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Abstract 

The motivation of this paper is to develop knowledge and tools to improve the probabilities to 

match rides and therefore increase the number of shared trips in a ridesourcing system. This 

paper aims to provide estimations for travel distances on a simplified rectangular urban traffic 

network to support the modeling of ridesourcing decision problems. Space is a continuous 

approximation of an urban street network (does not consider streets nor blocks). Thus, space 

measurement considers Manhattan distances. Estimations are mainly analytical and supported 

by simple Monte Carlo simulations. Idle vehicles, passengers and their destinations were 

considered uniformly distributed along the region. Estimated distances refer to travels such as 

closest vehicle from passenger, single-passenger trip distance, traveling between different 

regions. Other results evaluate the probabilities of matching passengers and partially busy 

vehicles (one passenger inside). Simulations considered different moving strategies for 

maximizing of minimizing the matching probabilities. Moving vehicles tend to concentrate in 

the center of the region, unless we explicitly order them to avoid the region centroid during 

their trips. 
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1. Introduction 

Ridesourcing (also known as Transportation Network Companies, ride-hailing, and e-hailing, 

for instance) has driven a lot of attention in recent years with the expansion of companies like 

Uber, Lift, and many others around the world (Jin et al., 2018). Due to its business model, this 

kind of services raised many concerns regarding labor laws, competitiveness, and safety of 

drivers and passengers (Rayle et al., 2016). 

Ridesourcing sounds a promising direction to improve mobility, fighting car ownership. 

Moreover, most TNCs allow multiple people to share a ride, like UberPOOL. This shared 

mobility advance could ensure higher efficiency and sustainability (Mora et al., 2017). 

However, matching rides is still a challenge. Santi et al. (2014) and Mora et al. (2017) try to 

tackle this problem using shareability networks. 

As part of the effort to model ridesourcing services, Stiglic et al. (2016) showed how a 

continuous space could help on modeling ride-sharing. Ansari et al. (2018) showed that, since 

its debut at Newell (1971), continuous approximations developed and matured as a powerful 

instrument for logistics and transportation problems. Therefore, relaxing discrete variables into 

continuous ones, like space, is a potential tool to create intuition on urban mobility and 

ridesourcing problems. Developing intuition about this can lead to relevant improvements 

(and/or mitigation of negative effects) in the expansion of ridesourcing services. 

The motivation of this paper is to develop knowledge and tools to improve the probabilities to 

match rides and therefore increase the number of shared trips in a ridesourcing system. For this 

purpose, the urban grid space considered rather small block sizes compared to the area to 

simplify the calculations and estimations. 

Therefore, this paper aims to provide estimations for travel distances on a simplified rectangular 

urban traffic network to support the modeling of ridesourcing decision problems. Besides 

traveling distances, this paper focus on the trajectory, and on the matching problem between 

passengers and vehicles. Estimations are mainly analytical and supported by simple Monte 

Carlo simulations. 

This paper is structured as follows. Section 2 presents a brief literature review on ridesourcing, 

its problems, and improvements on the quality of service. Section 3 has the estimations on travel 
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distances, matching probabilities, and positioning for ridesourcing vehicles. Section 4 presents 

some final considerations and directions for further research. 

2. Literature Review 

Urban efficiency and sustainability are affected by the expansion of ridesourcing services 

around the world. Jin et al. (2018) presented a recent review of ridesourcing operations. 

Although it is unclear the impacts on congestion in city centers and reductions on energy 

consumption and emissions, ridesourcing has shown to be capable of improving economic 

efficiency (Jin et al., 2018). Hall et al. (2018) evaluated the relationship between ridesourcing 

and public transportation competition in metropolitan areas in the U.S. Contreras and Paz 

(2018) used a linear regression analysis to measure the effects of ridesourcing over the taxicab 

industry in Las Vegas, Nevada. Schwieterman and Smith (2018) used multiple regression 

analysis and found reductions on trip times between neighborhoods and customers’ savings for 

sharing their trips. Vinayak et al. (2018) used a generalized heterogeneous data model to find 

social dependency effects of shared mobility service usage. Zha et al. (2016) investigated 

ridesourcing through an economic point-of-view, considering scenarios with different 

competitiveness and regulations. Nie (2017) analyzed GPS data from Shenzhen, China, and 

found that the loss of the taxicab industry to ridesourcing tends to stabilize, also, ridesourcing 

mildly worsened congestion. 

