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Abstract

This paper explores the potential of priority schemes to alleviate congestion at a bottleneck.
While advocates of reserved lanes tend to focus only on the consequences of a potential mode
shift, this paper shows that prioritizing efficient modes can yield other positive effects, such
that priority schemes can be successful even with a given mix of vehicle types. To that end,
this paper revisits existing results known for homogeneous fleet and shows how heterogeneity
in vehicle types makes priority schemes even more relevant, especially when accounting for
potential adjustments in departure time. This works further examines the consequences of an
endogenous mix of vehicles types and of heterogeneity in desired arrival times.

Keywords
priority, departure time, carpool, metering, heterogeneity, bottleneck





      

1 Introduction

Faced with the tremendous cost of congestion and strong socio-political doubts regarding con-
gestion pricing, policymakers have turned towards alternative congestion-alleviating measures,
and in particular towards those High-Occupancy Vehicle (HOV) lanes. These lanes aim at
increasing the proportion of carpoolers and public transit users by providing them with reserved
lanes (spatial segregation). Such schemes have been studied both in idealized set-ups (Dahlgren,

1998, Konishi and Mun, 2010) and with empirically estimated models (Small et al., 2006).
These works show that reserved lanes can improve welfare and even be Pareto-improving, but
only in a restricted range of traffic conditions and potential HOV demand. These conditions are
not always met in practice, which may lead to the so-called “empty lane syndrome”.

In parallel, another line of research has focused on temporal segregation, in the context of
Vickrey’s departure time choice problem (Vickrey, 1969). The laissez-faire equilibrium is
particularly wasteful there because of “levelling down”: users have to fight (queue) for the
best alternatives (passage times), which makes them less attractive. Temporal segregation
reduces this queuing by reserving some highly desirable passage times for some priority users,
such that they do not have to compete with all the others. If demand is homogeneous and
inelastic, temporal segregation is Pareto-improving regardless of the proportion that is prioritized
(Fosgerau, 2011).

So far, the literature on temporal segregation has never aimed at prioritizing efficient modes,
like HOVs. In fact, it is always the transportation authority that selects the priority users. The
selection has been based either on an arbitrary characteristic (like the license plate) that can
vary from day to day (Daganzo and Garcia, 2000, Fosgerau, 2010, Knockaert et al., 2016), or
on the on-ramp at which users enter a highway (Lago and Daganzo, 2007, Shen and Zhang,

2010). The on-ramp based selection ramp facilitates the storage of parallel queues, but it is also
possible to keep a pure temporal segregation with differentiated pricing (Daganzo and Garcia,

2000, Knockaert et al., 2016).

This paper further develops the concept of temporal segregation by (i) laying a sound foundation
for its study with heterogeneous users, (ii) analyzing different effects with heterogeneous users
and (iii) leveraging the benefits of priority schemes to encourage carpooling. Section 2 introduces
our modeling assumptions, further explains how temporal segregation could be implemented
and provides some important preliminary results. Then, Sections 3, 4 and 5 all focus on different
effects of temporal segregation. Section 3 revisits those known for homogeneous populations,
Section 4 explores both the positive and negative consequences of heterogeneity in schedule
preferences while Section 5 considers different types of vehicles to assess the additional benefits





      

of prioritizing efficient modes (e.g. carpoolers). Finally, Section 6 combines all these effects and
evaluates the distributional consequences of different types of dynamic priority schemes.

2 Modeling assumptions and some fundamental

preliminary results

Vickrey’s bottleneck problem considers departure time choice in the simplest possible setting:
some total population of size N > 0 wants to go from A to B, and there is only one route
connecting these two places. This section details the modeling assumptions used for both the
demand and supply sides, and then addresses some fundamental issues like the existence and
uniqueness of equilibria.

2.1 Demand model and assumptions

The demand model considered here is the rather general one proposed by Lindsey (2004):

Assumption 1. The population consists of n homogeneous groups of users. Group i has a size

Ni, a preferred arrival time t∗i and a trip cost function ci(T, x) = αiT + Di(x), where T denotes

the extra travel time due to congestion, αi > 0 and x = t − t∗i represents the schedule delay. Di is

continuous, non-negative, satisfies Di(0) = 0 and is such that for all feasible x,

lim
∆x→0+

(Di(x + ∆x) − Di(x))/∆x > −αi.

The function D is known as the schedule penalty function. The widely-used α−β−γ preferences
of Arnott et al. (1993) represent a simple example:

D(t − t∗) =

β(t∗ − t), if t < t∗

γ(t − t∗), otherwise.
(1)

The coefficients β and γ account respectively for the costs of earliness and lateness. For
convenience, we will also denote N =

∑n
i=1 Ni.
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Figure 1: Schematic view with parallel queues

2.2 Supply model and assumptions

2.2.1 Mathematical description

The supply side in Vickrey’s bottleneck problem is highly stylised: it considers a single bottle-
neck of constant capacity S , where all the queuing occurs in a FIFO manner, without explicit
spatial propagation. The variant considered in this paper is similar to a highway merge with
ramp metering. Users waiting upstream of the bottleneck are separated into two queues, denoted
NP and P (see Fig. 1). Queue NP is open to all vehicles, while queue P is reserved for priority
users. Similarly to a highway mainline, queue P is not metered. It has direct access to a subpart
of the bottleneck with constant capacity S P ≤ S . If we denote rP(t) and sP(t) the flows of priority
users upstream and downstream of the bottleneck and qP(t) the queue length, we have the classic
bottleneck dynamics:

(
q̇P(t), sP(t)

)
=


(
rP(t) − S P, S P

)
, if qP(t) > 0 or rP(t) > S P(

0, rP(t)
)
, otherwise.

(2)

Then, similarly to a metered ramp, the approach NP has a time-dependent capacity, which
depends on the flow on the non-metered approach. If we define similarly rNP(t) and sNP(t) as the
flows of non-priority users upstream and downstream of the bottleneck and qNP(t) the number of
non-priority vehicles queuing at time t, we have:

(
q̇NP(t), sNP(t)

)
=


(
rNP(t) − (S − sP(t)), S − sP(t)

)
if qNP(t) > 0 or rNP(t) > (S − sP(t))(

0, rNP(t)
)
, otherwise.

