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Focus of this Paper – Continuing exploration of role 
of process heuristics
– We have selected two behavioural heuristics to study jointly in explaining (through 

preference revelation) choice making:
– Both of which reflect risk attitude in different ways, in a nonlinear additive form 
– where each heuristic contributes, up to a probability within a sampled population, the 

selection of a relevant multiple-heuristic utility expression, both within and between 
respondents. 

– The jointly estimated model of interest (for a sample) herein is designed to account 
for: 
– Extremeness aversion as one form of risk-accommodating heuristic, and the
– Fully compensatory attribute rule with risk attitude and perceptual conditioning as an 

extended expected utility attribute transformation (FC-EEUT) (as set out initially in Hensher 
et al. 2011). 

– We compare the findings with separate stand alone models.
– We also make some comments on risk vs uncertainty and ‘potential limitations’ of 

stated choice settings in studying preferences under uncertainty – a challenge! 
Hensher, D.A., Greene, W.H. and Li, Z. (2011) Embedding risk attitude and decisions weights in non-linear logit to accommodate time variability 
in the value of expected travel time savings, Transportation Research Part B 45, 954-972.
Hensher, D.A., Balbontin, C., and Collins, A. (2018) Heterogeneity in decision processes: embedding extremeness aversion, risk attitude and 
perceptual conditioning in multiple process rules choice making, (Paper presented at The Fifth International Choice Modelling Conference 3 – 5 
April 2017, Cape Town, South Africa, April 2016, and the Western Economic Association Annual Conference, Newcastle Australia January 12 
2018, special session chaired by Daniel L. McFadden), and the International Transport Economics Association (ITEA) Conference June 2018 Hong 
Kong, Transportation Research Part A, 111, 316-325.
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How to Capture Heterogeneity in Decision Processes

– A suggested alternative to the popular latent class model (LCM) form in studying process rules 
is to probability weight each heuristic or rule directly in a single utility function associated with 
each alternative in a choice set (e.g., Leong and Hensher 2012, 2012a)
– Treating the model as a standard logit form such as MNL or MMNL (mixed logit).
– Notes: LCMs are essentially a set of jointly estimated MNL (or MMNL) models.

– Within a single utility function, this approach allocates the proportional contribution of each 
process rule to overall utility (recognising we are dealing with a sample from a population)
– with the possibility of linking the share outcome (HW) to the characteristics of respondents 

and other possible contextual influences (including beliefs, awareness etc.). 
– Uj= HWH1*UH1+HWH2*UH2 +j

– In a model with a total of M heuristics or rules, the weights of each heuristic, denoted by HWm, 
m=1,2,…,M, can be given as a logistic function:

Leong, W., Hensher, D.A. (2012) Embedding multiple heuristics into choice models: An exploratory analysis, Journal of Choice Modelling, 5, 
131–144. 
Leong, W. and Hensher, D.A. (2012a) Embedding decision heuristics in discrete choice models: a review, Transport Reviews, 32 (3), 313-331. 
(ERA A)
Greene, W.H. and Hensher, D.A. (2003) A Latest Class Model for Discrete Choice Analysis: Contrasts with Mixed Logit, Transportation Research Part B, 37, 
681-698.
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Some background: Contextual Concavity Model (CCM)

– One of the most robust empirical generalisations about human perception and 
decision making is diminishing returns or sensitivity (e.g., Meyer and Johnson 
1995). 
– A specific feature is the mapping of objective attribute values onto 

psychological value expressed typically as a concave function (e.g., Thaler
1985; Tversky and Kahneman 1991). 

– An extension is the compromise effect (relative to some setting) as a behavioural 
appealing idea that can be mathematically modelled by combining the notions of 
concavity and context dependence; in other words, via “contextual concavity.”
– Can include referencing, status quo etc.
– Examples are studies by Hensher, Fosgerau, de Borger, De Palma…

– Within the DC setting, the deterministic component of utility of alternative j (for 
consumer i) equals the sum across attributes of concave functions of the MU gains 
between this alternative and the alternative with the minimum MU for each attribute 
k in the (local) choice set S.