Some recent works tried to improve matching strategies, relocation of empty vehicles, and route 

choices aiming to improve the quality of ridesourcing services. Santi et al. (2014) used 

shareability networks to match passengers. Mora et al. (2017) extended its use to match these 

passengers to vehicles and relocate empty vehicles. Stiglic et al. (2016) used a continuous space 

simulation to show improvements on carpooling with different driver and rider flexibilities. On 

dynamic vehicle routing literature, Berbeglia et al. (2010) reviewed dynamic pick-up and 

delivery problems, as dial-a-ride problems. Molenbruch et al. (2017) reviewed dial-a-ride 

problems, their solution methods and classified them in categories. Masmoudi et al. (2018) 

presented a dial-a-ride problem with battery swapping. 



19th Swiss Transport Research Conference                                       May 15-17, 2019 

4 

Note that this review did not embrace most of the ride-sharing and dial-a-ride literature. Those 

interested in such problems are encouraged to read Furuhata et al. (2013), the previously 

mentioned papers, and the references therein. 

3. Problems 

This section presents a set of problems and analytical or simulation-based results for them. 

Problems regard to the way a vehicle would move inside a continuous space and its statistical 

implications. 

Suppose that a rectangle with defined by lengths 𝑎 and 𝑏 represents a simplified urban street 

network. Now suppose that a vehicle on a city must travel from point 𝐴 to point 𝐵, as illustrated 

in Figure 1. Also, suppose that the path between points 𝐴 and 𝐵 is composed of a grid (like 

streets in a city) of perpendicular and parallel set of lines. Manhattan distances are required to 

model this situation. Streets are uniformly spaced and the distance between a street 𝑛 and its 

neighbor 𝑛 − 1 is Δ𝑥 = |𝑥𝑛 − 𝑥𝑛−1| (for both directions – 𝑥 and 𝑦). Finally, neighbor street 

segments are close to each other in comparison to the size of the entire city, thus Δ𝑥 → 0 ∴

Δ𝑥 ≡ 𝑑𝑥. 

Figure 1: Illustration of the continuous urban area represented in a rectangle. 

 

 

Figure 2 shows in a simple Cartesian plane the space between points 𝐴 and 𝐵. If we consider 

that the vehicle travels as close as possible to the straight line that connects points 𝐴 and 𝐵 and 

𝐴 

𝐵 

𝑑𝑥 

𝑎 

𝑏 
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remember that Δ𝑥 → 0, it is reasonable to assume that the angle 𝛼 is going to remain constant 

during the trip. Therefore, the trip is the straight line connecting both points on average. 

Figure 2: Cartesian representation of the angle between points 𝐴 and 𝐵. 

 

 

Considering that points 𝐴 and 𝐵 are unitary distant (in Manhattan distance), one can assume 

that the speed is a vector 𝑣⃗ and its decomposition follows the rule presented as the system of 

equations shown in Equation (1). 

 {

|𝑣⃗𝑥| + |𝑣⃗𝑦| = 1

|𝑣⃗𝑦|

|𝑣⃗𝑥|
= tan(𝛼)

 (1) 

Suppose that 0 ≤ 𝛼 ≤
𝜋

2
. This allows us to find a single solution for the problem (Equation 2). 

 𝑣𝑥 =
1

tan(𝛼) + 1
, 𝑣𝑦 =

tan(𝛼)

tan(𝛼) + 1
 (2) 

If we replace tan(𝛼) by 𝐷𝑦/𝐷𝑥, where 𝐷𝑙 is the total distance on axis 𝑙, we have Equation (3). 

 𝑣𝑥 =
1

𝐷𝑦
𝐷𝑥
+ 1

=
1

𝐷𝑦 + 𝐷𝑥
𝐷𝑥

=
𝐷𝑥

𝐷𝑦 + 𝐷𝑥
=
𝐷𝑥
𝐷
, 𝑣𝑦 =

𝐷𝑦

𝐷𝑦 + 𝐷𝑥
=
𝐷𝑦

𝐷
 (3) 

For the general case (0 ≤ 𝛼 < 2𝜋), 𝐷𝑥 = 𝑥𝐵 − 𝑥𝐴, 𝐷𝑦 = 𝑦𝐵 − 𝑦𝐴, and 𝐷 = ‖𝐵 − 𝐴‖1. In the 

next subsections, we refer to this result as “straight as possible”. 

The latter shows that the estimations provided in this paper are only susceptible to errors 

when min(𝐷𝑥 , 𝐷𝑦) is smaller than the block size, i.e. when it might be necessary to go around 

the block to reach the destination. 

𝛼 

𝑥 

𝑦 

𝐴 

𝐵 
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3.1 Distances 

In this section, we examine analytically at the distances that a vehicle might travel in a 

continuous rectangular space with random origins and destinations. 