(3)

Thus, the metering scheme ensures that the bottleneck capacity is fully used whenever it is
possible. There are usually very few time constraints in terms of passage time. Here, we simply
define the two following alternative assumptions, with respectively constant and time-varying
capacity.

Assumption 2. The bottleneck is open with constant capacity S > 0 during a time interval





      

T̄ = (t0, te), such that
∫ te

t0
S (t) dt > N and for all i = 1, ...n, t∗i ∈ T̄ .

Assumption 3. The bottleneck is open with a piece-wise continuous capacity S (t) > 0 during

an interval T̄ = (t0, te), such that
∫ te

t0
S (t) dt > N and for all i = 1, ...n, t∗i ∈ T̄ .

2.2.2 Practical view

Note that the metered approach should have a physical capacity of at least S , while the capacity
S P of the priority approach can be smaller. Yet, these queues do not necessarily need to be at the
same milepost on the highway, such that it is not actually necessary that the road upstream of
the bottleneck has a capacity S + S P. If the road with a bottleneck has m lanes and we accept to
allocate to priority users at most all the lanes but one (S P = m−1

m S )), Small (1983) proposed an
ingenious scheme that stores queues of non-priority vehicles at different mileposts for each lane,
with priority vehicles being allowed to slalom around these queues while non-priority vehicles
would have to stay on their lane.

As another alternative to parallel queues, Daganzo and Garcia (2000) proposes to impose a fine
toll on non-priority users that is just large enough to ensure that the two types of users never
travel simultaneously (but without removing queuing altogether). Knockaert et al. (2016) follows
a similar approach but considers instead a coarse toll. We do not consider such interpretations
here as (i) they still involve some pricing, (ii) fine tolls are difficult to implement while coarse
tolls theoretically lead to impractical departures masses and (iii) such strategies would ultimately
lead to different equilibrium departure profiles.

2.3 Equilibrium: Definition, existence and uniqueness

In the present context, an equilibrium is a situation such that no individual user can reduce her
travel cost by unilaterally changing departure time. Since the demand model is deterministic,
this type of equilibrium is commonly referred to as Deterministic Dynamic User Equilibrium
(DDUE). Equilibria are relevant insofar as they represent good approximations of the real
world averages. Previous simulation results suggest that even though the DDUE might not be
stable strictly speaking, the congestion cost approximation it provides are relatively good in
realistic settings (heterogeneous users and reasonable rational adjustment mechanisms)(Lamotte,

2018).

Without priority, the existence and uniqueness of such an equilibrium were shown by Smith
(1984) and Daganzo (1985) for populations having convex schedule penalty functions D and





      

with a continuum of users differing only in t∗. Lindsey (2004) extended these results to account
for non-convex and heterogeneous schedule penalty functions, as per Assumption 1. Iryo and
Yoshii (2007) and Akamatsu et al. (2018) later provided another proof of existence relying on
essentially the same assumptions as Lindsey (2004), but providing at the same time a method to
construct the equilibrium. More specifically, Iryo and Yoshii (2007) and Akamatsu et al. (2018)
showed the DDUE conditions are equivalent to solving a linear program, where the objective
is to minimize a weighted sum of the schedule penalties of all groups, where the weight of
group i is simply α−1

i . The difference between these two papers is that Iryo and Yoshii (2007)
assumes a discrete range of possible passage times, while Akamatsu et al. (2018) allows for a
continuum.

Although the mathematical conditions for existence and uniqueness are not the main focus of
the present paper, these results are required for the subsequent derivations. We thus propose the
following adaptation of the results previously mentioned.

Proposition 1. Let Assumptions 1 and 2 hold. Assume that a proportion x ∈ (0, 1) of users of

each group benefits from a metering-based priority scheme with a maximum capacity preemption

S P ∈ (xS , S ). In deterministic departure-time user equilibrium, the travel costs of each group

are uniquely defined.

The proof will be provided in the journal version of this paper.

3 Perfectly homogeneous users

This section assumes that all users are identical, but that a proportion p ∈ [0, p̄] benefits from
metering-based priority. The maximum proportion that can be prioritized is defined by p̄ = S P

S ,
such that priority users always have a favorable demand-to-capacity ratio.

3.1 Constructing the equilibrium

Equilibria under metering-based priority are most easily constructed sequentially. Indeed, the
equilibrium departures of priority users can be determined as if they were on their own and non-
priority users did not exist. This corresponds to a “normal” bottleneck problem with constant
capacity S p. Once the equilibrium exit flow of priority users sP is known, it can be subtracted
from the total capacity S , so that the equilibrium can be computed for the non-priority users.





      

Figure 2: Equilibrium with metering-based priority and homogeneous users

We illustrate this method hereafter with the α − β − γ preferences and then come back to the
general homogeneous case to provide expressions of the individual costs.

Fig. 2 represents a equilibrium with metering-based priority when users have α−β−γ preferences
(with γ = 2β). Priority users only travel during the period [tP

1 , t
P
2 ] which is defined bytP

1 < t∗, tP
2 > t∗ and D(tP

1 ) = D(tP
2 )

(tP
2 − tP

1 )S P = pN.
(4)

They pass the bottleneck at capacity during this interval, i.e. sP(t) = S P ∀t ∈ [tP
1 , t

P
2 ]. Together,

the constraints in Eq. (4) imply that D(tP
1 ) = D(tP

2 ) = δ pN
S P , with δ =

βγ

β+γ
, so the times tP

1 and tP
2

can be found as (D|[t0,t∗])
−1

(
δ pN

S P

)
and (D|[t∗,te])−1

(
δ pN

S P

)
, where D|A denotes the restriction of D to

A. The queuing time experienced by priority users passing the bottleneck at t is then such that it
compensates the variations of D(t) over the congested period:

T (t) =

α
−1

(
δ pN

S P − D(t)
)
, if t ∈ [tP

1 , t
P
2 ]

0, otherwise.