– If concavity exists we have risk aversion behaviour.
– If convexity exists we have risk seeking behaviour.
– Otherwise risk neutral
– Note – this is separate from the issue of perceptual conditioning (see later)
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Compromise Models – A Class of Models

A Nice Touch

– The CCM models are “general compromise” models in the 
sense that they can capture any form of compromise (or 
extremeness aversion); 

– that is, compromise which is of either equal or different 
magnitude across attributes

– Very flexible – any number of attributes and alternatives
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Be aware

–We are taking only two interesting ‘process 
rules’, but any possibilities exist.

–In ongoing research, we are designing a 
study in which any number of relevant 
process rules are revealed that are used in 
making a choice

–We can then estimate a joint model of 
process and outcome  to represent 
heterogeneous choice making settings.

–Watch this space!
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Heuristic (Process Rule) 1: 
Extremeness Aversion 

In the model, we allow    (phik) to be freely estimated (the concavity 
parameter), and have chosen a form where the reference (i.e., “worst”) 
attribute level, defined as the maximum of each of the time and cost 
components in the choice set, precedes the minus sign; hence the prior 
expectation is for    to be positive. 

k

  ˆ
k

Sign of     : If the notion of diminishing returns in the contextual concavity model is 
accepted, the prior expectation is for     to satisfy the inequality  0 1k k

k

     
   
   

max max 0

max max 1

max max 2

U(current) RefASC *(time time) *(cost cost)

U(alt1) (1 *TmsYr)* *(time time) *(cost cost)

U(alt2) (1 *TmsYr)* *(time time) *(cost cost)
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‘Process Rule’ 2: Recognising Risk Attitude and Perceptual 
Conditioning

Hensher, D.A., Greene, W.H. and Li, Z. (2011) Embedding Risk Attitude and Decisions 
Weights in Non-linear Logit to Accommodate Time Variability in the Value of the 
Expected Travel Time Savings, Transportation Research Part B 45, 954-972. (ERA A*)

Suggested replacing VoT and VoR with a single VETT

Li, Hao, Tu, H. and Hensher, D.A. (2016) Integrating the mean–variance and scheduling 
approaches to allow for schedule delay and trip time variability under uncertainty, 
Transportation Research Part A, 89, 151-163. (ERA A*)

Combing the two popular ways to value reliability

Li, B. and Hensher D.A. (2017) Risky weighting in choice analysis with risky prospects, 
Transportation Research Part B, 102, 1-21. (ERA A*)

A way to reveal functional form of DW without imposing a priori



The University of Sydney Page 10

Heuristic (Process Rule) 2:
Extended Expected Utility (EEUT) Attribute form with Risk Attitude and Perceptual 
Conditioned Travel Time under the Fully Compensatory Paradigm

  ( ) exp( ( ln ) )w P P   
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Assume CRRA form for risk attitude: Relative risk aversion (RRA) is a rate at which marginal utility decreases when wealth (herein x) 
is increased by one per cent. Arrow considered that RRA is likely to be constant or perhaps increasing. The parameter  measures the 
degree of RRA that is implicit in the utility function.

Concave utility function (α>0): risk-averse attitude, i.e., a sure alternative is preferred to a 
risky alternative (i.e., with multiple possible outcomes) of equal expected value. 
Convex utility function ( <0): risk taking attitude, i.e., a risky alternative is preferred to a sure 
alternative of equal expected value.

Prelec, D., 1998. The probability weighting function. Econometrica 66 (3), 497–527.

Kahneman, D., Tversky, A., 1979. Prospect theory: an analysis of decision under risk. Econometrica 47 (2), 263–292.

This form allow for over-weighting of low probabilities and under-weighting of high probabilities for 0 <  < 1. Allows for curvature but not 
elevation.
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Recognising risk attitude

Implications of risk attitude on choice behaviour:
Risk Averse: U(sure)>U(risky)
Risk Taking: U(sure)<U(risky)
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Name Equation References 

Linear form with 

discontinuous end 

points 

Example: 

(1 )        if  1
( )

    1            otherwise
r p p

w p
 

 
  

Loomes et al. (2002); (Abdellaoui 

et al., 2010) 

Power ( ) rw p p   
Simplification of the models: 

Goldstein and Einhorn (1987); 

Quiggin (1982); Tversky and 

Kahneman (1992)  

Goldstein-Einhorn 
( )

(1 )
spw p

sp p



 
   

Goldstein and Einhorn (1987) 

Tversky and Kahneman 
1/( )

( (1 ) )
pw p

p p



  
   

Quiggin (1982); Tversky and 

Kahneman (1992); Camerer and 

Ho (1994); Tversky and Fox (1995) 

