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1. Objective and methodology 28 
 29 
This paper presents a direct modelling approach for origin-destination (OD) public transportation 30 
commuting flows for the case of Switzerland. Its purpose is to improve the gravity modelling approach 31 
for OD flows by applying a spatial autoregressive regression model, testing different spatial weighting 32 
schemes and accounting for endogeneity aspects. To the best of our knowledge, there has been no 33 
prior application of such advanced models in the context of transport demand modelling for public 34 
transport. Methodologically, in the first step a gravity model is developed and tested for the presence 35 
of spatial autocorrelation in its residuals. Subsequently, variants of a spatial lag model with different 36 
spatial weighting schemes are developed. Furthermore, we test the inclusion of an endogenous 37 
variable defined as the mean income differences between the interacting regions on its ability to 38 
describe interregional demand patterns. In addition, we treat for the endogenous nature of the newly 39 
constructed variable. Last, we are also testing its ability to serve as the basis for the construction of 40 
the spatial weight matrix, thus replacing the commonly used travel time / distance metric. On the 41 
modelling front, we use an Ordinary Least Squares (OLS) estimator for the gravity model, while we 42 
employ a Generalized Method of Moments and Instrumental Variable (GMM / IV) estimator for the 43 
spatial models in order to obtain unbiased and consistent parameter estimates. We evaluate various 44 
goodness-of-fit measures and in-sample predictions by comparing them among each other as well as 45 
to those of a state-of-the practice transport model (as provided by national spatial planning bureau 46 
(NPVM)). This comparison allows us to draw solid conclusions with respect to the suitability of the 47 
presented method for predicting commuting flows.  48 
 49 

2. Case study 50 
 51 

2.1 Set up 52 
 53 
In brief, we designed a case study for public transport commuting flows in Switzerland to illustrate the 54 
concept of OD flow modelling, based on travel-to-work trip data from the Federal Census of 2000. The 55 
data cover 2896 Swiss municipalities and contain over 250’000 observations in their initial form. 56 
However, the given data set does not fill the whole flow matrix that contains 28962 = 8,386,816 flows. 57 
The flows represent entries in the OD flow matrix T (see Table 2), where columns reflect origins and 58 
rows destinations)1. For the remaining OD pairs we assume zero-valued travel flows. An important 59 
aspect is the issue with how to deal with zero flows. A large fraction of zero-valued OD flows would 60 
definitely point towards a Poisson or a (zero-inflated) negative Binomial interaction model. However, 61 
neither a Poisson nor a negative Binomial spatial autoregressive regression model for OD flows has 62 
been developed so far. We include income differences between Swiss communes as an explanatory 63 
variable in our models, since a higher income gives incentives to commute. In conclusion, we filter the 64 
initial flow matrix for inter-communal travel trips, income data available only in 1595 communes and all 65 
zero flows, which gives a final sample size of 46,659 OD flows2. Clearly, this is a limitation of our 66 
modelling approach. Nevertheless, the findings can be of apparent value for pointing directions. 67 
 68 

2.2 The Swiss network 69 
 70 
A presentation of the resulting commuting flows is given in Figure 1, where higher flow values 71 
correspond to a thicker representation of the linkages and only flows bigger than the median are 72 
showed. This figure clearly shows dense linear features emanating among larger cities in Switzerland, 73 
which also hints at the monocentric nature of employment in the area of big cities and towns.  74 
 75 
 76 

                                                           
1 Note that initially every municipality resembles an origin and a destination. 
2 Due to filtering, a municipality does not have to be an origin and a destination anymore. 
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Figure 1: Map of filtered public transportation commuting flows within Switzerland in 2000. Flows 77 
emanate from the centroid of each municipality. 78 
 79 