If we now turn to non-priority users, their travelling period [tNP
1 , tNP

2 ] is defined by:

tNP
1 < t∗, tNP

2 > t∗ and D(tNP
1 ) = D(tNP

2 )∫ tNP
2

tNP
1

S − sP(t) dt = (1 − p)N.

Since
∫ tNP

2

tNP
1

sP(t) dt = pN, the second equation reduces to
∫ tP

2

tP
1

S dt = N. It implies that D(tNP
1 ) =

D(tNP
2 ) = δN

S , i.e. tNP
1 and tNP

2 are the same as if nobody was prioritized. The queuing time is





      

then

T (t) =

α
−1

(
δN

S − D(t)
)
, if t ∈ [tNP

1 , tNP
2 ]

0, otherwise.

Let us now come back to the general case, with an unspecified schedule penalty function. Let
CP and CNP denote the equilibrium individual costs, and C(N) be the function that maps a
homogeneous population of size N with the associated individual equilibrium congestion cost
when accessing a bottleneck of constant capacity S (without any priority scheme). This function,
which depends on the schedule preferences, is known as the reduced form cost function. The
relations that were found with the α − β − γ preferences between CP, CNP and C actually hold
more generally, as shown hereafter.

Proposition 2. Consider a homogeneous population satisfying Assumption 1 and a bottleneck

satisfying 2. Under DDUE with metering-based priority, CP = C
(
pN S

S P

)
and CNP = C(N). The

DDUE with metering-based priority represents a Pareto Improvement compared to the DDUE

with no priority.

The proof is given Appendix A.1.

3.2 Optimal priority scheme

This section considers the effect of priority on the social cost,

SC(S P, p) = pNCP + (1 − p)NCNP. (5)

Since Proposition 2 implies that CP reduces with S P while CNP remains constant, our simple
model suggests that the social cost decreases with S P, such that the limit case S P = S is socially
optimal. In real life, the existence of unplanned trips or of some uncertainty in the bottleneck
access time would require setting S P < S . Such effects would however require more elaborate
models and are considered beyond the scope of this paper.

The effect of the proportion of priority users p is not as simple. In the case of a linear cost
function C(N) = δN

S , SC(S P, p) is a second order polynomial, which is minimized for p = S P

2S ,
such that the cost of priority users is exactly half the cost of the others. If we set S P = S ,
we recover the situation studied by Daganzo and Garcia (2000) and illustrated in Fig. 3a.
Graphically, the blue rectangle (of width pN and height δ pN

S ) represents the contribution of
priority users to the social cost, while the red rectangle (of width (1 − p)N and height δN

S )
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Figure 3: Linear and quadratic reduced cost functions, and their optimal priority schemes.

represents the one of non-priority users. Clearly, the sum of the areas of the two rectangles (i.e.
the social cost) is minimized when p = 0.5 and it leads to a social cost reduction (the gray area)
equal to 25% of the social cost without priority (which is the sum of the blue, red and gray
areas).

The comparison with Fig. 3 suggests that metering-based priority schemes can provide even
larger benefits when users have a convex cost function. This idea is formalized in the following
proposition.

Proposition 3. When applying metering-based priority to a homogeneous population having

a continuously differentiable, strictly increasing and convex reduced form cost function, the

optimal proportion of priority users is larger than p̄/2, and it leads to an overall congestion

cost reduction of at least p̄/4.

The conditions under which the reduced form cost function is convex are examined in Appendix
A.2. It is easy to see that the reduced form cost function is convex when the schedule preferences
satisfy Assumption 1 and are themselves convex, but this is not the only case.

Fosgerau (2011) showed a similar result for a different class of utility functions (strictly concave
in arrival and departure time at bottleneck, increasing with arrival time and decreasing with
departure time). Specifically, Fosgerau (2011) showed that for this class of utility functions,
priority schemes achieve at least half the social cost reduction of the ideal fine toll. One can
then recover the result in Proposition 3 by showing that with such schedule penalty functions,
the ideal fine toll decreases the social cost by at least 50%. Since our utility function linearly
decreases with the departure time, Fosgerau’s specification admits ours as a limit case.

Let S Cmbp and S Cre f represent the social cost with and without priority. Fig. 4 shows the
relative social cost reduction (S Cre f − S Cmbp)/S Cre f obtained with linear and quadratic cost
functions for all the range of possible S P/S and p. In the quadratic case, the maximum social
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Figure 4: Relative reduction of the social cost obtained with metering-based priority for homo-
geneous users with linear (left) and quadratic (right) reduced form cost functions.

cost reduction is obtained for (S P, p) = (S ,
√

1
3), and it leads to SC(p∗) = aN3

(
1 − 2

3
√

3

)
, i.e. a

social cost reduction of about 39 %.

4 The contrasted effects of priority with heterogeneous

users

This section studies the effects of metering-based priority on a population of users having
different schedule preferences. Since schedule preferences are difficult to observe, we assume
that the priority status is granted independently of them. Otherwise, this would open the way to
a complex and probably inefficient game, in which users might act as if they had other schedule
preferences, with the goal of being prioritized. This section shows with two simple examples
how heterogeneity in schedule preferences might either reduce or increase the benefits of priority
schemes.

4.1 The 2-flexibility example

The first example that we consider shows how priority may generate some inefficiencies by
affecting the sequence in which users pass the bottleneck. In fact, the laissez-faire policy is
known to minimize the sum of schedule penalties (Iryo and Yoshii, 2007) when users all have the
same value of time α. Thus, if the priority status is allocated independently of user’s preferences
the resulting order is likely to yield greater schedule penalties than the one resulting from the
laissez-faire equilibrium.





      

Table 1: Individual costs with flexible and inflexible users

Without metering With metering-based priority
All users Priority users Non-priority users

Flexible δF(NF + NI) δF p(NF + NI) δF(NF + NI)
Inflexible δINI + δF NF δI pNI + δF pNF δI(pNF + NI) + δF(1 − p)NF

0.20.40.6
0.8 1

Figure 5: 2-flexibility case. (a-b-c): Representations of the schedule penalties (a), the capacity
usage (b) and the queuing time (c) as functions of the passing time with ρ = 0.5, k = 2,
p = 1/6 and S P = S/3. (d): Contour plot of H(k, ρ).