Wu-Gonzalez 
( )

( (1 ) )s

pw p
p p



 
   

Wu and Gonzalez (1999) 

Prelec I ( ln )( ) exp pw p
   

Prelec (1998) 

Prelec II ( ln )( ) exp s pw p
   

Prelec (1998) 

Exponential-power (1 )
( ) exp

sr p
sw p

 
  

Prelec (1998) 

Hyperbolic-logarithm /( ) (1 ln ) s rw p r p     
Prelec (1998) 

 

Summary Table of Some Functional Forms of 
Perceptual Conditioning 
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A side issue: Risk and Uncertainty
– The focus of the model is on risk as well as ways to accommodate objective probabilities

– In reality individuals form beliefs and opinions about likely travel time, referred to as subjective probability
– Risk relates to a given or known probability of occurrence distribution.

– Potential issues with Stated Choice data compared to RP data
– Assumes pre-defined attribute levels including occurrence probabilities (all studies using SC designs to value 

travel time variability or reliability with one exception we are aware of – ref below modified RP)
– Focus  mainly on statistical efficiency but less on behavioural relevance in settings of uncertainty

– Uncertainty ambiguity
– Ellsberg paradox – when choice is made under uncertainty individuals have to assess the probs of potential 

outcomes with some degree of vagueness associated with their beliefs (i.e., subjective probabilities).
– How well does perceptual conditioning on objective probs handle this?
– We assume that DWs (i.e., the W(P) transformation) acts as a proxy to identify subjective probabilities
– This gives us what psychologists refer to as a belief-based measure of outcomes.
– In SC, I refer to it as ‘equivalent subjective or belief adjusted attribute-specific outcome probabilities.
– These parameterised transformations can be made a function of observed or reported contextual effects 

known as source preferences (Tversky and Fox) to explain and account for subjective probability 
(uncertainty) ambiguity.

– The process for modelling decision under uncertainty:

Full details in: Hensher, D.A., Li., Z. and Ho, C. (2015) The role of source preference and subjective probability in valuing expected travel time 
savings, Travel Behaviour and Society, 2, 42-54.
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Four levels of subjectivity and objectivity in 
experiments

– FO: fully objective, PS(1): Partially subjective
– PS(2): Partially subjective, FS: fully subjective

– SPs: Subjective probabilities, SAs: Subjective attributes
– OPs : Objective probabilities, OAs: Objective attributes

Level i FO      = OPs+OAs 
Level ii PS(1)  = OPs+SAs 
Level iii PS(2)  = SPs+OAs 
Level iv FS      = SPs+SAs 
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Joint Heuristics Model Summary
     

   
   

1, max max 0

1, 1 max max 1
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t c
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 

 
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The weights can be calculated as

 

 
 

1 1, 2 2, 0

1 1, 1 2 2, 1 1
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The total utility will be conditioned by the number of times the route has been 
used in the last year, as follows (the experience effect referred to by Dan) and 
treated as heteroscedastic conditioning
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Recognising risk attitude and perceptual conditioning
(an aside given nature of  data used)

Example of travel time variability valuation: State of practice

– In reality, the travel time for the same repeated trip varies due to travel time 
variability
– Which leads to a travel time distribution (time and probabilities of 

occurrence)

– In choice experiments (and RP data ideally), we can have multiple travel 
times per respondent alternative

– The mean-variance and the scheduling model are two dominant approaches



The University of Sydney Page 17

Attribute Package in Road Context - Toll vs. Free Route 
Choice
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Results: Accounted for multiple choice scenarios per 
respondent, Uj= HWH1*UH1+HWH2*UH2 +j  

Attribute Joint Heuristics 
Extremeness 

Aversion (EA) 

FC-EEUT Risk Attitude 
and Perceptual 

Conditioning (RA_PC) 

Reference alternative constant 0.817 (26.61) 0.91 (25.24) 0.946 (28.81) 

RA_PC    

Total cost ($) -0.079 (4.69)  -0.288 (26.8) 

Gamma (PC) ()1 1.39 (2.03)  1.08 (0.80) 

Alpha (PC) () -0.183 (1.65)  0.167 (2.37) 

Expected time (mins) -0.017 (2.04)  -0.117 (3.64) 

EA    

Max time-time 0.068 (16.35) 0.056 (25.10)  

Max cost-cost 1.32 (6.29) 0.404 (13.53)  

