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Abstract

Although the idea of vehicle sharing systems (VSSs) emerges back in 1940s, sustaining such a
system became simpler with the improvements in technology in the past decade. In addition to
that, people have become more concerned about environmental effects and try to find solutions
on reducing emission and energy consumption. On the other hand, VSSs require effort to make
them profitable. In this paper, we focus on the two of the operational level challenges, which are
the demand forecasting and routing for the rebalancing operations, in a one-way station-based
bike sharing system (BSS). Since the data collection is exhaustive and costly, we would like to
find the answer to whether it is worth to collect data and develop demand prediction models. In
order to do that, we create a simulation of a city BSS in operation during the day. Then, using a
mathematical model from the literature, we assess the rebalancing costs under two scenarios:
one where we assume the perfect demand forecast, and the other where the future demand is
unknown. By this way, we determine the trade-off between the lost demand and the rebalancing
cost under the mentioned scenarios, and assess the benefit of forecasting the demand. Lastly, we
present a case study on the Swiss BSS named PubliBike.

Keywords
Vehicle sharing systems; Demand forecasting; Rebalancing operations; The value of demand
forecasting





          

1 Introduction

A vehicle sharing system (VSS) offers users to rent vehicles for a short period of time. The users
are identified by an RFID card or through a mobile application. The price of the trip is generally
determined according to trip duration and length. This type of shared mobility is becoming
more and more popular due to both financial and environmental effects. On the other hand, they
face many challenges, such as inventory management of vehicles and parking spots, imbalance
of vehicles, pricing strategies, and demand forecasting. If these are not addressed properly, the
system experiences a significant loss of customers and therefore revenue.

The idea of sharing vehicles came up in the late 1940s with cars. The first known car sharing
system (CSS), Selbstfahrergemeinschaft, was initiated in Zurich, Switzerland, in 1948 (Shaheen
et al., 1998). On the other hand, the first bike sharing system (BSS) was introduced in 1965 by
the organization Provo. This system was not profit oriented. The bikes were left unlocked and
therefore the system was abused (Shaheen et al., 2010).

Following the technological and operational improvements, profit-based companies saw the
opportunity in these systems and started investing money. Midgley (2011) analyzes the five
different BSS generations that caused change in the operation.

A VSS has several kinds of configurations: (i) the type of trips offered: return trip or one-way,
(ii) the imbalance management strategy: user-based, static staff-based, or dynamic staff-based,
(iii) the pricing strategy: fixed or dynamic, (iv) the parking organization: station-based or
free-floating.

The user is supposed to drop the vehicle off to the pick-up station after the usage in a return trip
configuration. On the other hand, one-way trips allow the user to park anywhere designed in
the city. One-way trips are much more flexible from the user perspective, however, it brings the
problem of imbalance. The vehicles tend to accumulate in the stations or areas which are mainly
trip destinations, which often causes a lack of vehicles in the frequent trip origins.

To overcome imbalance, rebalancing operations are introduced, which relocate the vehicles
from stations with high availability and low demand to the stations with high demand and low
availability to satisfy user demand at a higher level. In the user-based strategy, the users are
offered incentives to make trips that improves the balance of the system, when necessary. The
staff-based rebalancing operations might take place at a different time of the day in different
VSSs. Static rebalancing is done when the system is closed, generally during the night, every





          

day. Dynamic rebalancing, on the other hand, is flexible and executed throughout the day.

The dynamic pricing strategy is closely related to the user-based rebalancing operations. In
this configuration, the user gets different pricing due to her trip characteristics, such as origin,
destination, time of the day, and trip duration. In fixed pricing, all users and trips are considered
and priced the same according to their trip duration and/or length. The origin and destination
stations as well as the time of the day are not relevant.

The station-based systems require that the vehicles are parked at some designated parking areas
for the VSS in particular. For the free-floating configuration, the pick-up and drop-off locations
might be any parking spot in the city. This configuration is more flexible from the user point of
view yet it introduces complexity to the operator concerning the imbalance.

The literature focuses almost exclusively on the routing aspect of rebalancing operations in
VSSs. Moreover, contrarily to a classical public transport service, the operations of the system
are influenced a lot by the demand patterns. Although these are indeed important parts of the
problem, we did not find any work which studies the importance of demand forecasting. In
other words, the upper bound on the cost of demand forecasting, such as collecting data and
processing, is not discussed in the literature. To fill this gap, this work puts the first and simplistic
attempt to investigate how demand forecasting models affect the operations in the context of
BSSs. This will be achieved by identifying the value of demand modeling by exploiting the
extensive research on rebalancing operations and demand forecasting in VSSs.