The example considered involves two homogeneous groups: one “flexible” and one “inflexible”,
of size NF and NI . Both groups have α − β − γ preferences with the same preferred arrival time
t∗, the same value of time α, but the coefficients β and γ of inflexible users are k times (k > 1) as
large as those of flexible users: βI = kβF and γI = kγF . As in Section 2.1, let δF =

βFγF
βF+γF

and
δI =

βIγI
βI+γI

. Clearly, δI = kδF .

Without priority, the individual costs can be easily computed by following Arnott et al. (1993).
With metering-based priority, we can again construct the equilibrium sequentially by applying the
same approach first for priority users and then for the others. The various costs are summarized
in Table 1 and the dynamics with metering are illustrated in Fig. 5abc.

Let us now analyze the impact of priority on social cost. To simplify, we focus in this analysis
on the limit case S P = S . If we denote SCmbp and SCref the social costs with and without





      

metering-based priority, the relative change in social cost is

SCmbp
− SCref

SCref =
p(NFCP

F + NICP
I ) + (1 − p)(NFCNP

F + NICNP
I ) − NFCre f

F − NIC
re f
I

NFCre f
F + NIC

re f
I

.

By replacing the individual costs by their values in Table 1, the relative change in social cost can
be rewritten

SCmbp
− SCref

SCref = p(1 − p)(H − 1), (6)

where H =
(δI−δF )NI NF

SCref captures the effect of heterogeneity in flexibility. Indeed, the population
is homogeneous if and only if H = 0, in which case the problem reduces to the one studied in
Section 3.2. Since A is non-negative, heterogeneity clearly reduces the benefits of priority in the
2-flexibility problem. If we further denote ρ = NI

NI+NF
, H can also be rewritten as

H(k, ρ) =
(k − 1)pI(1 − ρ)

kρ2 + (1 − ρ)2 + 2ρ(1 − ρ)
.

One can then show that for k ≤ 9, H(k, ρ) ≤ 1 for all ρ ∈ [0, 1], i.e. metering-based priority is
always welfare improving, regardless of the exact value of p and ρ. If however k > 9, there are
some ρ which lead to H(k, ρ) > 1, such that metering-based priority may decrease welfare. This
is visible in Fig. 5d, which shows the variations of H(k, ρ).

4.2 Uniformly distributed t∗

The second example shows how metering-based priority may potentially yield larger benefits
than in the homogeneous case by ensuring that priority users experience no congestion at all.
We consider a case where users have the same α − β − γ coefficients, but where t∗ is uniformly
distributed on an interval [t∗1, t

∗
2] such that (t∗2 − t∗1) , ∆∗ ∈

[
0, N

S

)
. This set-up is not consistent

with Assumption 1 because of its infinite number of group, but it is well covered by the literature
(Vickrey, 1969) and it is probably the simplest and clearest way to illustrate the effect at hand.

The social cost decomposition at equilibrium is displayed in Fig. 6c as a function of ∆∗. The
total queuing time is constant for ∆∗ ∈

[
0, N

S

)
, but the total schedule penalty decreases linearly

and converges to 0 as ∆∗ tends towards N
S . The case ∆∗ = N

S is degenerate1, and the cases ∆∗ > N
S

exhibit no congestion at all, because the “demand density” (N/∆∗) is everywhere smaller than
the capacity S .

1There can be two equilibria, one with significant delays (the limit case as ∆∗ → N
S from below) and one with no

delay at all.





      

The same two cases should be distinguished when considering the priority users of a metering-
based priority scheme. Their demand density is pN/∆∗, while their capacity is S P. Priority users
can thus experience no congestion at all if p < ∆∗/(N/S P).

Case with no congestion for priority users (p < ∆∗/(N/S P)). Let us consider separately
the sum of schedule penalties and the sum of queuing costs. The sum of schedule penalties over
all users (both priority and non-priority) remains equal in all the scenarios considered. Indeed,
the arrival orders of these scenarios can be obtained by reallocating the passage times of early
(resp. late) or on-time users in such a way that all these users remain early (resp. late) or on
time, and it is easy to see that with homogeneous β and γ coefficients, such modifications leave
the sum of schedule penalties unchanged.

Let us now consider the graph of queuing costs in Fig. 6a. The queuing time profile for non-
priority users is the same as without metering, and overall, the distribution of passage times at
the bottleneck remains the same (uniformly distributed between t1 and t2). The only difference is
that pN users uniformly distributed between t∗1 and t∗2 experience no delay at all. It is easy to see
that the average queuing time corresponding to these passage times would have been the average
of δN

S (the maximum) and δ
(

N
S − ∆∗

)
(the minimum). Thus, the total queuing cost saved is

pN
(

N
S −

∆∗

2

)
. Since the overall congestion cost without metering is δN

(
N
S −

∆∗

2

)
, metering-based

priority simply reduces the overall congestion cost by a proportion p.

Case with congestion for all users (p > ∆∗/(N/S P)). As in the previous case, the sum of
schedule penalties remains unchanged. Here however, priority users do experience queuing at
equilibrium, as in Section 3. An example of such scenario is shown in Fig. 6c. The pN priority
users traveling between tP

1 and tP
2 benefit from a reduction of δ

(
N
S −

pN
S P

)
in their individual

queuing cost. Thus, the overall social cost reduction is

S Cre f − S Cmbp

S Cre f =
p
(

N
S −

pN
S P

)(
N
S −

∆∗

2

) .