Contextual concavity cost (c) 0.492 (14.56) 0.551 (18.46)  

Contextual concavity time (t) - -  

Heteroscedastic conditioning    

Number of times recent trip is 
undertaken per annum 

-0.002 (1.93) 0.004 (2.67) -0.001 (3.08) 

Log likelihood at zero -13,148.19 

Log-likelihood at convergence -9,070.24 9,106.89 -9,189.231 

AIC/sample size 1.509 1.515 1.528 

McFadden pseudo R2 0.310 0.307 0.301 

Non-Linear in Parameters and Attributes
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Results

– The results obtained from the joint model and the stand alone
EA model show that all the (phik) for cost and s are
statistically significant at the 5% level (and many at the one
percent level), with the s possessing the correct signs.

– Relative to the stand alone EA model, results from the Vuong
(non-nested) test suggest that embedding a contextual heuristic
into the joint model provides a better overall statistical fit at the
1% level of significance.

̂

̂
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Results – Extreme Aversion

– Concavity of the power parameter can be tested by comparing
the null hypothesis (linear in the attributes) against the
alternative hypothesis (concavity).

– We can reject the null hypothesis for cost, in favour of the
alternative hypothesis (=0.492), at the five percent significance
level.
– This finding is consistent with a concavity power parameter. With

all else equal, respondents are extremeness averse when
evaluating the cost attribute. (Playing conservatively!)

– For travel time, the parameter is not statistically significant;
hence we have a linear effect (risk neutral).
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Results FC-EEUT

– Relative to the stand alone FC-EEUT model with risk attitude and
decisions weights,

– Results from the Voung test suggest that embedding the FC-EEUT
model heuristic into the joint model provides a better statistical fit
at the 1% level.
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Non-linear probability weighting function in the joint 
model (overweighting at low probs….)
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Distribution of probability of process rule contributions to overall 
utility of an alternative (H1 is EA)

The extremeness aversion (seeking) heuristic (H1) has, on average, a 0.568 probability of 
relevance compared to a 0.432 probability of relevance for the FC-EEUT process rule (H2).  At 
respondent level the probabilities sum to 1.0
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level) (Bin width is 0.05)
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WTP: The Value of Travel Time Savings ($/person 
hour)

where k = 1 (early), 2 (on time), and 3 (late)

Joint Heuristics Extremeness Aversion 
(seeking) (EA(S))

FC-EEUT Risk Attitude and 
Perceptual Conditioning (RA_PC)

17.73 (3.43) 15.83 (4.58) 13.38 (1.09)
EA(S) (H1) 6.97 (3.10)
RA_PC (H2) 10.93 (5.18)

Heuristic 1: Extremeness Aversion

Heuristic (Process Rule) 2: Extended Expected Utility Attribute form with Risk Attitude 
and Perceptual Conditioned Travel Time under the Fully Compensatory Paradigm

*Standard deviation estimates are in brackets
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
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These mean differences are HUGE
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Histograms of the distribution of VTTS across the sample

Joint Model
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Concluding Comment – Food for Thought!

– Is this a potentially more behaviourally appealing way of capturing 
notable preference heterogeneity than random parameters?

– We explore this point in Balbontin et al. 2017 and Balbontin et al. 2018
– Taste heterogeneity in standard models may in fact be heterogeneity in 

decision rules?
– One might improve on the behavioural interpretation of preference heterogeneity by 

conditioning identification of random marginal (dis)utility with a systematic conditioning 
through an attribute processing rule. (Balbontin et al used value learning VL)

– The evidence shows that this approach is appropriate, and that there is a significant 
systematic relationship between the mean and Std Dev of random parameters and VL, 
which influences the WTP estimates and distribution. 

– The inclusion of process heuristic conditioning hence appears to add behaviourally relevant 
information that changes the distribution of preference heterogeneity. 