The value of demand forecasting can represent the upper budget limit to spend on demand
forecasting. The aim is to guide the decision maker (i.e. operator). The operator can analyze
the trade-off between the cases where forecasting is done and not done. It is also important to
know how much it brings so that the budget can be adjusted for these operations. We also want
to analyze whether forecasting the demand and acting accordingly causes any damage due to
unplanned activities.

The rest of the paper is organized as follows: Section 2 presents the literature review on rebalanc-
ing operations and demand forecasting in VSSs. Afterwards, we talk about the methodological
framework and the details of the simulation and optimization modules in Section 3. The experi-
mental results done on a Swiss BSS PubliBike are discussed in Section 4. Finally, in Section 5,
we conclude the paper and suggest possible future research directions.





          

2 State of the art

In this section we briefly discuss the literature on rebalancing opeations (Section 2.1) and
demand forecasting (Section 2.2). We focus our review on the station-based BSSs. The reader
may refer to Laporte et al. (2018) for a more thorough literature survey in VSSs.

2.1 Literature on rebalancing operations

The most of the research is based on static operator-based rebalancing operations. One of them
is addressed by Raviv et al. (2013) under the setting of station-based BSSs where the stations are
capacitated. They propose two mixed integer linear programming (MILP) formulations based on
one-commodity pickup and delivery traveling salesman problem (1-PDTSP) to find the routing
for rebalancing operations. The objective function is minimizing the operating costs. In addition
to that, it takes the user satisfaction into account as well as the loading and unloading times. To
overcome the computational complexity, the authors propose a two-phase solution method.

In Dell’Amico et al. (2014), the authors present four MILP formulations to solve the same
problem. These models are strengthened by introducing valid inequalities. Furthermore, because
of the exponential number of constraints, tailor-made branch and cut algorithms are developed.

Schuijbroek et al. (2017) present two solution approaches: one using a mixed integer program-
ming (MIP) and one using a constraint programming (CP). They also integrate the required
inventory level estimation via a Markov chain structure. It should be noted that this paper
presents the first CP approach to the static rebalancing problem. In order to reduce the computa-
tional complexity the authors cluster the stations.

Liu et al. (2016) also use clustering to reduce the size of the network. The station level bike
demand prediction is done using the historical data and weather report, including the temperature,
humidity, wind speed, and visibility. Then, route optimization is conducted within each cluster.

In Pfrommer et al. (2014), the authors aim to combine the dynamic rebalancing operations with
dynamic pricing (i.e. user-based rebalancing) in a station-based BSS. A predictive model is used
to see the future demand. For the routing algorithm, they use a time-expanded network (as in
Boyacı et al. (2017)) and develop a mixed integer quadratic program (MIQP).

We see in the literature that optimization models are proposed to solve the imbalance related





          

problems in BSSs. Simulation, heuristics and metaheuristics are also utilized especially when
the optimization models are too time consuming.

2.2 Literature on demand forecasting

As well as analyzing the system and optimizing parameters, the data collection is also an impor-
tant part to manage VSSs. As an example, Campbell et al. (2016) conduct a stated preference
survey in Beijing, China, for a station-based BSS, in which users can take conventional or
electric bikes. Then, a multinomial logit model is developed to model mode-choice. The study
by Kutela and Teng (2019) is conducted in 25 different university campuses which result in
177 stations in total. They use Negative Binomial (NB) and Mixed Effect Negative Binomial
(MENB) to identify the important characteristics on the demand. Although the methodology is
not new to the literature, the collected data from 25 different systems provide valuable insights.

One of the research questions related to demand forecasting is to identify the important factors
of the corresponding VSS. In works Ashqar et al. (2019) and Scott and Ciuro (2019), the authors
consider a station-based BSS. In Ashqar et al. (2019), the authors aim to understand the bike
count’s behavior by including the weather conditions. Two models are developed based on
Poisson Regression Model (PRM) and Negative Binomial Regression Model (NBRM). In Scott
and Ciuro (2019), the authors use the data related to weather conditions, temporal variables,
station attributes, and socio-economic characteristics of the users to analyze the number of
pick-up and drop-offs. Since traditional linear regression assume independence between the
observations, they use the random intercept multilevel modeling to identify the factors affecting
the ridership.