 80 
 81 
Examining travel-to-work distances within the public transportation flow network reveals that even after 82 
filtering for zero flows the distribution of distances is heavily right skewed. Apparently, low flows in the 83 
initial data set get filtered leading to higher median values for flows in the first five deciles, which again 84 
shows the importance of the bigger cities in Switzerland. Note that for the left boxplot, all zero flows 85 
were transformed with 𝑦𝑛𝑒𝑤 = 𝑦 + 1. 86 
 87 
Figure 2: Distributions of network distances and flows (in logs) before (left) and after filtering (right) in 88 
deciles. 89 
 90 

(a) Distance distribution before filtering

 

(b) Distance distribution after filtering
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c) Flow distribution before filtering

 

(d) Flow distribution after filtering

 
 91 

2.3 The model variables 92 
 93 
Modelling commuting behaviour requires a set of relevant explanatory variables that capture 94 
the origin’s and destinations’ characteristics, along with the mechanisms that generate the trips among 95 
them. The dependent variable, inter-communal travel flows, is regressed on several independent 96 
variables obtained or derived from the 2000 Federal Census, the Swiss national transport model ARE 97 
(2005), and the Institute for Transport Planning and Systems (IVT) of ETH Zurich. We use the 98 
following variables in our framework, which are also common in explaining public transport demand in 99 
the literature (e.g. LeSage and Thomas-Agnan, 2015; Farmer, 2011; Axhausen et al., 2015). 100 
 101 
Table 1: Model variables and their summary statistics 102 
 103 

Statistic Definition Mean Std. Dev Min Max 

Flow Av. daily flows 11.1 79.1 1 5,698 

Network dist. minutes 74.1 42.8 5.8 730.3 

Income diff. rel in percent 0.068 0.235 -0.643 1.744 

Population (o) # inhabitants 13,661.970 40,809.420 45 363,273 

Jobs (d) # jobs 19,918.660 55,560.380 11 341,213 

Pop. density (d) # pop. / area (in km2) 1,372.3 1,719.4 1.5 9,581.1 

Job density (o) # jobs / area (in km2) 657.9 1,856.8 1 67,561.3 

Pop. accessibility (d) # accessible pop. 277,352.7 224,990.9 93.8 1,064.884 

Job accessibility (o) # accessible jobs 120,298.3 107,246.1 35.3 567,509.4 

Car (o) # cars / pop. 0.5 0.085 0 1.177 

Car (d) # cars / pop. 0.5 0.089 0 1.177 

Jobs3rd (o) # jobs in 3rd sector / # jobs 0.595 0.176 0.044 1 

Jobs3rd (d) # jobs in 3rd sector / # jobs 0.652 0.174 0.044 0.990 

Workers (o) # workers3 / pop. 0.524 0.036 0.277 0.726 

Workers (d) # workers3 / pop. 0.524 0.036 0.277 0.726 

Note: (o),(d) = at origin, at destination municipalities 
N = 46,659 

 104 
Network distance is reported as travel time in minutes between municipalities. It basically resembles a 105 
generalised cost of travelling with public transport and incorporates not only the raw travel time, but 106 
also the waiting time at stations and the number of transfers on travel-to-work trips. Hence, network 107 
distance reflects the structure of public transportation in a spatial grid and should influence the 108 
dependent variable negatively. Income is an important variable for transport demand as the difference 109 
of income between destinations and origins can be seen as a reason to commute3. In general, one 110 
would expect that income differences have positive influence on flows. The question that arises about 111 
the influence of income is whether it has a direct impact or not. To start, we assume that income 112 
directly influences commuting flows, thus is exogenous without any other confounding effects. Job and 113 
population accessibility by public transportation are measures of available job positions and population 114 

                                                           
3 Refer to Sarlas et al. (2015) for the derivation of the income per commune. 
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in surrounding municipalities of origins and destinations. They are constructed as follows (Sarlas 115 
2015)4: 116 
 117 

𝐽𝑜𝑏 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 = ∑ 𝐽𝑜𝑏𝑠𝑗 ∗ 𝑒𝑥𝑝(𝛽𝑐𝑜𝑠𝑡𝑖𝑗
𝛼 )