3.1.1 Distance between two uniformly random points in one dimension 

If we assume that the origin and destination of a passenger are random and uniformly distributed 

across the region, one can define their positions in one dimension (said dimension represented 

by axis 𝑦, for instance) as 𝑃orig.~𝑈(0, 𝑎) and 𝑃dest.~𝑈(0, 𝑎). Therefore, each point is defined 

by the probability density function (pdf) on Equation (4). 

 𝑓𝑃𝑖(𝑝𝑖) = {
1

𝑎
, if 0 ≤ 𝑝𝑖1 ≤ 𝑎

0, otherwise
 (4) 

Hence, the distance in the chosen dimension is a random variable denoted by 𝑍, defined as 𝑍 =

|𝑃dest. − 𝑃orig.|. Therefore, using a convolution, the pdf is given by Equation (5). 

 𝑓𝑍(𝑧) = {
2

𝑎
−
2𝑧

𝑎2
, if 0 ≤ 𝑧 ≤ 𝑎

0, otherwise
 (5) 

3.1.2 Total distance between two uniformly random points in two dimensions 

Based on previous results, the two-dimensional distance is a random variable denoted by 𝑊, 

defined as 𝑊 = 𝑍𝑦 + 𝑍𝑥 (the sum of the random distances in both directions). This result is 

possible because travels occur according to an urban street grid (Manhattan distances). Hence, 

a convolution can find the pdf for such variable (Equation 6). 

 𝑓𝑊(𝑤) =

{
 
 
 

 
 
 
−

2𝑤(− 𝑤2 + 3𝑏𝑤)
3 −

2𝑎𝑤(6𝑏 − 3𝑤)
3

𝑎2𝑏2
, if 0 ≤ 𝑤 < 𝑎

2(𝑎 + 3𝑏 − 3𝑤)

3𝑏2
, if 𝑎 ≤ 𝑤 ≤ 𝑏

2(𝑎 + 𝑏 − 𝑤)3

3𝑎2𝑏2
, if 𝑏 < 𝑤 ≤ 𝑎 + 𝑏

0, otherwise

 (6) 

Gaboune et al. (1993) found similar results and their study included Euclidean and Chebychev 

distances. Equation (7) gives the average total distance. 
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 𝐸[𝑊] =
𝑎 + 𝑏

3
 (7) 

3.1.3 Angle between two uniformly random points 

It is relevant to define an angle when traveling between two random points in a continuous 

space. It is particularly important when considering that the traveler will follow a straight line 

(as possible) to his destination. Figure 3 illustrates this situation. 

Figure 3: Angle 𝜃 between two random points in a rectangular area. 

 

 

If the random points are uniformly distributed across the region, an angle Θ is a random variable 

defined only in the first quadrant as seen in Equation (8). 

 Θ = arctan (
|𝑦dest. − 𝑦orig.|

|𝑥dest. − 𝑥orig.|
) ∴ 0 ≤ Θ ≤

𝜋

2
 (8) 

Considers 𝐾 = tanΘ as an auxiliary random variable. Equation (9) gives an alternative 

formulation for 𝐾. 

 𝐾 =
𝑍𝑦

𝑍𝑥
∴ 𝑍𝑦 = 𝑍𝑥𝐾, 𝑘 ≥ 0 (9) 

The pdf of 𝐾 is found through the quotient between two independent random variables. Thus, 

Equation (10) calculates the pdf of 𝐾. 

 𝑓𝐾(𝑘) =

{
 
 

 
 
𝑏(2𝑎 − 𝑏𝑘)

3𝑎2
if 𝑘 ≤

𝑎

𝑏
 and 𝑘 ≥ 0

−
𝑎(𝑎 − 2𝑏𝑘)

3𝑏2𝑘3
, if 𝑘 >

𝑎

𝑏
0, otherwise

 (10) 

𝜃 

𝑎 

𝑏 
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As we are interested in the random angle Θ, and not its tangent, Equation (11) shows the variable 

change process. 

 𝑓Θ(𝜃) = 𝑓𝐾(tan(𝜃)) |
𝑑 tan(𝜃)

𝑑𝜃
| (11) 

3.1.4 Distance to a neighbor region 

Since a traveler may not restrict his trip to a single area, it is worth modeling the process in 

which one leaves a region to another. We define this movement as going from a random point 

in the direction to a specific point in the frontier of the current region. 

One exit (general case) 

The first case consists of only one exit to the neighbor region. Figure 4 illustrates the case for 

an exit at the top of the region (without loss of generality). 

Figure 4: Schematic representation of the one exit problem. 