Indeed, the regression models are not the only methodology used to forecast the demand. For
example, in Raviv et al. (2013) and Schuijbroek et al. (2017), the authors include a Markov
chain structure to estimate the number of vehicles per station in the steady state. On the other
hand, the authors in Faghih-Imani et al. (2017) start by creating a data set which identifies
the user arrivals and departures per station, as well as rebalancing operations. Authors test
assumptions about the factors that influence customer arrivals and departures and rebalancing
refill and removal. They apply a methodology for analyzing such systems using behavioral
models, in particular, autoregressive moving average (ARMA) models. Finally, they present
the first empirical analysis of system rebalancing by the operator focused on understanding
the factors creating such imbalances, using an approach consisting of a binary logit model,
for identifying stations that need rebalancing, and a linear regression model for the amount of
rebalancing. This analysis can help in creating plans for rebalancing well in advance, as well as





          

in creating incentive mechanisms for customers to rebalance bikes.

We see that various methods are used to forecast the demand in VSSs in the literature. This
forecast is used to aid other operations of VSS such as rebalancing operations and pricing.
However, we did not see any work studying the added value of constructing such a model. In
this paper, we aim to address this gap in the literature.

3 Methodology

We propose a methodological framework to analyze the effect of demand forecasting. This
framework consists of two main modules: (i) simulation and (ii) optimization. The daily trip
demand is simulated with a discrete event simulator and the routing of rebalancing operations is
determined using an optimization model. This work deals with a one-way station-based BSS
where static rebalancing and fixed pricing are adopted.

We start by giving the general idea of the framework and how it is used to determine the value
of demand forecasting (Section 3.1). Then, we discuss the details of simulation (Section 3.2)
and optimization (Section 3.3) modules.

3.1 The framework

The dynamics of our approach is illustrated in Fig. 1. After initializing the parameters, the
simulator simulates the daily trips and determines the final distribution of the bikes. Then, the
difference between the number of bikes at each station at the end of the day and the number of
bikes desired at the beginning of the next day (demand of a station) is calculated. The result is
given as an input to the optimization module. The optimization module solves the rebalancing
problem and determines the routing for the rebalancing vehicles (i.e. trucks). At this stage of
the research we assume that the rebalancing operations take place as planned and the desired
initial distribution for the following day is achieved. Afterwards, the simulation of the following
day is triggered.

We consider two extreme cases of VSS operations: (i) known demand, and (ii) unknown
demand. The first assumes the perfect future demand knowledge and the second assumes no
knowledge on demand. In known demand case, we distribute the bikes among stations according
to future demand knowledge. In order to use the perfect demand knowledge, we adapt the initial





          

Figure 1: The framework for VSS simulation and rebalancing optimization

distribution of bikes among stations. The number of bike defficiencies throughout the day is
calculated. Then, the maximum defficiency is assigned as the initial number of bikes at the
beginning of the day. In unknown demand case, we uniformly distribute the bikes everyday
among the stations.

By comparing these two extreme cases, we aim to assess the maximum budget that should be
allocated for demand forecasting, i.e. data collection and development of demand forecasting
models. The necessity of rebalancing operations can also be examined. We also analyze the
effect of spatial (e.g. city characteristics) and temporal (e.g. rush hours) differences on this
upper bound.

3.2 Simulation

The state variable of the system is time, denoted as t, and the time horizon is T . The time is not
discretized but drawn for each event according to the Poisson distribution. Within [0,T ], O-D
pair requests arrive to the system. After T , the events in the system are served and no more O-D
pair requests are generated. We denote the number of stations by N. Ci, for i = 1..N, represents
the capacity of station i. The distance from station i to station j with mode k is denoted as ck

i j,
where i = 1..N, j = 1..N, and k = {’walking’, ’bicycle’, ’car’}.