– There is, however,  no clear pattern of a reduction or increase in the standard deviation 
associated with willingness to pay estimates when incorporating the VL process heuristic in 
the mean or standard deviations

Balbontin, C., Hensher, D.A., Collins, A.T., (2017) Is there a systematic relationship between random parameters and process 
heuristics? (Paper Presented in The Fifth International Choice Modelling Conference 3 – 5 April 2017, Cape Town, South Africa) 
Transportation Research Part E, 106, 160-177. DOI: 10.1016/j.tre.2017.07.013.
Balbontin, C., Hensher, D.A. and Collins, A.T. (2018) Process homogeneity, process heterogeneity, and preference heterogeneity: 
How to better represent decision making and preferences, for IATBR 2018, Santa Barbara, California, July 2018; Interdisciplinary
Choice Workshop (ICW), Santiago de Chile, 7-10 August 2018, Transportation Research Part B, 122, 2019. 
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On Going Research: Conditioning of Random Process Heterogeneity (CRPH)

– The relationship between process and preference heterogeneity - Conditioning of 
Random Process Heterogeneity (CRPH). 

– The approach recognises that the parameters defined under LPAA may be conditioned by 
a process strategy.

The random parameter specification, as was analysed previously, decomposes parameter θq  in its mean, m , and standard deviation, v : 

 iqt iqt iqtU v X         

To incorporate process heuristics using the CRPH approach, the mean and standard deviation of attribute inqtx  under an LPAA mixed logit model,
are written as a function of each of the process heuristics. The utility expression can be written as follows: 
 

   
   

, ,

, ,

 
in inqt inqt

i inqt iqt

in i

m m
VL in RAM in

s s
n V nqt inqtL in RAM in

x x
U x

x x

VL RAM

VL R vAM

 

 






   

    

  
    
      

   

where  inqtVL x represents the transformation of inqtx  for the VL heuristic;  inqtRAM x for the RAM heuristic; ,
m
VL in  represents the relationship

between the mean estimate and VL; ,
m
RAM in  represents the relationship between the mean estimate and RAM; ,

s
VL inq  is the relationship between

the standard deviation estimate of the random parameter distribution and VL; and ,
s
RAM inq  is the relationship between the standard deviation and

RAM.  

Balbontin, C., Hensher, D.A. and Collins, A.T. How to better represent preferences in choice models: the contributions to preference 
heterogeneity attributable to the presence of process heterogeneity, Transportation Research Part B, 2019.
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On going Research
– The preferred preference revelation model form, conditioning of random process heterogeneity 

(CRPH), supports a behavioural paradigm in which individuals use more than one process heuristic in 
decision making, supporting heterogeneity in processing information related to alternatives on offer. 
The impact on important behavioural outputs such as willingness to pay is profound, and has 
important policy relevance in project appraisal. 

– Proposed conceptual framework for decision making
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Some Comments on behaviourally more realistic 
Models
– Trade off between behavioural relevance and 

economic theory based on social welfare analysis
– ‘Irrational’ behaviour is otherwise captured by 

the existence of the error term in RUM models
– The Process heuristics are more aligned with 

behavioural decision theory than with strict 
axioms of economic rationality.

– Useful papers: Dekker, T and Chorus, C. (2018) 
Consumer surplus for random regret minimisation 
models, Journal of Environmental Economics and 
Policy, 7(3), 269-286, and McConnell, K. E. 
(1995) Consumer Surplus for Discrete Choice 
Models. Journal of Environmental Economics and 
Management 29 (3): 263–270.

– Choice probabilities interpreted ‘as if they were’ 
probabilistic demand functions so can derive 
Marshallian consumer surplus (linked to WTP).

– Hensher, D.A.  Context dependent process 
heuristics and choice analysis: a note on the 
behavioural setting guiding the research focus, 
January 2019.

– Assume no income effect (reasonable in many 
transport applications) and so path dependency 
issue resolved.

– We focus on valuing changes in attributes of a 
single alternative but recognise that they are 
context dependent. 

– In our work we have tested for starting values, 
covariance matrix effects (essentially correlations 
between process heuristics) and implications on 
WTP to conclude that model is identified and not 
confounded.

– The welfare effect is:

– This assumes that choice is independent of 
income. What we have here is a simple 
comparison of the choice probability before and 
after a change in the level of an attribute. 
McConnell shows that this is equivalent to the 
Marshallian change in consumer surplus as the 
area under a demand curve.

0 *

1 1CV [ln(1 ) ln(1 )] /     
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Ken Train’s Position

2.3 Derivation of Choice Probabilities
“Discrete choice models are usually derived under an assumption of utility-maximizing 
behavior by the decision maker. Thurstone (1927) originally developed the concepts in 
terms of psychological stimuli, leading to a binary probit model of whether respondents 
can differentiate the level of stimulus. Marschak (] 960) interpreted the stimuli as utility 
and provided a derivation from utility maximization. Following Marschak, models that 
can be derived in this way are called random utility models (RUMs). 