 

 

Define distance 𝐷, a random variable defined as 𝐷 = |𝑋𝑒 − 𝑋orig.| + |𝑌𝑒 − 𝑌orig.|, where 𝑋𝑒 

and 𝑌𝑒 are coordinates to the exit to the neighbor region. These coordinates are not random 

variables. 𝑌𝑒 = 𝑎, then we have Equation (12). 

 𝐷 = |𝑋𝑒 − 𝑋orig.|⏟        
𝑑𝑋

+ |𝑎 − 𝑌orig.|⏟      
𝑑𝑌

 (12) 

𝑎 

𝑏 

𝑋𝑒 
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Without loss of generality, consider 0 ≤ 𝑋𝑒 ≤
𝑏

2
 (if 𝑋𝑒 >

𝑏

2
, it is enough to just mirror the 

solution). A convolution of both directions obtains the pdf of 𝐷. Note that the solution is for 

two different cases of 𝑋𝑒 compared to 𝑎 (Equations 13-15). 

 𝑑𝑌(𝑦) = {
1

𝑎
, if 0 ≤ 𝑦 ≤ 𝑎

0, otherwise
 (13) 

 𝑑𝑋(𝑥) =

{
 
 

 
 
2

𝑏
, if 0 ≤ 𝑥 ≤ 𝑋𝑒

1

𝑏
, if 𝑋𝑒 < 𝑥 ≤ 𝑏 − 𝑋𝑒

0, otherwise

 (14) 

 𝑓𝐷(𝑑) =

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

2𝑑

𝑎𝑏
if 0 ≤ 𝑑 < 𝑋𝑒

𝑋𝑒 + 𝑑

𝑎𝑏
if 𝑋𝑒 ≤ 𝑑 ≤ 𝑎

𝑋𝑒 + 2𝑎 − 𝑑

𝑎𝑏
if 𝑎 < 𝑑 ≤ 𝑎 + 𝑋𝑒

1

𝑏
, if 𝑎 + 𝑋𝑒 < 𝑑 ≤ 𝑏 − 𝑋𝑒

𝑎 + 𝑏 − 𝑋𝑒 − 𝑑

𝑎𝑏
, if 𝑏 − 𝑋𝑒 < 𝑑 ≤ 𝑎 + 𝑏 − 𝑋𝑒

0, otherwise

, if 𝑎 ≥ 𝑋𝑒

{
 
 
 
 
 

 
 
 
 
 

2𝑑

𝑎𝑏
, if 0 ≤ 𝑑 < 𝑎

2

𝑏
, if 𝑎 ≤ 𝑑 ≤ 𝑋𝑒

𝑋𝑒 + 2𝑎 − 𝑑

𝑎𝑏
, if 𝑋𝑒 < 𝑑 ≤ 𝑎 + 𝑋𝑒

1

𝑏
, if 𝑎 + 𝑋𝑒 < 𝑑 ≤ 𝑏 − 𝑋𝑒

𝑎 + 𝑏 − 𝑋𝑒 − 𝑑

𝑎𝑏
, if 𝑏 − 𝑋𝑒 < 𝑑 ≤ 𝑎 + 𝑏 − 𝑋𝑒

0, otherwise

if 𝑎 ≤ 𝑋𝑒 ≤
𝑏

2

 (15) 

Multiple exits (general case) 

The next case is a general form for multiple exits when all exits are in the same edge of the 

rectangular shaped region. Without loss of generality, a two-exit example illustrates the 

problem. 

If we consider that a traveler will always choose the shortest path to the neighbor region, then 

the distance 𝐷 = min(𝐷1, 𝐷2), where 𝐷1 and 𝐷2 are the distances to each of the two options to 
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reach the neighbor region, respectively. If both 𝐷1 and 𝐷2 are expressed as the sum of the 

distances in both directions (Manhattan distances), one would have Equation (16). 

 𝐷𝑖 = |𝑋𝑒𝑖 − 𝑋| + |𝑎 − 𝑌| = Δ𝑋𝑖 + Δ𝑌 (16) 

By definition, Δ𝑌~𝑈(0, 𝑎). In the other hand, Equation (17) has the pdfs for Δ𝑋. 

 𝑓Δ𝑋𝑖(𝑥) =

{
 
 

 
 
2

𝑏
, if 0 ≤ 𝑥 ≤ 𝑋𝑒𝑖

1

𝑏
, if 𝑋𝑒𝑖 < 𝑥 ≤ 𝑏 − 𝑋𝑒𝑖

0, otherwise

 (17) 

The problem D is redefined as Equation (18). 

 𝐷 = min(𝐷1, 𝐷2) = min(𝛥𝑋1, 𝛥𝑋2) + Δ𝑌 (18) 

Finally, a cumulative density function of Δ𝑋, in the form of 𝐹Δ𝑋𝑖(𝑥), calculates the minimal 

distance in the dimension 𝑥 (Equation 19). 