The time horizon is divided into P number of time windows, each denoted TWp, where p = 1..P.
This differentiation makes the simulator flexible at the temporal level to test different behaviors
during the day, such as rush hours and specific event times. Therefore, the O-D pair request





          

Table 1: Event types

Event Triggered Event Queue
Sim Start REQUEST, Sim End -

REQUEST
REQUEST (if t < T ),
PICKUP (if there is an available station within 20 min walk)

ns = ns + 1
-

PICKUP DROPOFF (if there are available vehicles) nu = nu + 1

DROPOFF
DROPOFF (if no parking available),
COMPLETED

-
nu = nu − 1

COMPLETED ns = ns − 1
Sim End -

rates are also specific to these time windows. λp provides the information on the rate of requests
for time window p, where p = 1..P.

The number of people in the system (ns) and the number of people using a vehicle (nu) at that
time are recorded as indicators. These indicators allow us to extract the number of lost demand.
The number of lost demand is equal to the number of users who opt-out because of unavailability
of bikes or parking spots.

The simulation module consists of four event types: (i) REQUEST, (ii) PICKUP, (iii) DROPOFF,
and (iv) COMPLETED. The triggered events are added to the event list and this list is kept in
chronological order. Table 1 summarizes the event types, the triggered event(s) by each event
and the change in event queue status.

The REQUEST event is generated at the beginning of the simulation for each O-D pair request.
These REQUEST events form the initial event list in chronological order. By this way, the
simulator keeps track of the time. As soon as a REQUEST event is observed in the event list ns is
increased by 1 and a PICKUP event is generated if there is a station with a positive number of
vehicles within walking distance. If there are no vehicles at the stations within walking distance,
the user opts-out (lost demand), and the ns is decreased by 1.

When a PICKUP event appears in the event list, a DROPOFF event, which consists of the desired
drop-off station information, is generated if there is at least one vehicle at that station and nu is
increased by 1. Otherwise, the user opts-out (lost demand) and leaves the system. In this case,
we decrease ns by 1.





          

The DROPOFF event triggers either another DROPOFF event or a COMPLETED event. The user
chooses a drop-off station according to his/her destination location. However, in some cases,
the user might not be able to find an available parking spot there. Then, another DROPOFF event
is triggered and the user tries the next closest available station. If there is at least one vehicle
available at the corresponding drop-off station, then a COMPLETED event is generated and nu is
decreased by 1. The COMPLETED event is removed from the queue as soon as the user reaches
the destination point which also makes him/her leave the system, i.e. ns is decreased by 1.

3.3 Optimization

There are several optimization programs in the literature related to rebalancing operations in
VSSs. This experimentation considers the MILP formulation for a BSS from Dell’Amico
et al. (2014). They consider a station-based configuration and adopt static rebalancing. This
formulation is selected due to the availability of the simulator, thus the full information on
demand for O-D pair requests. Among four different models, we use F1, which is presented
below.

The notation for the number of stations is the same as in the simulation module. The set of
stations is defined as V = {0..N} where {0} is the depot. m is the number of relocation vehicles
available and Q stands for each relocation vehicle’s capacity. θ j represents the load of a vehicle
after it leaves node j, where j ∈ V . The cost of traveling between station i and j is denoted by ci j

and it corresponds to the length of the shortest path between i and j. The cost from the depot to
and from any station is assumed to be zero. Lastly, the model takes the demand at each station,
qi for all i ∈ V . This is an input provided by the simulation (see Fig. 1). Given these, F1 finds
the routing plan for the relocation vehicles

where

xi j =

1, if arc (i, j) is used by a relocation vehicle
0, otherwise

∀i, j ∈ V. (1)





          

(F1) min
∑
i∈V

∑
j∈V

ci jxi j (2)

s.to
∑
i∈V

xi j = 1 ∀ j ∈ V \ {0} (3)∑
i∈V

x ji = 1 ∀ j ∈ V \ {0} (4)∑
j∈V

x0 j ≤ m (5)∑
j∈V\{0}

x0 j −
∑

j∈V\{0}

x j0 = 0 (6)∑
i∈S

∑
j∈S

xi j ≤ |S | − 1 ∀S ⊆ V \ {0}, S , ∅ (7)

θ j ≥ max{0, q j} ∀ j ∈ V (8)

θ j ≤ min{Q,Q + q j} ∀ j ∈ V (9)

θ j − θi + M(1 − xi j) ≥ q j ∀i ∈ V, j ∈ V \ {0} (10)

θi − θ j + M(1 − xi j) ≥ q j ∀i ∈ V \ {0}, j ∈ V (11)

xi j ∈ {0, 1} ∀i, j ∈ V (12)

The objective function (Eq. (2)) minimizes the cost. Eqs. (3) and (4) make sure that every node
except the depot is served exactly once. Following two sets of constraints, Eqs. (5) and (6),
assure that no more than m vehicles are used and all used vehicles return to the depot at the
end of their route. The constraint set (Eq. (7)) is a typical cutset constraint which is used for
subtour elimination. Eqs. (8) and (9) defines the upper bound on the load of a vehicle. The flow
conservation is achieved by Eqs. (10) and (11). Last constraint set (Eq. (12)) imposes binary
restrictions on decision variables xi j’s.