It is important to note, however, that models derived from utility maximization can also be 
used to represent decision making that does not entail utility maximization. The derivation 
assures that the model is consistent with utility maximization; it does not preclude the 
model from being consistent with other forms of behavior. The models can also be seen as 
simply describing the relation of explanatory variables to the outcome of a choice, without 
reference to exactly how the choice is made.”
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Experience Conditioning

Hensher, D.A. and Ho., C. (2016) Experience conditioning 
in mode choice modelling – does it make a 
difference? Transportation Research Part E, 95, 164-
176.

Balbontin, C., Hensher, D.A. and Collins, A.T. How to 
better represent preferences in choice models: the 
contributions to preference heterogeneity attributable 
to the presence of process heterogeneity, 
Transportation Research Part B, 24 August 2018, 
revised 4 February 2019.

Hensher, D.A., Greene, W.G. and Balbontin, C. 
Experience as a conditioning effect on choice – does 
it matter whether it is exogenous or endogenous?, for 
the Sixth International Choice Modelling Conference in 
Kobe, Japan, August 2019.

Buckell, J., Hensher, D.A. and Hess, S.  Capturing the role 
of addiction in smokers’ choices: an addiction-
conditioned, hybrid choice model approach applied 
to smokers in the US, abstract prepared for the 2109 
World Congress on Health Economics and Sixth 
International Choice Modelling Conference in Kobe, 
Japan, August 2019.
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Role of Experience

– Beginning with the standard utility expression associated with the jth
alternative contained in a choice set of j = 1,…,J alternatives, we 
assume that an index defining overt experience with the jth alternative 
and qth individual, referred to as Eqj, conditions the utility expression. 
The functional form can be denoted by:

Uqj
*= µ(Eq )Uqj=µ(Eq)(Vqj+qj)

where Uqj
* is the standard utility expression, Uqj, conditioned on the overt 

experience (and other possible influences) with an alternative. This 
conditioning is a form of heteroscedasticity. Eq recognises that individual-
specific experience, proxied by some metric such as frequency of use, 
conditions the marginal (dis)utility of each and every attribute, observed 
and unobserved, associated with the jth alternative in a pre-defined choice 
set.  Therandom variables µ(Eq)j, for all q and j contained in an 
individual’s choice set are IID Gumbel but with scale factors µ(Eq) that can 
vary as required across the sample. Dividing both the left and right hand 
by µ(Eq) > 0 produces the standard basis of the RUM model. The 
probability behind random utility maximisation is unchanged by the 
positive scale factor, as shown in  next slide.
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Heteroscedastic Conditio0ning (linked to Scale)

Given the IID property of the error difference, it follows that the 
probability of choosing an alternative is an MNL-like model with the 
observed sources of utility µ(Eq)Vqj as:

* *Pr[ ] Pr[ ]

                    Pr[ ]

                    Pr[ ( )( ) ( )( )]

qj qj qj qj

qj qj qj qj

q qj qj q qj qj

U U U U

V V

E V V E

 

 

 

  

   

   

 

   

exp ( | ) ( | )
Pr

exp ( | ) ( | )
q

q j qj qj
qj

q j qj qj
j J

E V X
E V X  



  
  
  

  

where we have parameters γj and , and the observed variables E and X associated with 
each alternative and each individual. By making the parameters in the scale function 
vary across the alternatives (for identification), we have transformed the MNL model 
to one in which the utility functions are nonlinear in the parameters. 
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Specific Functional Form for HC
– The specific functional form of heteroscedastic conditioning chosen 

is:

 , ln( 1),exp carq car FRq carE 

 , ln( 1),exp PTq PT FRq PTE 

where FRq,j is usage frequency, defined by the number of times the qth individual used 
mode j (j=car or PT) over the last two months, and j (j = car, PT) are parameters to be 
estimated. Socio-economic variables such as age and income can also be included to 
recognise the residual heterogeneity effect after individual experience has been 
accounted for. 

When the experience effects are not significant (identified by γj being not 
statistically different from zero), the experience functions receive the value of one, 
and hence, the choice model collapses to the standard utility expression.
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Experience and HC

– In summary, when we allow for this form of heteroscedasticity, the 
standard logit model takes the form shown below where Vqj is linear-
in-parameters.