𝑗

𝑖

 118 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 = ∑ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗 ∗ 𝑒𝑥𝑝(𝛽𝑐𝑜𝑠𝑡𝑖𝑗
𝛼 )

𝑗

𝑖

 119 

 120 
Because they should capture how municipalities generally compete against each other in terms of 121 
available population and jobs, both measures should have a negative impact on the flow under 122 
consideration, either at an origin or destination level. The total number of jobs, the jobs in the service 123 
sector, along with population and economically active population should be positively correlated with 124 
flows. Subsequently, the area variable is used to calculate job and population density variables, while 125 
their influence on flows is not clear a priori. Last, car ownership per commune reflects people’s mode 126 
choice shares and should therefore have a negative impact on public transportation flows, as it is 127 
assumed that private and public transport are competing5. 128 
 129 

2.4 Origin-Destination flows and the Gravity model 130 
 131 
OD flow modelling aims at explaining variation in the levels of flows between the n2 OD pairs based on 132 
a sample containing n spatial units (LeSage and Pace, 2008). An important difference to classic 133 
interaction modelling arises in how a flow matrix (see Table 2) translates into an n2 vector of flows, 134 
which defines the OD model structure (see Table 3). We stick to an origin-centric ordering in this 135 
paper. In Table 3, the first n elements in the stacked flow vector indicate flows from origin 1 to all n 136 
destinations. The last n elements of this vector represent flows from origin n to destinations 1 to n. 137 
 138 
Table 2: OD matrix 139 
 140 

T o1 o2 … on 

d1 o1→d1 o2→d1 … on→d1 

d2 o1→d2 o2→d2 … on→d2 

⁞ ⁞ ⁞  ⁞ 

dn o1→dn o2→dn … on→dn 

 141 

Table 3: OD vector lo (first column) 142 
 143 

lo oo do 

 1 1 

⁞ ⁞ ⁞ 

n 1 n 

⁞ ⁞ ⁞ 

n2-n+1 n 1 

⁞ ⁞ ⁞ 

n2 n n 

 144 
The starting point is a logged least-squares gravity model for OD flows in the form of 145 
 146 

log(𝑦) =  𝛼 log(𝑙𝑁) +  𝛽𝑜 log(𝑋𝑜) +  𝛽𝑑 log(𝑋𝑑) +  𝛿 (
𝑖𝑛𝑐𝑑 − 𝑖𝑛𝑐𝑜

𝑖𝑛𝑐𝑜

) +  𝛾 log(𝑔) +  𝜖, 147 

 148 

                                                           
4 Note that the parameters of the distance decay functions are taken from Sarlas and Axhausen (2015). 
5 Commuters using a mix of private and public transportation are not considered. 
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where Xo and Xd are characteristics of origins and destinations, g denotes the network distance and 149 
((𝑖𝑛𝑐𝑑 − 𝑖𝑛𝑐𝑜) 𝑖𝑛𝑐𝑜)⁄  reflects the relative difference of income between destination and origin 150 
municipalities.  151 
 152 
Estimation results of the gravity model are shown in Table 4. The associated adjusted R-squared of 153 
51.8% shows that a bit more than half of the variation in the commuting flows can be explained by the 154 
OLS model. The residuals of the gravity model are almost normally distributed, yet they exhibit a 155 
slightly right skewed distribution and feature a higher kurtosis (see Fig. 3). Furthermore, 156 
heteroskedasticity robust standard errors are calculated and presented to account for potential non-157 
constant variance in the residuals. We checked the variance inflation factors, which are not shown 158 
here, for all independent variables and found no multi-collinearity issues. 159 
 160 
Figure 3: Gravity model diagnostics 161 
 162 

(a) Distribution of the model residuals

 