The relative social cost reductions achieved with and without congestion for priority users are
shown together in Fig. 6d, as functions of p and ∆∗/(N/S ) for the case S P = S . The discontinuity
for p = ∆∗/(N/S ) and the upper bound of 100 % for the relative social cost reduction result
from the uniform distribution assumption, which is admittedly not so realistic. Yet, this simple
example illustrates two important results. First, priority can achieve very large benefits by
allowing some users to travel without congestion. These benefits may largely outweigh those
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Figure 6: Uniformly distributed t∗. (a,b): Examples of queuing cost profiles with (a) p <
∆∗/(N/S P) and (b) p > ∆∗/(N/S P). (c): Total cost decomposition depending on the
range of desired arrival times. (d): Relative social cost reduction obtained by metering
with S P = S .

found in the homogeneous case. Second, even when priority users are too numerous and have to
queue, the relative social cost reduction may exceed the value found with homogeneous users
(25 % in this case). This is because priority affects the queuing costs, and that these typically
represent a larger proportion of the social cost when users have different preferences (see Fig.
6c).

5 The additional benefits of prioritizing efficient modes

This section comes back to the case of a population with homogeneous schedule preferences,
but introduces two types of users: some “normal” users with a reference capacity usage of 1 and
some “socially efficient” users with a capacity usage of 1/g, with g > 1. An important difference
with Section 4 is that the capacity usage is considered to be observable, so that it can be used as
a criterion for the allocation of the priority status.

There could be plenty of interpretations for the type of vehicle used by “socially efficient” users:
short cars, autonomous cars, motorbikes, carpools, etc. Yet, for the sake of clarity, we will
think of efficient users as carpoolers. The coefficient g then represents the average occupancy of





      

carpools, and prioritizing only efficient users then boils down to creating a metering-based HOV
lane.

Note that mathematically, since we have made the continuum approximation, considering
users with different capacity usages is equivalent to considering that some users (the efficient
ones) have schedule preferences and values of time g times larger than others. The practical
consequences are however very different as (i) prioritizing the richest users is economically
regressive and (ii) it does not allow fostering virtuous mode choices. The remaining of this
section explores the consequences of prioritizing socially efficient users, first with an exogenous
proportion of efficient users (denoted q) and then when the proportion of efficient users depends
on the benefits that this choice yields.

5.1 Exogenous mix

If we keep the same population size, the peak hour now lasts for
(
1 − q +

q
g

)
N
S , such that the

reference cost (without metering) is Cref = C
((

1 − q +
q
g

)
N
S

)
. Obviously, the duration and the

reference cost decrease with both g and q. More interesting is the influence of the two following
priority schemes:

• Efficiency Priority (EP): all efficient vehicles are prioritized. The condition on q for
priority vehicles to be indeed prioritized becomes q

gS P < (1 − q +
q
g )S −1. Provided that it is

satisfied, the average cost is

CEP = qC
(

qN
gS P

)
+ (1 − q)Cref.

• Random Priority (RP): a proportion p = q is prioritized, but the priority users are chosen
randomly, independently of their efficiency. The average cost is then:

CRP = pC
(

pN
S P

(
1 − q +

q
g

))
+ (1 − p)Cref.

Note that the RP scheme defined above is equivalent to metering-based priority with a homoge-
neous population: if we consider two situations corresponding to the same congested period
but with either homogeneous users or users having different efficiency, the relative social cost
reduction obtained with RP metering is the same.

One can also already note that 1 − q +
q
g =

g(1−q)+q
g > 1−q+q

g = 1
g , so that CEP ≤ CRP ≤ Cref, i.e.

the EP scheme always provides a greater relative social cost reduction than the RP scheme. The
magnitude of this difference then depends on the prioritized proportion (q in the EP scheme, p
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Figure 7: Additional relative social cost reduction obtained by prioritizing efficient users (EP
scheme) instead of random users (RP), with g = 2.

in the RP one), the efficiency g and the capacity ratio S P/S . Fig. 7 provides some illustration
for the case g = 2 with both linear and quadratic cost functions.

The black solid and dashed lines indicate the feasible space frontiers, so that priority users
are actually prioritized. This space is defined by p < p̄ = S P/S with the RP scheme and
q < q̄ =

gS P

S +(g−1)S P with the EP scheme. Since S P/S < 1 implies g

1+(g−1) S P
S

> g
1+(g−1) = 1, the EP

scheme allows prioritizing a larger proportion of users than the RP scheme.

Fig. 7 suggests that the additional benefit of the EP scheme compared to the RP one can be
very significant. For a given proportion of efficient users q, a given prioritized proportion and a
given ratio S P/S , the additional benefits may be of the same order of magnitude as the original
benefits of the RP scheme, in particular when the number of prioritized users is large. This last
observation can be supported by a simple analysis of the ratio of social cost reductions in the
limit case S P = S . Let us assume that the cost function is continuously differentiable, and let us
consider the ratio (Cref −CRP)/(Cref −CEP) as the prioritized proportion tends towards 0 and 1.
To be fair, we should only compare situations with the same proportion of efficient users q, so
we assume that p = q in the RP scheme. The ratio of social cost reductions then reduces to

Cref − qC
(

qN
S

(
1 − q +

q
g

))
− (1 − q)Cref

Cref − qC
(

qN
gS

)
− (1 − q)Cref

=
Cref −C

(
qN
S

(
1 − q +

q
g

))
Cref −C

(
qN
gS

) .

On one hand, both Cref −C(q(1 − q +
q
g)) and Cref −C(q

g) tend towards Cref as q tends towards
0, so their ratio tends towards 1. On the other, for q close to 1, the numerator is equal to
C′( 1

g ) 1−q
g + o(1− q), while the denominator is equal to C′(1

g )(1− q) + o(1− q).2 Their ratio tends
towards 1

g . It suggests that if only a small proportion is prioritized, it is not crucial to base the

2We use here the “small o” notation: u(x) = o(v(x)) close to y if u(x)/v(x)→ 0 when x→ y.





      

selection on the traffic efficiency. Any other politically acceptable criterion would also be fine,
as long as the mix of vehicles can be considered independent of the priority scheme. If however
a large proportion is to be prioritized, prioritizing efficient users would yield significantly larger
benefits.

5.2 Endogenous mix

Let us now focus on the case where only “efficient” users are prioritized, and where the proportion
of such users is endogenous. With the interpretation of efficient users as carpoolers, users would
choose to carpool if and only if the advantage they derive from being prioritized outweighs the
inconvenience cost of carpooling.

