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Abstract

Future developments of mobility go strongly through a complementarity and blending
of modes. From this point of view, the potential benefits (i.e. societal, monetary) of
mobility management beyond modes is very interesting to study. Integrated multimodal
traffic management refers to the coordination of individual network operations, to create
an interconnected mobility management system. In many networks across the world
there has been a considerable investment in communication and sensing technologies
along major corridors of the network. An integrated multimodal traffic management
system aims at exploiting the full potential of deployed intelligent transport technologies
to improve not only the operation and performance of the network but also the demand
traveling in the network, influence the mode choice, travel time, delay, fuel consumption
and emissions. Moreover, it should increase the reliability and predictability of travel in
the network. Commuters consider and plan their mobility comprehensively, they have
access to multimodal information and routing (i.e. apps), and the same should hold in
the infrastructure supply side (i.e. traffic network operators).

Most trips use multiple modes of transport, including mobility services; future mobility
management systems should consider inter-layer communication, and their complemen-
tarity and collaboration. Currently we are limited to lack of communication and/or
collaboration between inter-modal infrastructures. Each operator makes decisions in-
dependently, and thus, may negatively affect users’ mobility. For instance railway and
road traffic optimize their performance separately, but an integrated framework could be
beneficial. The complementarity of most transport modes (speed, accessibility capacity) is
in fact ignored in most traffic control approaches. Essentially, modes are complementary,
in terms of speed, accessibility, and capacity: while trains can achieve a high capacity for a
restricted set of nodes (stations), cars can connect almost any two points; furthermore, in





      

urban areas, active modes such as walking or cycling enable accessing (almost) all places.
The Success of a multimodal traffic management system depends on careful planning
on one hand, and on the other hand on an integrated system level perspective among
the network operators, which calls for advanced transportation analysis tools to estimate
and predict network performance under different strategies and analyze the network for
different tactical purposes.

Future traffic control beyond modes aims to study the benefits of a nation wide integrated
multimodal traffic management system.
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1 Introduction and problem statement

Future developments of mobility go strongly through a complementarity and integration of
modes. From this point of view, the potential benefits (i.e. societal, monetary) of mobility
management beyond modes is very interesting to study. Integrated multimodal traffic
management refers to the coordination of individual network operations, to create an
interconnected mobility management system. In many networks across the world there has
been a considerable investment in communication and sensing technologies along major
corridors of the network. An integrated multimodal traffic management system aims at
exploiting the full potential of deployed intelligent transport technologies to improve not
only the operation and performance of the network, but also the demand traveling in the
network, influence the mode choice, travel time, delay, fuel consumption, and emissions.
Moreover, it should increase the reliability and predictability of travel in the network.
Commuters consider and plan their mobility comprehensively, have access to multimodal
information and routing (i.e. mobile apps), and the same should hold in the infrastructure
supply side (i.e. traffic network operators).

Most trips use multiple modes of transport, including mobility services; future mobility
management systems should consider inter-layer communication, as well as their comple-
mentarity and collaboration. Currently we are limited to lack of communication and/or
collaboration between inter-modal infrastructures. Each operator makes decisions inde-
pendently, and thus, may negatively affect users’ mobility. For instance railway and road
traffic optimize their performance separately, but a mutually integrated framework could
be beneficial. The integration of most transport modes (e.g. speed, accessibility capacity)
is in fact ignored in most traffic control approaches. Essentially, modes are complementary,
in terms of speed, accessibility, and capacity: while trains can achieve a high capacity for a
restricted set of nodes (stations), cars can connect almost any two points; furthermore, in
urban areas, active modes such as walking or cycling enable accessing (almost) all places.
The performance of a multimodal traffic management system depends on careful planning
on one hand, and on the other hand, on an integrated system level perspective among
the network operators, which calls for advanced transportation analysis tools to estimate
and predict network performance under different strategies and analyze the network for
different tactical purposes.