 𝑋 = min(𝛥𝑋1, 𝛥𝑋2) ∴ 𝐹𝑋(𝑥) = 𝐹Δ𝑋1(𝑥) + 𝐹Δ𝑋2(𝑥) − 𝐹Δ𝑋1(𝑥)𝐹Δ𝑋2(𝑥) 
(19) 

Equation (20) gives the expected traveled distance. 

 𝐸[𝐷] = 𝐸[𝑋] + 𝐸[Δ𝑌] = 𝐸[𝑋] +
𝑎

2
 (20) 

Infinite exits (particular case of multiple exits) 

Here, we present a particular case of the multiple exits case. Assume that the number of exits 

to the neighbor region is very high relative to the region width. It is the same as breaking the 

problem in infinite minor problems until Pr(𝐷𝑋 = 0) → 1. Thus, Equation (21) holds.  

 𝐷 = Δ𝑌 ∴ 𝐸[𝐷] = 𝐸[Δ𝑌] =
𝑎

2
 (21) 

3.1.5 Minimal distance to a passenger 

Exceptionally in this section, we obtain results considering Euclidean distances first. Consider 

that a passenger arrives and there are 𝑛 available vehicles within an acceptance radius 𝑟 (see 
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Figure 5). The goal here is to find the distance between the passenger and the closest available 

vehicle, on average. 

Figure 5: Simple problem representation with a passenger as the center of the circle. 

 

One Available vehicle 

Now consider that only one vehicle is available inside the circle and its position is uniformly 

random. It is critical to remark that the density of vehicles inside the circle is constant to find a 

probability density function for the distance to the center of the circle. For instance, consider 

𝑟′ <
𝑟

2
 as an inner radius 𝑟′ of a ring with width Δ𝑟 → 0. One should expect to find 𝑘 vehicles 

within this ring; furthermore, if we double the inner radius to 2𝑟′ and keep the same width Δ𝑟 →

0, one should expect to find 2𝑘 vehicles within this second ring as both have the same density. 

Thus, Equation (22) describes the probability density function for the distance of a single 

vehicle to the center of the circle. 

 
𝑓𝑋(𝑥) = {

2𝑥

𝑟
, if 0 ≤ 𝑥 ≤ 𝑟

0, otherwise
 

(22) 

Without loss of generality, we consider 𝑟 = 1 for now on. Therefore, Equation (23) gives the 

average distance of a vehicle to the center of the circle. It is a well-known result, which one 

may find across many papers in the literature, like Geroliminis et al. (2011). 

 
E[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑟

0

= ∫ 2𝑥2𝑑𝑥
1

0

=
2𝑥3

3
|
0

1

=
2

3
 

(23) 

Multiple available vehicles 

If more than one available vehicle is inside the circle, a random variable 𝑍 =

min(𝑋1, 𝑋2, … , 𝑋𝑛)  can read the minimal distance to the center. As 𝑋1, 𝑋2, … , 𝑋𝑛 are 

𝑟 
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independent and equally distributed, it is possible to find the distribution of 𝑍, using Equation 

(24) (Larsen and Marx, 2012). 

 𝐹𝑍(𝑧) = 1 − (1 − 𝐹𝑋(𝑧))
𝑛
∴ 𝐹𝑍(𝑧) = 1 − (1 − 𝑧

2)𝑛 (24) 

Thus, Equation (25) gives the pdf for 𝑍. 

 𝑓𝑍(𝑧) = 𝐹𝑍
′(𝑧) = {

2𝑛𝑧(1 − 𝑧2)𝑛−1, if 0 ≤ 𝑧 ≤ 1
0, otherwise

 (25) 

The expected distance to the center is seen in Equation (26). 

 
E[𝑍] = ∫ 𝑧𝑓𝑍(𝑧)𝑑𝑧

∞

−∞

= 𝑛𝛽 (
3

2
, 𝑛) =∏

2𝑖

2𝑖 + 1

𝑛

𝑖=1

 
(26) 

The proof for the previous equation is tedious. Those willing to show it should have a few things 

in mind: 1) 𝑛 ∈ ℕ+; 2) Write beta function using gamma functions; 3) the relationship between 

gamma function and factorials; and 4) Some particular values for Gamma functions. 