Given the exponential number of constraints, the model becomes intractable for large in-
stances. The classical subtour elimination constraints that are used in F1 corresponds to Dantzig-
Fulkerson-Johnson (DFJ) formulation (Dantzig et al., 1954). This formulation introduces 2N+1

number of constraints. In Miller et al. (1960), the authors introduce a new formulation, i.e.
Miller-Tucker-Zemlin (MTZ), using additional decision variables and decrease the number of
constraints to (N + 1)2. In order to overcome the computational burden, this work provides an
extension to F1 by utilizing the MTZ constraints (Eqs. (18) and (19)). For this purpose, a new
decision variable, ui ∀i ∈ V \ {0}, is introduced.

Furthermore, we use the valid inequalities proposed by Dell’Amico et al. (2014). Since there is





          

no feasible solution consecutively going through three nodes which have a total supply/demand
larger than the capacity, these solutions can be exluded. For this purpose, they define the set

S (i, j) = {h ∈ V \ {0}, h , i, h , j : |qi + q j + qh| > Q}

and introduce Eqs. (24) and (25).

Finally, we present the final version of the optimization model in (F1M).

(F1M) min
∑
i∈V

∑
j∈V

ci jxi j (13)

s.to
∑
i∈V

xi j = 1 ∀ j ∈ V \ {0} (14)∑
i∈V

x ji = 1 ∀ j ∈ V \ {0} (15)∑
j∈V

x0 j ≤ m (16)∑
j∈V\{0}

x0 j −
∑

j∈V\{0}

x j0 = 0 (17)

ui − u j + N ∗ xi j ≤ n − 1 ∀i, j ∈ V \ {0} (18)

1 ≤ ui ≤ N ∀i ∈ V (19)

θ j ≥ max{0, q j} ∀ j ∈ V (20)

θ j ≤ min{Q,Q + q j} ∀ j ∈ V (21)

θ j − θi + M(1 − xi j) ≥ q j ∀i ∈ V, j ∈ V \ {0} (22)

θi − θ j + M(1 − xi j) ≥ q j ∀i ∈ V \ {0}, j ∈ V (23)

xi j +
∑

h∈S (i, j)

x jh ≤ 1 ∀i, j ∈ V \ {0}, h ∈ S (i, j) (24)∑
h∈S (i, j)

xhi + xi j ≤ 1 ∀i, j ∈ V \ {0}, h ∈ S (i, j) (25)

xii = 0 ∀i ∈ V (26)

xi j ∈ {0, 1} ∀i, j ∈ V (27)

4 Computational experiments

The simulation is implemented on a computer with 8 GB RAM and 2.3 GHz Intel Core i5
processor in python and python API for CPLEX 12.10 is used to solve the optimization model.
The constructed environment includes the station information from Lausanne-Morges district of





          

Figure 2: PubliBike stations (Lausanne-Morges district)

PubliBike BSS from Switzerland, which has a one-way station-based configuration. We assume
that static rebalancing is done at the end of every day.

The considered system has 35 stations (Fig. 2) and 175 bikes. The capacity of a relocating
vehicle, Q, is set to 40 bikes and the number of such vehicles, m, is set to 2. Since the stations of
PubliBike do not have lockers, it is possible to leave the bike regardless of the number of bikes
existing in that station. Therefore, the capacity of each station is set to infinity.

For uniform scenario, we set λp, for all p = 1..P, is equal to 20 requests per hour.

For the scenarios which take temporal differences into account, we set different λp values for
each time window p. Specifically, we create 5 time windows: 00:00-05:59, 06:00-08:59, 09:00-
15:59, 16:00-19:59, and 20:00-23:59. We set λ = {2, 40, 20, 40, 12}. These time windows are
designed to represent the rush hours and steady hours. Furthermore, the expected total number
of O-D pair requests in a day is kept the same as in the uniform scenarios.