5.2.1 A distribution of inconvenience cost

We assume that all other things being equal, users have a preference for either the efficient mode,
or for the normal one. If we take the normal mode as a reference, all users have a personal
inconvenience cost χ ∈ R associated to being efficient, which can be positive or negative. In the
case of carpooling, χ would account for a variety of inconveniences such as the need to detour,
the privacy loss, or the extra organizational load, as well as for carpooling advantages, such as
the opportunity to socialize or the sharing of fixed costs related to traveling.

Let us assume that χ follows a continuous distribution and let f and F denote its pdf and cdf. The
following assumption guarantees that even without any priority scheme, a proportion F(0) > 0
of users carpool.

Assumption 4. The support of the probability density function of the carpooling cost is an

interval including 0 and not bounded above.

5.2.2 Equilibrium mix

Since users are assumed to differ only in their inconvenience cost χ, the equilibrium efficient
proportion q is simply q = F(a), where a denotes the advantage users derive from being
prioritized. Yet, for a given preemptable capacity S P, the queuing advantage experienced by
priority users depends on the number of priority users. Specifically, if there are q ∈ [0, 1]





      

Figure 8: Equilibrium with endogenous proportion of efficient users, with α − β − γ preferences,
a logistic distribution of the carpooling cost χ and with S P = S/3.

efficient users, their congestion advantage is

A(q) =

C
((

1 − q +
q
g

)
N
S

)
−C

(
qN
gS P

)
, if q ∈

[
0, q̄

]
,

0, if q ∈
[
q̄, 1

]
.

Thus, solving for the equilibrium reduces to solving the fixed point problem q = F(A(q)).

Proposition 4. Let assumptions 1 and 2 hold. Assume that the population differs only in the

carpooling inconvenience cost, that Assumption 4 holds, and that carpoolers benefit from a

metering-based priority scheme with S P < S . There exists a unique equilibrium proportion of

carpoolers qEP. It is strictly greater than F(0) is and only if F(0) < q̄.

This result is relatively obvious graphically (Fig. 8), but its proof is provided in Appendix. The
magnitude of the increase in the carpooling proportion strongly depends on the distribution of
the carpooling cost and on congestion severity. When congestion is very severe, such a priority
treatment is equivalent to providing a very significant monetary reward to carpoolers. Note also
that even when such a scheme is implemented, the proportion of carpoolers remains smaller than
it should be to minimize the social cost. Indeed, users do not account for the overall positive
externality they would have on others if they carpooled.

6 Case-study

6.1 Description

This section presents numerical results regarding the social cost and distributional consequences
of the various schemes discussed in the paper. Since the number of parameters is too large





      

Figure 9: Demand description: (a) distribution of desired passage times and (b) schedule penalty
functions.

for a complete sensitivity analysis, we focus on a single scenario designed to be realistic and
combining all sources of heterogeneity.

As in Section 4.1, half of the users have a schedule penalty function k times larger than the other
half (with k = 2). These are illustrated in Fig. 9b. The functional form used is an approximation
of the α−β−γ preferences, given by D(t− t∗) =

∫ t

t∗
δ
π

tan−1(w(s− t̃)) ds, with t̃ = t∗+ tan(π(γ−β)
2(γ+β) )

1
w

and w = 10 h-1. Users also have heterogeneous desired arrival times t∗, but these are now
normally distributed for more realism (with a mean t = 8 h and a standard deviation of 0.35
h). The ratio N/S was then set to 0.7, such that the total desired passage rate exceeds capacity
between approximately 7h40 and 8h20, as shown in Fig. 9a.

The carpooling cost χ is assumed to follow a logistic distribution. We parameterized it such that
F(0) = 20% (in line with trends reported in the literature), and then tried different values for
the mean carpooling cost χ̄, ranging from 0.4 h to 10 h. Based on a short literature review, a
reasonable value would seem to be around 0.5 h. Finally, the maximum preemptable capacity
S P was taken equal to S/3.

6.2 Computational method

The method used to compute equilibria is based on Iryo and Yoshii (2007), and it consists in
solving an equivalent Linear Program (LP). This method assumes a finite set of groups (our
n) and a finite set of possible bottleneck passage times. Here, we considered a set of times
between 7 h and 9 h with a regular spacing of 1/200 h (400 possible passage times in total).
The distribution of desired arrival time was discretized on the same set, so that the reference
scenario included 2 sets (one flexible and one inflexible) of 400 groups each, with normally
distributed group sizes Ni. The cases with metering-based priority were solved by applying the





      

Figure 10: Relative social cost with Random Priority (p varies between 0 and S P) and with
Efficiency Priority (with average carpooling cost χ̄ equal to 0.4, 0.5, 0.7, 1 and 10).

same algorithm twice (first for the priority users, then for the others).

6.3 Social cost comparison

We are interested in how, starting from the reference scenario described in Section 6.1, metering-
based priority can reduce the cost of congestion. This section takes a global perspective and
looks only at the social cost (i.e. the sum of all individual costs), while the next one looks at the
distributional consequences (at the individual level).

Fig. 10 represents the social cost in a broad range of situations. The blue curve shows how it
varies with the prioritized proportion, when this proportion is chosen randomly (see Section
5.1). Here, the largest social cost reduction (11%) is obtained for p = 0.74S P

S . The magnitude of
this reduction is consistent with the 2-flexibility example of Section 4.1, while the prioritized
proportion is larger than O.5 S P

S , in agreement with Proposition 3 (for the homogeneous case).
Then, the blue and purple curves show the social cost reduction obtained when prioritizing
carpoolers only, with an endogenous mix. The red curve shows the total congestion cost (queuing
and schedule penalty), while the purple curve also includes the carpooling cost of the users
that do not naturally carpool. The point with χ̄ = 10 approximates the case with an exogenous
proportion of carpoolers of F(0). The average carpooling cost is so large in this case that the
benefits of the metering-based priority scheme are not sufficient to create a significant mode
shift. The comparison between the point χ̄ and its vertical projection on the blue line illustrates
the importance of prioritizing efficient users, even with a given mix (as explained in Section 5.1).