Relationship with Manhattan distances 

So far, we considered Euclidean distances for this problem. However, the same results apply to 

Manhattan distances as well. The reason for this is that the same property that defined the 

probability density function using rings within the circle applies to the use of Manhattan 

distances with a couple of adjustments. First, the region does not have a circular shape, but a 

diamond shape. Second, instead of radius, consider the Manhattan distance to the frontier of the 

diamond (which turns out to be constant). By doing so, the same property about double the 

inner radius apply for the diamond, and, therefore, all last results apply. 

3.2 Passenger-vehicle matching 

In this section, we look at the problem of a ride-sourcing system to match passengers, idle 

vehicles, and pooling vehicles (with already one passenger inside). 

3.2.1 Matching passengers and idle vehicles within an acceptance range 

Consider that there is a region and an idle vehicle inside this region. New passengers arrive and 

idle vehicles must pick-up these passengers. However, passengers will only accept the ride if 
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vehicles are capable of serving them within a certain amount of time, the system loses 

passengers, otherwise. The service provider needs to determine the fleet size so that it is capable 

of serving a certain percentage of the demand. One can define this problem using the following 

Equation (27). 

 Pr(Acceptance) =
E[Covered area]

Total area
 (27) 

Single vehicle in a rectangular area 

Now consider a rectangular shaped region defined by lengths 𝑎 (height) and 𝑏 (width). Inside 

this region, there is an idle vehicle available to pick-up new passengers. Assume that new 

passengers arrive uniformly across the region and the traveling speed is approximately constant. 

Additionally, vehicles travel through a uniform network of streets, a taxicab geometry applies, 

therefore. Therefore, one can describe the shape of the acceptance region using a diamond shape 

with the parameter Δ. One can physically interpret the Δ as the maximum distance that a vehicle 

can travel to pick-up an arriving passenger within a waiting time limit. Figure 6 shows that, as 

the vehicle gets closer to the border, the covered area of this vehicle diminishes. 

Figure 6: Rectangular region and covered areas: completely inside (left), close to one border 

(middle), and close to two borders (right). 

 

 

As shown in Figure 6, the covered area depends on the position of the vehicle. Equation (28) 

calculates the covered area of a single vehicle as a function of its position (𝑥, 𝑦), considering 

that (
𝑏

2
,
𝑎

2
) is the region’s center, and, so, its origin is at (0,0). In summary, if the vehicle is close 

to a border, we must subtract the area, corresponding to a triangle, which is not covering the 

rectangle (is outside). Moreover, it shows the calculations separately for each direction and the 

unified (both dimensions) formula. 

𝑎 

𝑏 

Δ 
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𝐴𝑋(𝑥) =

{
 

 
2Δ2 − (Δ − 𝑥)2, if 0 ≤ 𝑥 ≤ Δ

2Δ2, if Δ < 𝑥 < 𝑏 − Δ

2Δ2 − (𝑏 − 𝑥 − Δ)2 if 𝑏 − Δ ≤ 𝑥 ≤ 𝑏
0, otherwise

 

𝐴𝑌(𝑦) =

{
 

 
2Δ2 − (Δ − 𝑦)2, if 0 ≤ 𝑦 ≤ Δ

2Δ2, if Δ < 𝑦 < 𝑎 − Δ

2Δ2 − (𝑎 − 𝑦 − Δ)2 if 𝑎 − Δ ≤ 𝑦 ≤ 𝑎
0, otherwise

 

𝐴(𝑥, 𝑦) =
𝐴𝑋(𝑥)𝐴𝑌(𝑦)

2Δ2
 

(28) 

Finally, assuming a uniformly random position for the vehicle, Equation (29) gives the expected 

coverage area. 

 E[𝐴] = ∫ ∫
𝐴(𝑥, 𝑦)

𝑎𝑏
𝑑𝑥

𝑏

0

𝑑𝑦
𝑎

0

 (29) 

As the demand is also uniformly distributed, it is straightforward to update Equation (27) and 

obtain an estimate for the probability that a single vehicle covers an arriving passenger 

(Equation 30). 

 Pr(𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒) =
E[Covered area]

Total area
=
E[𝐴]

𝑎𝑏
 

(30) 

Multiple idle vehicles problem 

Now consider that there are 𝑛 ≥ 1 idle vehicles in the same rectangular region. One can 

approximate the probability that at least one vehicle is close enough to an arriving passenger. 

The proposed approximation is the probability of at least one success on 𝑛 Bernoulli trials 

(Equation 31). Where the probability of success is 𝑝 =
𝐸[𝐴]

𝑎𝑏
 and the probability of failure is 𝑞 =

1 − 𝑝. 

 Pr(𝐷 ≤ Δ) =∑∑(
𝑗
𝑖
) 𝑝𝑖𝑞𝑗−𝑖

𝑗

𝑖=1

𝑛

𝑗=1

 (31) 

Figure 7 presents a simple numerical result in comparison to a simulation. 
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Figure 7: Acceptance probability: Simulation vs Approximation. 

