI) API are utilized as the process plant
and traffic control centre, respectively (Wegener et al. (2008)). System resilience that
corresponds to Figure-of-Merit F (·) can be expressed as a function of time (Henry and





           

Ramirez-Marquez (2012)), as follows

RF (tr|ej) =
F (tr|ej)− F (td|ej)
F (t0)− F (td|ej)

(1)

where ej represents a disruptive event (e.g. extreme weather), and tr denotes any time
between (td and tf ); here, t0, te, td and tf denote the initial time, beginning of disruption,
time when F (·) reaches the minimum value, and recovery time, respectively.

The overall control objective is to maximize the integral of resilience loss (by utilizing
gating control inputs), which can be expressed as

J = max
u

(∫ tf

td

RF (tr|ej)

)
(2)

This control objective has a result not to focus on mobility indices, but rather we are
more concerned about the rapid system recovery to normal (uncongested) states.

In this paper, we consider a two-region problem, in which regions Θ1 and Θ2 represent the
periphery and city center, respectively. Therefore, u12 + u21 + uy = 1, where uij indicate
gating rates from Θi to Θj, and uy is the lost (yellow and all-red) time within a signal
cycle, respectively. The resilience-based PI controller is expressed as

∆u(k) = KP · e(k) +KI · Ee (3)

In Eq. (3), e(k) = RF (0) − RF (k), where RF (0) = θ is the system resilience when it
operated at the set-point; Ee =

∫ T

0
e(k)dk is the total resilience loss, and T is the control

period; KP term generates the corrective control action proportional to state error; KI

accelerates the movement of the process towards the set-point and eliminates the residual
steady state error.

In the current case study, we modelled the case of morning peak, i.e. most of the vehicles
traveller from outside areas (peripheral region) into the PN; therefore the control inputs
u∗12 and u∗21 that are derived by a bang-bang controller can be described as follows

u∗ij(k) =

u∗12 = umax, u
∗
21 = umin, ∀RF (·) < θ

u∗12 = umin, u
∗
21 = umax, ∀RF (·) > θ

(4)

Essentially, we minimize the number of vehicles entering the central region whenever the
system’s resilience RF (·) is lower than θ. A smooth application of this bang-bang optimal





           

control policy can be achieved by tuning of the parameter umax, and weights KP and KI

of the PI regulator of Eq. 3 (Keyvan-Ekbatani et al. (2012)).

3 A Case study

3.1 Simulation Setting

In this section, we describe the results from a case study that has been conducted for
the urban network of central Nanjing city, in China, which is the second-largest city in
southeast China. In Fig. 1, positions of RFID readers in the protected area (PN) (within
the dotted line in Fig. 1(b)) are demonstrated (see also Zhu et al. (2020) for details on
these data). This PN is the busiest area in Nanjing city, as it includes the business district,
residence zones, and tourist attractions. The investigation period is 6:00am to 10:00am
on a working day. In Fig. 1(b), 14 controlled intersections (gates) on the boundary and 4
rainfall affected areas are labelled. Noteworthy impacts on the main roads of the network
occur due to the areas affected by the rainfall. Simulation model is shown in Fig. 1(c).

Traffic demand is a vital input of the simulator, and was calibrated with TraCI. Based on
Adaptive Fine Tuning (AFT) algorithm (Kosmatopoulos and Kouvelas (2009); Kouvelas
et al. (2011(b)), traffic demands were calibrated by minimizing the total error between
RFID data and simulation flows (Zhu et al. (2020)). Rerouting of CV is implemented
by vehicles choosing the new route via current minimum instantaneous travel time. This
rerouting was performed every 30 minutes and for every vehicle in PN; note that more
frequent rerouting would lead to computational issues but also other instabilities related
to microsimulation equilibrium.

The control interval and cycle length for each boundary intersection are set equal, i.e. 90s.
With the consideration of traffic flow stability and car accident risk, here, we only change
the duration length of each phase but not their sequence. The minimum phase duration
time is set to 5s. The total green time of all phases that enter the PN is gin

n (k) = u(k) ·Cn,
in which Cn =

∑
j gn,j(k) + Ln is the cycle length.





           

Figure 1: The case study of Nanjing city: (a) distribution of RFID readers; (b) PN and
rainfall affected areas; (c) simulation model.
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3.2 Controller performance: daily congestion

In this part, results of the resilience-based perimeter controller are demonstrated with daily
congestion and rainfall disrupted scenarios. Traffic demand is assumed the same for both
scenarios. From Fig. 2(a), the maximum number of flowing vehicles in PN is approximately
7800 vehicles under the daily congestion scenario. In the case of umax = 0.69, although the
minimum velocity demonstrates almost the lowest value among the six different umax, the
system recovers faster. Thus, this case we can be considered as the most resilient to the
external disruption. When umax = 0.61, the mobility index, i.e. average speed, achieves
the best performance among all simulated scenarios.