In order to have a better understanding of the topic, we shortly define the multimodal trip.
In this document, we define multimodal trip as a combination of two or more different
forms of transport within a single trip from an origin to a destination. This trip consists
of different vehicles, for instance car, bicycle, tram, bus or train, or different services such





      

as mobility on demand services, car sharing, taxis and other express services. We use
the term mode to address the form of transportation unit in a functional or vehicular
sense. Therefore, a multimodal trip always consists of two or more legs with different
modes, between which a transfer on foot is necessary. Typical examples of multimodal
trips are chains such as walk-bus-train-walk, or bicycle-train-walk,car-train-walk or walk-
tram-bus-walk. Moreover, the trip chain walk-city bus-regional bus-walk is also considered
as a multimodal trip. We should notice that single mode trips such as walk-bus-walk or
walk-car-walk or walk-tram-walk are defined as uni modal since the transfer process to
another mode of vehicular transportation is absent. Thus, a multimodal transportation
system is a system that offers different transportation modes connected by interfaces (e.g.
stations) that facilitate transfers between the different mobility services defined as modes
(in a functional or vehicular sense) Nes and H. L. Bovy (2004).

A review on the literature shows an increasing trend towards studying the benefits of
Integrated Multimodal Network Management among different authorities and researchers.
Here we briefly mention only the two most relevant research projects and interested
readers are referred to review similar works such as Dawson et al. (2014); Nesterova et al.
(2016); Zheng et al. (2016); Sierpiński and Staniek (2017); Zaiat et al. (2014). In the
framework of Integrated Corridors Management (ICM) Kurzhanskiy and Varaiya (2015),
the researchers in California are developing a multimodal traffic management system
for a corridor near Los Angeles by applying different management strategies. ICM aims
at deploying the strategies listed in table 1 to reduce congestion and improve mobility
along the corridor. Furthermore, on top of all these technological solutions, they are
building a community of stakeholders who can address corridor needs in a collaborative
way in order to have a cohesive management system. The stakeholders are mainly the
freeway management (Caltrans), cities traffic management, and all the agencies involved
in rail lines, bus services, and parking facilities Berkeley Univesity of California (Accessed:
2019-09-17).

Another approach to discuss the benefits of a multimodal management systems is to
investigate it in an extreme situation (i.e. floods, hurricanes, snow, etc.) and see how the
coordination of different transport operators can contribute to a better management of
transport infrastructure. Researchers in UK have applied this methodology to analyze
the system criticality of Britain’s multi-modal transport network Pant et al. (2015). They
suggest a multi-dimensional metric set for assessing the relative criticality of different
nodes and edges in the network based on: (i) traffic flows, (ii) traffic disruptions, (iii)
rerouting capabilities, and (iv) multi-modal impacts. Initial analysis for Great Britain’s





      

multi-modal transport systems demonstrates how criticality assessment can identify key
points of the multi-modal transport networks, which are the most critical to maintain a
good level of national mobility. The paper concludes by considering the implications of
this analysis for risk management, and the potential for developing and transferring this
methodology to other spatial or economic contexts.

2 Experimental approach

In order to study the benefits of an integrated multimodal network management control
strategy it is useful to focus on a special scenario in the network. In the current work
we investigate how such a scheme can contribute to more efficient operation of a network
in case of a disruption. The main research question that we focus on in this framework
is: In case of a disruption in an urban network, how much delay will be caused if we do
not apply any management, and how much of this delay can be saved with an integrated
multimodal network management systems.

The network of city of Zurich with one percent of the population is simulated in the agent-

Table 1: ICM Strategies Kurzhanskiy and Varaiya (2015)

Strategy Benefits

Coordination of freeway ramp meters and ar-
terial signal systems

Leverage the capacity of both freeway and arterials to help
traffic around congestion or incidents

Arterial signal synchronization Optimize traffic flow along arterial streets (Kouvelas et al.
(2014))

Dynamic route guidance and flow rerouting Offer alternative routes around congested areas

Transit signal priority Accelerate transit service by giving buses priority on arterials
and on-ramps

Real-time travel demand monitoring Enable transportation managers to see the actual extent
and locations of traffic demand on the corridor