 

 

One critical assumption behind this approximation is that vehicles do not cooperate. Otherwise, 

they would organize themselves like in a maximum expected coverage problem, therefore in a 

non-random way. 

3.2.2 Matching passengers and partially busy vehicles 

Suppose that a vehicle is taking a passenger 𝑝1 to his/her destination through the shortest path 

possible. Additionally, suppose that inter-arrival times for passengers that match with 𝑝1 follow 

an exponential distribution with a constant arrival rate 𝜆 (in arrivals per unit of time per unit of 

area – 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 ⋅ ℎ−1𝑘𝑚−2, for instance). Therefore, it is straightforward to assume that this is 

a pure-birth process from the current time to the time of arrival at the destination. Without loss 

of generality, assume that the number of matchings (arrivals) is zero at epoch 𝑡 = 0. The 

expected time to reach the destination is 𝑡𝑓. The probability that at least one arrival (Pr(𝑁 > 0)) 

will happen during the trip defines the likelihood to occur a matching before reaching the 

destination. 

Therefore, Equation (32) gives the probability to remain with zero arrivals after Δ𝑡 time units, 

where 0 < Δ𝑡 ≪ 𝑡𝑓 holds, and 𝐴(𝑡) is the area of acceptance for arriving passengers that match 

𝑝1 at time 𝑡. 

 Pr(𝑁(𝑡 + 𝛥𝑡) = 0|𝑁(𝑡) = 0) = 𝑃0(𝑡 + Δ𝑡) = 1 − 𝜆𝐴(𝑡)Δ𝑡 
(32) 
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Hence, the following transformation, where 𝑃0(𝑡) is the probability of occurring zero arrivals 

after 𝑡 time units, holds: 

 

𝑃0(𝑡 + Δ𝑡) = 𝑃0(𝑡)(1 − 𝜆𝐴(𝑡)Δ𝑡) 

𝑃0(𝑡 + Δ𝑡) = 𝑃0(𝑡) − 𝜆𝐴(𝑡)Δ𝑡𝑃0(𝑡) 

𝑃0(𝑡 + Δ𝑡) − 𝑃0(𝑡) = −𝜆𝐴(𝑡)Δ𝑡𝑃0(𝑡) 

𝑃0(𝑡 + Δ𝑡) − 𝑃0(𝑡)

Δ𝑡
= −𝜆𝐴(𝑡)𝑃0(𝑡) 

 

On the limit Δ𝑡 → 0, we have Equation (33). 

 lim
Δ𝑡→0

𝑃0(𝑡 + Δ𝑡) − 𝑃0(𝑡)

Δ𝑡
=
𝑑𝑃0(𝑡)

𝑑𝑡
= −𝜆𝐴(𝑡)𝑃0(𝑡) 

(33) 

Equation (34) is the result of integrating Equation (33) in the time interval (0, 𝑡𝑓] to reach the 

destination. 

 
𝑃0(𝑡) = 𝑒

−𝜆∫ 𝐴(𝑡)𝑑𝑡
𝑡𝑓
0  

(34) 

Finally, Equation (35) gives the probability of occurring at least one arrival that matches 𝑝1. 

 
Pr(𝑁 > 0) = 1 − 𝑃0(𝑡) = 1 − 𝑒

−𝜆∫ 𝐴(𝑡)𝑑𝑡
𝑡𝑓
0  

(35) 

If we cast some more light to the definition of matching, it is possible to reach a more suitable 

solution. Thus, consider that 𝐴(𝑡) is truly the intersection of two different areas. The first area 

𝐴𝑤 is the same as the diamond shape area seen in Figure 6, the area that the vehicle can reach 

obeying a maximum waiting time Δ. The second area 𝐴𝑝1 relates to a parameter Ω that describes 

the maximum distance that the vehicle can detour from the shortest path to the destination of 𝑝1. 

For simplicity, consider that a vehicle can only carry two passengers at a time. Thus, Equation 

(36) describes this definition of 𝐴(𝑡). 

 𝐴(𝑡) = 𝐴𝑝1(𝑣, 𝑝1, Ω) ∩ 𝐴𝑤(𝑣, Δ) 
(36) 

As seen in Figure 6, 𝐴𝑤(𝑣, Δ) has a diamond shape defined as a function of the location of a 

vehicle 𝑣 and the length Δ > 0. However, 𝐴𝑝1(𝑣, 𝑝1, Ω) has an octagonal shape due to the 

Manhattan distance metric. Figure 8 illustrates the calculation of 𝐴𝑝1 using parameter Ω, and 
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the positions of 𝑣, and the destination of 𝑝1. For simplicity, in the remaining of this section, we 

refer to 𝐴𝑝1(𝑣, 𝑝1, Ω) and 𝐴𝑤(𝑣, Δ) only as 𝐴𝑝1, and 𝐴𝑤, respectively. 