The other points on the blue and red lines then illustrate the additional benefits gained by
incentivizing carpooling. These can greatly increase the social cost reduction, even with





      

Figure 11: Passing rate and delays for the best RP scheme and for EP with χ̄ = 0.5

relatively small mode shifts. The case with χ̄ = 0.4 achieves a social cost reduction of 27.4 %
(12.75 % more than the χ̄ = 0.4) with 23.4 % of carpoolers (i.e. only 3.4 % more than in the
reference scenario and in the case χ̄ = 10).

6.4 Distributional consequences

We now compare more carefully three situations:

• the reference scenario without metering,
• the best RP scheme (p = 0.74S P

S ),
• a realistic EP scheme (χ̄ = 0.5).

The passing rates and the queuing times for priority and non-priority users are shown in Fig. 11.
As the RP scheme forces non-priority users to arrive further from their desired arrival time, the
convexity of the schedule penalty function leads to steeper travel time variations at equilibrium.
In the end, this results in a queuing profile for non-priority users that exceeds the reference
one. A similar effect also exists with the EP scheme, but it is counterbalanced by the mode
shift towards carpooling, which slightly reduces the congested period duration. As a result, the
queuing time experienced by non-priority users is always smaller than in the reference case.

This has significant consequences at the individual level. Fig. 12a shows the distribution of
individual cost reductions when comparing the EP and RP scheme to the reference scenario.
With the RP scheme, slightly more than 20 % of users are better-off, about 15 % are indifferent,





      

Figure 12: Distributional consequences of the best RP scheme and of the EP scheme with
χ̄ = 0.5: (a) global view of the individual cost reductions sorted in increasing order
for both schemes, (b,c,d) individual cost reduction, per user type.

and the rest is worse-off. Fig. 12b provides information regarding the individuals that win and
lose. Unsurprisingly, the worse off users are the non-prioritized ones who would like to pass
the bottleneck in the middle of the peak. Thus, the social cost reduction of 11 % hides very
different situations at the individual level. The existence of a large majority that is worse off

may seriously compromise the feasibility of such a scheme.

On the other hand, Fig. 12a shows that with the EP scheme, all users are either better off or
indifferent. The users that gain the most are naturally those that carpool (see Fig. 12c and d), but
some others also have small gains, thanks to the induced mode shift.

7 Conclusive remarks

Metering-based priority is a very promising congestion alleviating measure, especially when its
advantages are used to leverage carpooling or other efficient modes. As our numerical case-study
showed, it has the potential to induce Pareto-improvements, even with very heterogeneous users.
The inherently adaptive nature of its metering-based mechanism also confers to it a strong





      

robustness. In fact, implementing a metering-based mechanism does not even require precise
estimates of travelers’ inclination towards carpooling. While a real-world implementation would
be most valuable, another worthy research avenue would be to investigate whether similar
priority schemes can be developed for other congestion mechanisms.
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A Individual costs and reduced form cost function

A.1 Proof of Proposition 2

The following lemma provides a general expression for the reduced form cost function.

Lemma 1. Consider a problem satisfying Assumption 1 and 3, but with homogeneous population

(n = 1). In deterministic departure-time user equilibrium, the individual cost is

C(N) = sup{c ∈ SP |
∫ te

t0
[D(t − t∗) < c]S (t) dt ≤ N}, (7)

where SP denotes the image of the set (t0, te) under t 7→ D(t∗ − t).

Proof. Let s(t) denote the flow passing the bottleneck at time t. Equilibrium requires that no user
can become better-off by changing departure time. Thus, all times t such that D(t − t∗) < C(N)
must satisfy T (t) > 0, and therefore s(t) = S (t). By integrating over time and using the Iverson
bracket notation3, we have that C(N) must be part of the set

Z1 = {c ∈ R |
∫

[D(t − t∗) < C(N)]S (t) dt ≤ N}. (8)

Similarly, since the queuing time T cannot be strictly negative, all times such that s(t) > 0 must
satisfy D(t − t∗) ≤ C(N). By integrating over time, C(N) must also be part of the set

Z2 = {c ∈ R |
∫

[D(t − t∗) ≤ C(N)]S (t) dt ≥ N}. (9)

Besides, by assumption 3, we can take t ∈ (t0, te) such that s(t) < S (t), and therefore T (t) = 0 and
D(t − t∗) ≥ C(N). Since N > 0, we can find t′ such that s(t′) > 0 and therefore D(t − t∗) ≤ C(N).
Since t 7→ D is continuous over the closed interval defined by t and t′, we obtain that C(N) ∈ SP.

Let us now assume that we have c1 ∈ Z1 ∩ SP, c2 ∈ SP and c2 < c1. Clearly,∫ te

t0
[D(t − t∗) ≤ c2]S (t) dt =

∫ te

t0
[D(t − t∗) < c1]S (t) dt −

∫ te

t0
[D(t − t∗) ∈ (c2, c1)]S (t) dt.

Since c1 ∈ Z1,
∫ te

t0
[D(t − t∗) < c1]S (t) dt ≤ N, and since both c1 and c2 belong to SP and D is

3[P] is equal to 1 if P is true and 0 otherwise.





      

continuous,
∫ te

t0
[D(t − t∗) ∈ (c2, c1)]S (t) dt > 0. Thus,

∫ te
t0

[D(t − t∗) ≤ c2]S (t) dt < N, i.e. c2 < Z2.
The contrapositive is that all elements of Z2 ∩ SP are greater than all elements of Z1 ∩ SP. Since
C(N) belongs to both, it is necessarily the supremum of Z1 ∩ SP.

Since priority users do not compete with non-priority ones, the individual cost they incur is
simply cP = C(p N

S P ). Non-priority users then compete among themselves for the remaining
time-dependent capacity, S − sP(t). Using Lemma 1, their individual cost is

cNP = sup{c ∈ SP |
∫ te

t0
[D(t − t∗) < c](S − sP(t))x dt ≤ (1 − p)N}

= sup{c ∈ SP |
∫ te

t0
[D(t − t∗) < c]S dt −

∫ te

t0
[D(t − t∗) < c]sP(t) dt ≤ (1 − p)N}.