Smart parking Locate available parking spaces at transit stations and pri-
vate parking garages

Traveler communication Provide information on traffic conditions, transit services,
parking, alternate route/trip/mode options

Mode and time shift incentivization Motivate travelers to change how (car, bus, bicycle, etc.)
and when they travel





      

based simulator environment MATSim. In this work we consider a disruption between
7:45am to 12:00pm on the direct railway link between two main railway stations, Zurich
main station (HB) and Zurich Oerlikon, depicted in Figure 1 with the orange line. The
reason to choose this link is its criticality in this urban network, which is defined based on
the method explained in Sarlas and Kouvelas (2019) considering the connectivity, efficiency,
and betweenness indicators. We utilize MATsim software to analyse the disruption and
study the implemented management strategy. MATsim is an activity-based, extendable,
multi-agent simulation framework which is suitable to analyze large-scale scenarios and
networks with multimodal demand. It is designed to model a single day, the common unit
of analysis for activity based models Axhausen et al. (2016).

MATsim modelling is based on the co-evolutionary principle. Every user, represented by
an agent, selects and executes a daily activity schedule; moreover, the users repeatedly
optimize their activity schedule (i.e. adjust it aiming at a better plan) based on the score
obtained by the plan they executed so far, similarly to a day-to-day equilibrium process.
Activity chains for our scenario are derived from empirical data through sampling or
discrete choice modelling. Each agent possesses a memory containing a certain number
of day plans (usually 5), where each plan is composed of a daily activity chain and an
associated score. The score can be interpreted as an econometric utility and is computed
by the Charypar-Nagel utility function Axhausen et al. (2016):

Splan =
N−1∑
q=0

S(act,q) +
N−1∑
q=0

S(trav,mode(q)). (1)

In equation (1), the utility of a plan Splan is computed as the summation of all activity
utilities Sact,q plus the summation of all travel (dis)utilities S(trav,mode(q)), with N denoting
the number of activities; trip q is the trip that follows activity q. For scoring, the
last activity is merged with the first activity to produce an equal number of trips and
activities.

An iteration is completed by evaluating the agents’ experiences with the selected day
plans (scoring). The iterative process is repeated until the average population score
stabilizes. MATsim equilibrium extends the standard traffic flow equilibria, as the latter
ignores activities. Eventually, an equilibrium is reached, subject to constraints, where
agents cannot further improve their plans unilaterally. Note that there is a difference
between the application of an evolutionary algorithm and a co-evolutionary algorithm. An





      

Figure 1: Disrupted railway link.

evolutionary algorithm would lead to a system optimum, as optimization is applied with
a global (or population) fitness function. Instead, the co-evolutionary algorithm leads to
a user equilibrium, as optimization is performed in terms of individual scoring functions
and within an agent’s set of plans Axhausen et al. (2016). In our approach, after 150
iteration the co-evolutionary equilibrium is reached (baseline) and we can implement the
disruption. For the remaining of this document, we call these the baseline scenario and
the disrupted scenario.

In the disrupted scenario the selected link between Zurich HB and Oerlikon is blocked (i.e.
we set its speed equal to zero); this way we expect that no agent will be willing to choose
this link in the next iteration due to its low utility which translates to low scoring for all
plans using this link. The agents learning process in case of disruption is a day-to-day
replanning approach: each iteration is considered as one day and during that, agents
cannot replan their schedules. Throughout each iteration, agents have a plan to follow
(commuting to work, shopping, leisure activities, etc.) and between iterations they will
try to improve their scoring by choosing a new trip, changing the travel mode, or even
changing part of their plan. This plan is then saved in the agent’s memory, which contains
a predefined number of plans. Before moving to the next iteration, agents are able to: (a)
discard the plan with the lowest score; (b) eventually generate a new plan; (c) choose a
plan for the next iteration according to the computed MATsim scoring function. In order
to reach the co-evolutionary equilibrium, or in other words stabilization of the agents,
after appying the disruption we execute the scenario for another 150 iterations.