Figure 8: Illustration of area 𝐴𝑝1 calculation for the matching problem. 

 

 

Figure 9 presents a numerical example of areas 𝐴𝑝1, 𝐴𝑤, and 𝐴(𝑡) using different strategies to 

reach the destination. Note that 𝐴(𝑡) ≤ min(𝐴𝑝1 , 𝐴𝑤). If Δ ≤ Ω, then 𝐴𝑤 ⊂ 𝐴𝑝1, 

therefore 𝐴(𝑡) = 𝐴𝑤. 

Ω 

Ω 

Ω 

Ω 

𝑣 

𝑝
1
 (Destination) 

|𝑥𝑣 − 𝑥𝑑𝑝1| 

ቚ𝑦
𝑣
−
𝑦
𝑑
𝑝
1
ቚ 
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Figure 9: Numerical results on matching areas. 

 a)

b) 

 

We would like to state that, although “straight as possible” strategy has a larger area of 

matching; it means a higher number of turns, which usually leads to smaller speeds (and longer 

travel times). Therefore, it is imperative to evaluate which movement strategy is more efficient. 

Further research could investigate how time influences the arrival rate of requests that match 𝑝1. 

One way for this could combine the distributions for distances and angles from Section 3.1. 

3.3 Positions 

In this section, we analyze the positions of traveling vehicles. We used a simple discrete-event 

simulation to evaluate the positioning of traveling vehicles in a region. The simulator creates a 

random origin and destination for a vehicle. The vehicle travels at a constant speed and records 

positions at fixed time steps. Once the vehicle reaches the destination, it creates new random 
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origin and destination. We plot a histogram of the positions and derive a pdf from it. However, 

we derive no analytical results. 

Figure 10 shows the pdfs for two different movement strategies. In the first strategy, the vehicle 

chooses its initial direction to travel randomly. However, the second strategy forces the vehicle 

to choose the initial direction such that it passes as far as possible from the center of the region 

(without increasing the total traveled distance). Note that forcing vehicles to avoid the center 

created a smoother pdf, suggesting that this would lead to a more homogeneously distributed 

congestion. 

Figure 10: Numerical results on position density functions for intra-region trips. 

 

 

For the second part of this analysis, we observed the simulation results for inter-region trips. 

Figure 11 presents the results of the simulation regarding three scenarios: 1) Leaving the region 

through two exits; 2) Entering a region through two entrances; and 3) Entering a region through 

infinite entrances. Note that the color map is on a log scale and that the entrances/exits are at 

the right side of each figure. It is interesting to observe that selecting the closest exit (Left 

figure) creates a valley between both exits (Supporting the findings from Section 3.1.4). 

Especially in the figures from the left and the middle, the densities close to the entrances/exits 

are far higher than in other regions, thus a potential bottleneck. Infinite entrances (figure on the 

right) distributed the densities. 
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Figure 11: Numerical results on position density functions for inter-region trips. 

 

4. Final considerations 

This paper aimed to provide estimations for travel distances, trajectories and matching on a 

simplified rectangular urban traffic network to support the modeling of ridesourcing decision 

problems. Among the most interesting findings, one could highlight three of them. First, 

Equation (26) shows that just increasing the number of vehicles is not an efficient strategy to 

lower waiting times if there is no cooperation among them. Second, Section 3.2.1 suggests that 

cooperation might play a critical role in maximizing the area that vehicles cover, directly 

influencing waiting times, as well. Third, trajectories influences the chances of matching a 

second passenger and congestion patterns, as shown in Figure 9 and Figure 10, respectively. 

Therefore, one willing to increase successful matchings should consider movement strategies. 

These findings presented only initial evidence to support more elaborated analytical or 

simulation models on ridesourcing problems and urban mobility. Besides the continuous space 

assumption, several other limitations require further examination to provide more reliable and 

accurate insights. Namely, some of these limitations are: i) uniformly distributed origins and 

destination, opposing the behavior of a morning commute, for instance; ii) homogeneity in the 

region configuration, as large urban areas tend to face heterogeneous infrastructure and 

configuration; iii) exponentially distributed inter-arrival times. 

Therefore, further research could focus on coping with the latter. Additionally, one could extend 

these simple simulations and analytical results for other insights on ridesourcing and urban 

mobility. 
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