(b) Boxplot of the model residuals

 
 163 
All parameters are highly significant except those of the share of 3rd sector jobs at origins and the 164 
share of cars per origin municipality having p-values lower than 5% and 1% respectively. The network 165 
distance decay parameter (-1.537) is within the expected range for commuting patterns and in 166 
accordance with previous studies. All other explanatory variables have a much weaker impact on the 167 
dependent variable, but this finding is in line with the expectations of existing literature (LeSage and 168 
Thomas-Agnan, 2015; Farmer, 2011). Income differences between destinations and origins have a 169 
significant and positive effect on travel-to-work trips and should be interpreted as an elasticity, since 170 
relative differences are used. This intuitively makes sense, as a higher income in another commune 171 
gives incentive to commute. Among the destination characteristics, an increase in the share of 172 
workers (economically active population per municipality) and the number of jobs yield the biggest 173 
influence on travel-to-work trips (0.665 and 0.473), whereas an increase in the accessibility of people 174 
in neighbouring communes has the strongest negative influence on commuting (-0.176). A higher 175 
accessibility of population by public transport results in less transport demand in the destination of the 176 
OD flow under consideration and thus can be interpreted as a kind of competition variable. Regarding 177 
the origin-specific variables, the parameters for population and the share of workers show the 178 
strongest positive impact (0.365 and 0.440) on commuting flows. An increase in both variables is 179 
positively related to travel demand, leading to higher flows away from origin communes. If more jobs in 180 
the neighbouring communes are available by means of public transportation, this has a negative, and 181 
again big effect on travel-to-work trips. Interestingly, a higher number of jobs in the origin itself has a 182 
smaller effect on commuting flows compared to more available jobs outside of it. As expected, cars 183 
have negative impact since it captures, at least partially, the competition with public transportation. 184 
 185 

2.5 Spatial dependence in the residuals 186 
 187 
OLS relies on independent observations. In the context of OD commuting flows this assumes that the 188 
use of a network distance variable should eradicate the spatial dependence among the sample OD 189 
pairs, which is likely not the case in this setting, as Griffith and Jones (1980, p. 190) state that "flows 190 
associated with a destination are “enhanced or diminished in accordance with the propensity of 191 
attractiveness of its neighboring destination locations". The same holds for flows from origins. Hence, 192 
residuals of gravity models indicate the presence of untreated spatial effects (Curry, 1972). By 193 
applying Moran’s I tests (Moran, 1948), which in our setting weight the mean residuals by network- 194 
and economic distance, we find that they indeed exhibit remaining spatial dependence and thus justify 195 
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the need for spatial models. That is, the mean residuals of either origins or destinations are positively 196 
correlated with its spatially lagged disturbances. Furthermore, squares in the Moran scatterplots (see 197 
Figure 4) reveal influential observations (communes) which are able to influence the slope (global 198 
Moran's I) unproportionally. Interestingly, a spatial analysis as such does not reveal any clear pattern 199 
or cluster in Switzerland, even though it was quite similar for both origins and destinations. In addition, 200 
for the case of origins, the spatial autocorrelation is significant up to a radius of 120 minutes of travel 201 
time whereas for destinations it is up to 100 minutes. 202 
 203 
Figure 4: Spatial dependence in the mean OLS residuals with a network distance (first row) and 204 
economic distance (second row) based spatial weight matrix 205 
 206 

(a) Moran’s I plot for origins, MI: 0.097

 

(b) Moran’s I plot for destinations, MI: 0.066

 
(c) Moran’s I plot for origins, MI: 0.082

 

(d) Moran’s I plot for destinations, MI: 0.053

 
 207 

2.6 The spatial autoregressive model 208 
 209 
Spatial autoregressive models (SAR) in log form are typically written as 210 
 211 
𝑙𝑜𝑔(𝑦) = 𝛼 log(𝑙𝑁) + 𝜌𝑖  𝑊𝑖  log(𝑦) +𝛽𝑜𝑙𝑜𝑔(𝑋𝑜) + 𝛽𝑑𝑙𝑜𝑔(𝑋𝑑) + 𝛿 (inc. ) + 𝛾 log(𝑔) + 𝜖, 𝑤𝑖𝑡ℎ 𝑖 = 𝑜, 𝑑, 𝑏, 212 
 213 
where in our case the weights for the weight matrix W i are defined as 214 
 215 