The baseline scenario, similarly, is executed for 150 iterations to have an equivalent
equilibrium scenario to compare the results. It is worth mentioning that in MATsim 11





      

standard version, the configuration setting that defines the possibility of random behaviour
of an agent during a simulation cannot be turned off completely. Therefore, various baseline
scenarios with 300 repetitions have been executed and compared to understand how much
this setting can affect the results.Furthermore, in order to analyze the effect of the
disruption we mainly focus on the delay of agents as key indicator; delays are calculated
based on the mode that the agent has used as follows:

• Car Delay:
Given J set of agents, j ∈ J ;
Given Tc set of leg trips made with a car during one iteration;
Given TT travel time of the trip;

carDelayj =
∑
t∈Tc

(ActualTripTT
t − BestTripTT

t ) (2)

Supposing that an agent has to go from activity A to B, the actual trip travel time
ActualTripTT

t at time t is calculated by computing the difference between the arrival time
of the agent in B with the car minus the time he entered the vehicle on his last leg leaving
activity A. The best trip travel time BestTripTT

t is the travel time computed by Dijkstra
to go from activity A to B with the best possible traffic conditions. The car delay is
therefore the summation of all delays accumulated for each leg in which an agent has used
a car.

• Public transport (PT) delay:
Given J set of agents, j ∈ J ;
Given Tpt set of leg trips made with a PT during one iteration;

PTDelayj = max
t∈Tpt

(WaitT imeAtPTStopt) (3)

If an agent decides to take multiple public transport means during his journey, only the
highest delay experienced will be considered as his PT delay. If an agent rides both car
and PTs, he will be considered in both equations (2) and (3). The PT delay is therefore
the maximum between all delays experienced for each leg in which an agent used a PT
during the iteration. In this work, We have decided not to compute the bike and walk
delays, which are always assumed to be arbitrarily close to zero.





      

3 Quantitative results

After running the simulations for both scenarios some useful insights have been achieved
that will be presented in the following. In Table 2 the two scenarios are compared and we
can see a significant increase, around 14% in PT delay in the disrupted scenario. Moreover
a 6% decrease is reported in the total car delay in the disrupted scenario, mainly because
there are less people taking a car (number of agents using a car can be observed in Table 3).
Note that this simulation is repeated for 150 iterations: i.e. agents are somehow “aware”,
due to the scoring of their plans, that the disruption exists at a certain point in time. If
an agent decides to fulfill his plan, and wants to go through one of the disrupted links,
that plan will have a very low score. This is because the scoring function penalizes an
agent based on how much he waits at a PT stop. Considering this fact, we can argue that
the results for the disrupted scenario are actually the result for a managed scenario, in
case the management strategy is only to inform the commuters to reroute themselves.

After having 150 iterations we can argue that the state of user equilibrium has been
reached. Since each agent can store only five plans as defined in the configurations, this
usually lead to a situation where agents want to benefit from the alternative routes to
avoid the disrupted links. Furthermore, we can see from Table 5 that the number of agents
that experienced a significant amount of delay (more than 60 minutes) is more than double
compared to baseline scenario (8 compared to 22, equivalent to 800 respectively 2200
travelers if we scale up to the total population). This can be explained considering that
there are agents that are required to pass the disrupted links to reach their destination
anyways, or there has been no other alternative plan that can provide a better utility for
them.

For the PT delay analysis, we can see from the plot in Figure 2 that the moving average of
delay related to PT users in the disrupted scenario is significantly higher compared to the

Table 2: Scenario Comparison

Baseline Disrupted

Total car delay (min) 123624 115885
Total PT delay (min) 18098 21437
Car delay + PT delay(min) 141722 137322





      

Table 3: Delay Comparison for all agents

delay(min) number of agents average delay(min) percentage of agents

Baseline Disrupted Baseline Disrupted Baseline Disrupted Baseline Disrupted
Car 123624 115885 7291 7184 16.95 16.13 48% 47%
PT 18098 21437 2501 2570 7.23 8.35 17% 17%

baseline. Also, the average delay in the disrupted scenario is slightly higher compared to
the baseline, with significant peak for the highly delayed agents, 142 minutes in disrupted
scenario, double the average delay compared to the baseline seen in Table 5. This is also
shown in Figure 2, where the various peaks represent agents that did not manage to avoid
the disrupted links.