 
 

,,

' '

,

, '
' 1 ' 1

ln( 1),

ln( 1),

exp expexp[ ]
Pr  =

exp[ ] exp exp

j q jq j

jqj qj

q j
jq J J

q j
j j

FRq j

FRq j

XE V

E V X

 









   
    

This model is non-linear-in-parameters since the parameter associated with the 
experience effect (γj) interacts with the parameters β associated with attributes 
Xqj. 
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Experience as a conditioning effect on choice – Does it 
matter whether it is exogenous or endogenous?
– There are a number of ways to set up a discrete choice model 

that embeds the presence of endogeneity associated with a 
specific inclusion in the representative component of a utility 
expression. 

– Some key papers on this topic are applications by Train and 
Wilson (2009), Petrin and Train (2010), Guevara, and Ben Akiva
(2010) and Guevara and Hess (2019) and a mainstream 
econometric review by Wooldridge (2015). 

– Our research focuses on the potential endogeneity induced by 
including accumulated experience in using each of the modes in a 
mode choice application. 
– As set out above, experience, proxied by exogenous frequency of 

use has similar features to a reference alternative that is fixed and 
hence it might not induce endogeneity, but is worthy of consideration.
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Control Functions

– Control functions are statistical methods to correct for endogeneity
problems by modelling the endogeneity in the relevant random
components. 

– The approach differs in important ways from other models that try to 
account for the same econometric problem. Instrumental variables, for 
example, attempt to model an endogenous variable X as an often 
invertible model with respect to a relevant and exogenous instrument Z. 
Panel data use special data properties to difference out unobserved 
heterogeneity that is assumed to be fixed over time. 

– Control functions were introduced by Heckman and Robb (1985a), 
although the principle can be traced back to earlier papers such as 
Heckman (1979). A particular reason why they are popular is because 
they work for non-invertible models (such as discrete choice models) and 
allow for heterogeneous effects, where effects at the individual level 
can differ from effects at the aggregate. 

– Classic examples using the control function approach is the Heckit model 
and the Heckman (1979) correction. 
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Control Functions

– It involves two stages. First, the endogenous variable is regressed on 
exogenous instruments; then, the residual (or a function of it) is 
incorporated into the utility function as an additional explanatory 
variable called the control function.

– A general advantage of the control function approach is that the test 
that the coefficient on the CF is zero is broadly equivalent to a test of 
exogeneity.

– Multiple Indicator Solution (MIS) method:
– We extend Hensher and Ho (2017) by conditioning, at the first stage, the 

entire utility expression associated with all attributes in a utility expression, 
on the prior experience with an alternative. 

– This captures possible correlates associated with each and every attribute
and not just one selected attribute (i.e., crowding in Guevara et al. 2019). 

– The second stage implemented is the control function method. 
– Standard errors for the two stage approach are computed using 

bootstrapping (Karaca-Mandic and Train, K. 2003 and Hensher et al. 
2015).
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Application Example

Revealed Preference Mode Choice
– The data collected to test the proposition on experience was 

obtained from an online survey undertaken in March 2014, using 
a sample of car and public transport commuters in the Sydney 
metropolitan area. 

– Respondents were asked to report three perceived travel times 
and the likelihood of experiencing each travel time. The survey 
also included questions relating to travel cost, fuel consumption of 
the car used for travel, number of times a car and public transport 
were used for travel in the last two months, as well as socio-
economic characteristics such as age, income, occupation and 
household car ownership. 
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Main Questions
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Choice Models

– Experience Conditioning:
ECondcr=1+tau1*log(ca2month)+agec*age
ECondpt=1+tau2*log(pt2month)

M1:
UPT = Econdpt*(ptfasc+betattp*avtim +betac*cost1h)      
Ucar = Econdcr*(betattc*avtim+betac*cost1h)        

M2:
UPT = Econdpt*(ptfasc+betattp*avtim +betac*cost1h) +ptres*pt2res
Ucar = Econdcr*(betattc*avtim+betac*cost1h) +crres*ca2res
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Control Functions (Ordinary Least Squares Regression)

Car experience (use per month) Public transport experience (use per month)

Constant 9.384 916.8) 2.597 (7.22)

Personal income -0.0047 (-2.28)

Number of adults 0.1370 (1.29) 0.3685 (3.16)

Commuter trip (1,0) -9.2806 (-47.9) 11.279 (48.4)