Some statistical results are concluded in Table 1. Here, since we only modelled some entry
links of Θ1, the resolution of average speed also concludes vehicles on these links. Therefore,
this controller also considered local congestion issue on the boundary intersections. When
umax = 0.52, umax = 0.61 and umax = 0.69, the controlled urban roadway network can
handle the daily congestion issue well.





           

Figure 2: Results of congested scenario:(a)running vehicles(veh/s); (b) average speed of
the whole network (km/h)
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Table 1: Comparison between different umax under daily congestion.

Average Speed Timestep RF RF

(km/h) < 10km/h (t = 11000) (t = 12000)

umax=0.35 8.53 10639 0.18 0.18
umax=0.43 9.71 10095 0.05 0.01
umax=0.52 13.76 5571 0.27 0.19
umax=0.61 15.01 3313 0.74 1.00
umax=0.69 12.41 5630 0.92 1.00
umax=0.78 6.92 11401 0.04 0.02

3.3 Performance of the controller: rainfall disruption

Besides the daily congestion scenario, we also considered a rainfall disruption case, in
which the water-logging depth has a direct impact on the maximum speed of each link
(Pregnolato et al. (2017)). A link that has high risk of waterlogging is marked in Fig. 1(b);
we assume that with a slight disruption the maximum speed of these links will be gradually
reduced to 14km/h, while for a severe rainfall their speed is reduced to 1km/h (almost
loss of functionality), as shown in Fig. 3.

The simulation results under rainfall disruptions are shown in Fig. 4. Here, for the slight
disruption, umax = 0.52 and umax = 0.61 have both the ability to recover quickly; but for
the severe case, only umax = 0.52 demonstrates this ability. Although under the normal





           

Figure 3: Disruption curve of links with waterlogging risk.
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Figure 4: Comparison between different umax under rainfall disruption scenarios: (a)
different umax under slight disruption; (b) umax=0.52; (c) umax=0.61; (d) umax=0.69.
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case presented earlier, umax = 0.52 is not the one that performs best, it can however handle
the congestion induced by the severe rainfall well; note that capacity of flowing vehicles is
reduced to approximately 7000 vehicles, which is close to the maximum accumulation of
umax = 0.52 under the daily congestion. Furthermore, we demonstrate some quantitative
results in Table 2; it is worth mentining that umax = 0.61 achieves the best performance
in terms of average speed in both daily congestion and rainfall disruption scenarios. The
goal of this study differs from previous as it aims at improving urban mobility, but also
help the system recover from disrupted states as fast as possible; to this end, there is a
trade-off between traditional traffic metrics (e.g. total delay) and system resilience and
reliability. It is also a new attempt to do perimeter control in microscopic simulation
with consideration of IoV environment, in which vehicles not only act as sensors but also
reroute via real-time information.

Table 2: Comparison between different umax under rainfall disruption

Average Speed Timestep RF RF

(km/h) < 10km/h (t = 11000) (t = 12000)

Slight disruption
umax=0.52 13.02 6797 0.11 0.23
umax=0.61 14.25 4119 0.37 0.73
umax=0.69 8.31 9328 0.24 0.02

Severe disruption
umax=0.52 12.78 6007 0.23 0.20
umax=0.61 13.36 3901 0.64 0.08
umax=0.69 8.78 9376 0.19 0.01

4 Conclusions

With the current rapid urbanization, traffic congestion becomes a daily issue in our cities,
while this problem becomes even more critical when combined with external disruptions,
such as heavy rainfall. Moreover, improper management might not ameliorate congestion
but rather lead to a cascading system failure. In this paper, a resilience-based perimeter
control strategy is proposed with the purpose of regulating the protected network in such
a way that it can rapidly recover to a normal (uncongested) state. A case study in the
central area of Nanjing, China, was performed in the microsimulation enviromnment
SUMO with IoV environment. Results show that, in this case study, (a) umax = 0.61





           

demonstrates good mobility performance in both daily congestion and disruption events;
(b) umax = 0.52 is the one that can realize rapid and steady recovery in severe rainfall
disruption. The capacity of vehicles circulating in the network is crucial for the choice of
umax in this resilience-based perimeter control design. To the authors best knowledge, this
is the first work that conducts perimeter control for resilience enhancement. It is also a
novel attempt to apply perimeter control in microscopic simulation with IoV environment,
which is a crucial issue for future urban traffic management. Future work will deal with
cooperative perimeter control when the desired PN is relatively large and shows spatial
heterogeneous properties.
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