If we look at the histograms in Figure 2(b), we can see that agents that travelled more than
80km using a PT have experienced in the disrupted scenario from 10 to 15 minutes more
delay on average compared to the baseline scenario. This is explained by the fact that
the disruption is affecting also long-distance trains in the network. The travel distance
histogram in Figure 2 illustrates that more agents experienced delay for short distances.

Interestingly, as can be seen in Table 6 in contrast with what we expected, the number of
agents that used the car and the PTs are very similar in both scenarios, with only 1%
difference. From the results of Table 6 it can be observed that the modal split based
on travel time percentage for PTs in the disrupted scenario increased compared to the
baseline (by 3%), with a correspondent 1% increase in the travel distance covered. This is
due to the higher delays caused by the disruption. We can conclude that the impact of

Table 4: Delay Comparison for agents delayed more than 5 minutes

delay(min) number of agents average delay(min) percentage of agents

Baseline Disrupted Baseline Disrupted Baseline Disrupted Baseline Disrupted
Car 119128 111428 5392 5288 22 21 36% 35%
PT 15393 18732 1096 1157 14 16 8% 8%

Table 5: Delay Comparison for agents delayed more than 60 minutes

delay(min) number of agents average delay(min) percentage of agents

Baseline Disrupted Baseline Disrupted Baseline Disrupted Baseline Disrupted
Car 14974 10207 197 136 76 75 2% 1%
PT 612 3138 8 22 76 142 1% 1%





      

Figure 2: (a) PT delay comparison (b) Distribution of travel distance (c) Distribution of
delay

(a)

(b) (c)

Baseline Disrupted

this small disruption did not change much the behaviour of the whole population, but
instead provoked a higher amount of delay in the PT users, with an average increase in
the delay experienced by PT users of 1 minute.

For the Car Delay analysis, we can see in Figure 4 that we have on average the same delay
(16 min for both baseline and disrupted scenarios); moreover, 1% less agents used a car in
the disrupted scenario, deciding instead to use a PT or bike, as observed in modal split in





      

Table 6: Modal Split (MS) based on Travel Distance (TD) and Travel Time (TT)

Baseline Disrupted Baseline Disrupted

mode TD(m) MS TD(m) MS TT(min) MS TT(min) MS
Bike 10840076 4% 11659573 5% 2990366 8% 3216434 9%
Car 220432577 79% 217000000 77% 20034848 54% 18589544 50%
PT 46107745 16% 48361126 17% 11746400 32% 12849082 35%
Walk 3231551 1% 3218906 1% 2429738 6% 2420230 6%

Figure 3: Modal Split based on Travel Time and Travel Distance for Baseline and Disrupted
scenarios

(a) Baseline:Travel Distance (b) Disrupted:Travel Distance

(c) Baseline:Travel Time (d) Disrupted:Travel Time

Bike Car PT Walk

Table 6 and Figure 3. The delay histogram in Figure 4 demonstrates that the disruption
affected mostly the agents that are commuting for short trips in the city. Those latter
cases show an increase in number of agents that experienced 5 to 20 minutes delay for the
disrupted scenario. The histogram regarding the travel distance covered in Figure 4 also
provides evidence that less people took a car in the disrupted scenario, shifting to another
transport mode, especially for short distance trips.





      

Figure 4: (a) Car delay comparison (b) Distribution of travel distance (c) Distribution of
delay

(a)

(b) (c)

Baseline Disrupted

4 Conclusions

In the current work we presented our approach to study the benefits of multimodal
integrated network management systems. We focused on a disruption scenario and
investigated what is the potential of delay savings by applying a minimum management
strategy. The preliminary results in the current work are the beginning of our future works
towards implementing multimodal integrated strategies and studying how integration of
different operative stakeholders in transport networks can improve the mobility services.
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