For the scenarios which take spatial differences, i.e., difference in altitude, into account, we
again set λp, for all p = 1..P, is equal to 20 requests per hour. On the other hand, less demand is
generated for the uphill trips compared to downhill ones. Knowing the altitude of each station,
i.e., alti, ∀i ∈ V , the trips are deleted from the scenario with probability (altDO − altPU/2), where





          

Figure 3: Lost demand throughout the days

(a) Uniform (b) Temporal

(c) Spatial (d) Both spatial and temporal

DO corresponds to drop-off station and PU to pick-up station. For Lausanne-Morges case study,
spatial differences are important since the city has considerably high altitude difference.

The last set of scenarios, which take both the spatial and temporal differences into account, use
the properties of both the spatial and temporal differences at the same time.

Each scenario is generated and used for both known and unknown demand cases to compare
the lost demand and rebalancing operations cost. The objective function is built with the cost
value being the distance traveled by the truck(s) carrying the bikes. Since we are interested in
the evaluation of the added value of demand forecasting, the number of lost demand and the
total number of O-D pair requests are presented along with the rebalancing costs. Lost demand
corresponds to the number of users who opt-out because of unavailability of bikes.

The computational time burden results from the mathematical model. However, with 35 stations





          

Figure 5: Lost demand over 100 days (Unknown demand case)

it is still solvable in reasonable time with the modifications on the formulation of Dell’Amico
et al. (2014).

We first investigate the effect of knowing the O-D trip requests on lost demand (Fig. 3). We plot
both the unknown and known demand cases on the same plot to identify the difference. For all
four scenarios, we see that the lost demand for the known case is zero (with one exception on
day 38 for the temporal scenario). Therefore, we see an obvious difference between the two
cases by means of lost demand.

We also compare the effect of each scenario on the lost demand. For uniform scenario, the
average lost demand per day corresponds to 5.64, whilst this value is 7.91, 8.44, and 9.3 for
temporal, spatial, and spatial temporal scenarios, respectively. We also identify these different
effects of scenarios on the lost demand in Fig. 5. We see that the lost demand tends to increase
in nonuniform scenarios.

Finally, we analyze whether the rebalancing cost is affected by the demand knowledge or
scenario type. Figure 6 shows the rebalancing cost over 100 days. We see that the difference
is negligible for uniform and temporal scenarios. On the other hand, we see the cost varies for
spatial, and spatial and temporal scenarios. This can be explained by the fact that accummulation
in specific stations cause deviation from the optimal routes. Furthermore, we see that the
known demand case causes higher rebalancing cost. In these cases, the reduced lost demand is
compensated by the additional rebalancing cost. Depending on the monetary value of the lost
demand, the decision maker can assess the necessity of rebalancing operations by comparing
the lost demand and the rebalancing cost.





          

Figure 6: Rebalancing cost throughout the days

(a) Uniform (b) Spatial

(c) Temporal (d) Both spatial and temporal

5 Conclusion and future work

Like in many fields of research, the demand forecasting process is one of the several challenges
in the context of VSSs. Although there are many studies worked on demand forecasting, none
set an upper bound on the cost of such operations. Therefore, this work presents an attempt to
determine the value of demand forecasting. Optimization and simulation modules are developed
to include two aspects of the operations: supply and demand. By this way, we are able to
investigate the trade off between the cost of rebalancing operations and lost demand in the case
of known and unknown demand cases.

We perform computational experiments on a BSS, PubliBike, in Lausanne-Morges district of
Switzerland. We see a significant improvement in the number of lost demand with the demand
knowledge. No clear relation between the lost demand and rebalancing costs is found yet, but





          

we will further investigate this by increasing the number of experiment repetitions. Furthermore,
it is worth to note that these results solely rely on the simulation parameters. Different scenarios
might lead to different results.

The future work includes the development of another simulation module which mimics the
rebalancing operations. By this way, we will be able to see whether the results of the optimization
module can be applied in real life perfectly. Moreover, the demand distribution is an important
element in this framework. Following work also aims to analyze different scenarios and real
data. At this stage of the research, only the results for BSSs is presented whereas the simulator
is easily adaptable to CSSs. The future work also includes the extension of the BSS simulator
and adapting it to a CSS as well as different configurations such as dynamic rebalancing and
free-floating.
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