Since sP(t) > 0 ⇒ D(t − t∗) ≤ cP and cP < cNP,
∫ te

t0
[D(t − t∗) < c]sP(t) dt =

∫ te
t0

sP(t) dt = pN.
Thus,

cNP = sup{c ∈ SP |
∫ te

t0
[D(t − t∗) < c]S dt ≤ N} = C(N).

A.2 Conditions for a convex reduced form cost function

The general form of C(N) provided by Eq. (7) implies that C is non-decreasing, but it is not very
intuitive. If however we further assume that D is strictly decreasing for negative x and strictly
increasing for positive x, Eq. (7) reduces to∫

[D(t − t∗) ≤ C(N)]S (t) dt = N.

With the α − β − γ preferences introduced in Section 2.1 and a constant capacity S , the solution
to this equation is simply C(N) = δN

S , where δ =
βγ

β+γ
.

Let us now examine the conditions under which C is convex (or concave). To obtain some
intuition, we focus on the case of a bottleneck of constant capacity S and on a situation like the
one illustrated in Fig. 13(a), where t 7→ D(t− t∗) is continuously differentiable on (t0, t∗)∪ (t∗, te),
with D′(t − t∗) < 0 for early arrivals (t < t∗) and D′(t − t∗) > 0 for late arrivals (t > t∗).

In such a situation, the congested period at equilibrium always consists of a single interval
(t1, t2). If the demand is sufficiently small so that t1 and t2 are different from t0 and te, these
bounds can be defined as functions of the equilibrium cost c as the only times in (t0, t∗) and
(t∗, te) satisfying D(t1(c) − t∗) = D(t2(c) − t∗) = c. Differentiating this with respect to c leads





      

t [h]t∗

D(t − t∗)

t1 t2

c

(a) Schedule penalty function

C(r)

r [h]t2 − t1

c

(b) Reduced form cost function

Figure 13: A non-convex schedule penalty and its a convex reduced cost function.

to t′1(c) = 1/D′(t1 − t∗) and t′2(c) = 1/D′(t2 − t∗). Note also that C−1(c) = N = S (t2(c) − t1(c)).
Combining these results leads to:

C′(N) = (C−1′(C(N)))−1

= S −1(t′2(C(N)) − t′1(C(N)))−1

= S −1
((

D′(t2(C(r)))
)−1
−

(
D′(t1(C(r)))

)−1
)−1

.

If t 7→ D(t − t∗) is convex (resp. concave) on both (t0, t∗) and (t∗, te), the functions N 7→

D′(t2(C(N))) and N 7→ −D′(t1(C(N))) are both increasing (decreasing), so C′ is also increasing
(decreasing) and C is therefore convex (concave). Yet, if one is convex and the other concave (as
in Fig. 13(a)), it is still possible that the variations of one dominate the variations of the other,
so that the overall function C is convex (as in Fig. 13(b)) or concave.

B Other proofs

Proof of Proposition 3. Differentiating Eq. (5) with respect to p leads to

∂SC
∂p

(S P, p) = NC
(

p
p̄

N
)

+ pNC′
(

p
p̄

N
)
− NC(N).

Provided that p > 0, this is of the same sign as

1
p
∂SC
∂p

(S P, p) =
C

(
p
p̄ N

)
−C(N)

p
+ C′

(
p
p̄

N
)

.

The convexity of C implies that both
(
C( p

p̄ N) −C(N)
)

p−1 and C′( p
p̄ N) are increasing, so their

sum is increasing as well. Besides, ∂SC
∂p (S P, 0) = N(C(0) − C(N)) < 0 and ∂SC

∂p (S P, p̄) =





      

p̄NC′(N) > 0. Thus, for any given S P, there exists a unique p∗ ∈ (0, p̄) minimizing p 7→

SC(S P, p) and SC(S P, p) decreases with p on p ∈ [0, p∗] and increases with p on p ∈ [p∗, p̄].

Let us now focus on the case p =
p̄
2 . For this specific case,

C
( p

p̄ N
)
−C(N)

p represents the negative of
the average slope of the function p 7→ C

(
p
p̄ N

)
between the points p̄

2 and p̄. The convexity of
C imposes that its absolute value is larger than C′(N/2). Thus, ∂SC

∂p

(
S P, p̄

2

)
≤ 0, and therefore

p̄
2 ∈ (0, p∗].

Finally, the convexity of C also imposes that C(N/2) ≤ C(0)+C(N)
2 =

C(N)
2 , which means that

SC(S P, p∗) ≤ SC
(
S P, p̄

2

)
≤

p̄
2

C(N)
2 + (1 − p̄

2 )C(N) =
(
1 − p̄

4

)
C(N). Thus, the maximum social

cost reduction is of at least p̄/4.

Proof of Proposition 4. The congestion advantage A of priority users is continuous and de-
creases from A(0) = C

(
N
S

)
−C(0) to A(1) = 0. Thus, the image of A is Im(A) = [0, A(0)]. We

are looking for qEP ∈ [0, 1] such that F(A(qeq)) = qEP. This implies that qeq belongs to the
image of Im(A) under F. Since F is increasing, qEP ∈ [F(0), F(A(0))]. Let then F|Im(A) denote
the restriction of F to Im(A). Assumption 4 ensures that the F|Im(A) is continuous and strictly
increasing, so we can define its inverse F|−1

Im(A). The function F|−1
Im(A)(q)−A(q) strictly increases on

[F(0), F(A(0))] from −A(F(0)) ≤ 0 to A(0) − A(F(A(0))) ≥ 0. Thus, F|−1
Im(A)(q) − A(q) intersects

0 only once and there is a unique qeq ∈ [F(0), F(A(0))] such that F|−1
Im(A)(q

EP) = A(qEP), i.e.
F|Im(A)(A(qEP)) = qEP. This solution is strictly greater than F(0) if and only if −A(F(0)) < 0, i.e.
F(0) < gS P

S +(g−1)S P .
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