Average travel time (mins) -0.0039 (-3.18) -0.0040 (-2.67)

Ages of respondent (years) 0.0221 (3.39)

Hours worked per week 0.0612 (7.10)

Male (1,0) -1.421 (-6.17)

Age less than 15 years (1,0) 0.1163 (0.30)

Age 25 to 34 years (1,0) -1.5569 (-4.93)

Age 35 to 44 years (1,0) 0.9759 (-3.34)

Age 55 to 64 years (1,0) -0.6026 (-2.26)

Dependent variable mean and Std Dev 7.63 (5.86) 6.75 (7.11)

Sample size 1518

Adjusted R-squared 0.674 0.617
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Models with and without inclusion of explanatory variables to assess the 

presence or absence of endogeneity (z values in brackets)
Model 1 (M1) Model 2 (M2) Bootstrapping M2

Mean of random parameters:

Tau1 -0.2486 (-4.98) -0.2804 (-4.56) -0.2804 (-5.54)

Tau2 -0.2172 (-7.86) -0.3314 (-4.31) -0.3314 (-14.07)

Car residual -4.9047 (-2.32) -4.9047 (-6.64)
Public Transport residual -4.9912 (-2.45) -4.9912 (-6.28)
Non-random parameters:
PT constant -2.3671 (-2.43) -36.31 (-2.58) -36.31 (-7.72)

Average trip cost ($) -0.6265 (-4.40) -3.2968 (-2.02) -3.2968 (-2.10)

Average travel time PT (mins) -0.01502 (-0.97) -0.0254 (-0.29) -0.0254 (-0.70)

Average travel time Car (mins) -0.0782 (-7.22) -0.7075 (-3.26) -0.7075 (-4.11)

Age of individual -0.0004 (-0.09) -0.0041 (-1.07) -0.0041 (-1.28)

Std Dev of random parameters:

Tau1 (constrained triangular) -0.2486 (-4.98) 0.2804 (4.56) 0.2804 (5.54)

Tau2 (constrained triangular) -0.2172 (-7.86) 0.3314 (4.31) 0.3314 (14.07)

Car residual 12.598 (6.40) 12.598 (2.61)
Public Transport residual 6.6403 (3.19) 6.6403 (4.03)
Goodness-of Fit:
Log-likelihood at convergence -117.43 -95.68

McFadden pseudo R2 0.777 0.818
Sample size 759
AIC/N 0.328 0.281
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Value of Travel ($/person hour) and Direct Choice 
Probability Elasticity Results (standard errors in brackets) 
* Bootstrapping took 6 hours to run.

Model 1 (M1) Model 2 (M2) Bootstrapping M2 (20 repetitions) t-
values*

Car Value of travel time ($/person hr) 7.49 (2.38) 12.87 (1.74) 3.03

PT Value of travel time ($/person hr 1.44 (1.71) 0.66 (0.26) 0.79

Choice Probability Direct Elasticity Estimates:

PT average travel time -0.67 (0.039) -0.421 (1.8) 2.11

Car average travel time -2.32 (0.176) -5.55 (2.5) 2.20

PT average travel cost -1.58 (0.118) -3.55 (2.80) 1.92

Car average travel cost -1.084 
(0.117)

-1.67 (1.41) 1.47
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Commercial Break: Our Software and Books on 
Choice Experiments and Discrete Choice Modelling

http://www.choice-metrics.com/download.html

http://www.limdep.com/

http://sydney.edu.au/business/itls/courses/choice_analysis
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THANK YOU

David Hensher PhD FASSA
Institute of Transport and Logistics Studies (ITLS)
The University of Sydney Business School 

THE UNIVERSITY OF SYDNEY
E david.hensher@sydney.edu.au | W http://sydney.edu.au/business/itls
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On Going Research: Conditioning of Random Process Heterogeneity (CRPH)

The parameters in  can be considered common between LPAA and RAM, but not for VL, which will have its own parameters VL
in . The

transformations of inqtx  associated with VL and RAM are as follows:  

     VL
inqt in inqt nV fxL ex r


       ( , )inqt in i t

j S
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

  

The expression for CRPH that includes VL and RAM results in the following form: 
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This form also allows process strategies to have an influence over the mean but not the standard deviation of an attribute, with 0m
in   and 0s

in 

or, oppositely, over its standard deviation but not over its mean, with 0m
in   and 0s

in  . 