𝑁𝑒𝑡𝑤. 𝑑𝑖𝑠𝑡. 𝑤𝑒𝑖𝑔ℎ𝑡𝑠:    𝑤𝑖𝑗 =  
1

𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒𝑖𝑗

,   𝐸𝑐𝑜𝑛. 𝑑𝑖𝑠𝑡. 𝑤𝑒𝑖𝑔ℎ𝑡𝑠:    𝑤𝑖𝑗 =  (
𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒𝑖𝑗

exp ((𝑖𝑛𝑐𝑑 − 𝑖𝑛𝑐𝑜) 𝑖𝑛𝑐𝑜⁄ )
)

−1

 216 

 217 
For economic distance weights, travel times are weighted with the exponential of relative differences 218 
in communal incomes. For example: A positive difference resulting from a higher income in 219 
destinations than origins for a given OD-dyad lowers travel times, implying a higher weight overall 220 
because of taking the inverse. Note that as a result of \cref{sec: acasestudyforswitzerland-221 
spatialdependenceinresiduals} network and economic distances higher than a certain threshold are 222 
set to zero, thereby assuming that there is no more remaining spatial autocorrelation after it from 223 
origins and/or destinations. 120 minutes of travelling away from origins and 100 minutes away from 224 
destinations are set as thresholds. Furthermore, a minmax-standardisation routine is applied to all 225 
weights, basically to account for the size of spatial units and to prevent the modifiable area unit 226 
problem (Kelejian and Prucha, 2010, Killer, 2014). 227 
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These weights are now assigned to neighbouring origins of an OD pair in the case of an origin-centric 228 
weight matrix, essentially weighting the corresponding commuting flows from neighbours of an origin 229 
to a specific destination. The same principle holds for the case of destination-centric spatial weight 230 
matrices. A third weight matrix sums the origin- and destination based weight matrix and accounts for 231 
both effects.  232 
 233 
We use the Lagrange multiplier test for spatial dependence applied to the OLS gravity model residuals 234 
in combination with all weighting schemes. The tests indicate that spatial autoregressive models with 235 
spatial autoregressive error terms (SAC) yield the highest statistics for network and economic distance 236 
weighting. Spatial error models rank second whereas spatial lag/autoregressive models are those with 237 
the lowest test statistics. Because of computer memory issues, which is well known and stated 238 
problem (LeSage and Pace, 2008), we could only estimate spatial lag models using the sphet 239 
package in R (Piras, 2010).  240 
 241 
As it can be seen in Table 4, SAR models relying on origin- and destination-centric network and 242 
economic distance weights show positive influence of neighbouring communes on travel-to-work trips. 243 
Rho is higher than 1, which is an artefact of using the minmax approach for the spatial weights when 244 
building W i, i = (o,d,b) instead of classic row-normalization (Kelejian and Prucha, 2010). Compared to 245 
row-normalization, where a different normalization factor for the elements of each row is used, the 246 
minmax approach also considers column sums and applies a single one for the whole matrix. In the 247 
transition from the gravity model to the SAR models, variables Car (o), Car (d), and Jobs3rd (o) are 248 
not statistically significant anymore and the impact of network distance becomes smaller. Interestingly, 249 
rho for the SAR model relying on economic distance weights has a bigger impact compared to the 250 
network distance weighted SAR. We want to emphasize that parameter estimates of spatial 251 
autoregressive regression models cannot be interpreted as simple elasticities as in the gravity model, 252 
since spatial spillovers complicate the task of interpreting estimates from these models in a direct way. 253 
Furthermore, the spatial models yield a higher goodness-of-fit measure than the gravity model. Note 254 
that pseudo R2 values must be treated with caution, as they are not equivalent to OLS-based R2 255 
measures. 256 
 257 
Table 4: Gravity model and spatial autoregressive models estimates 258 
 259 

  Dependent variable: log(commuting flows) 

 Gravity model (OLS) SAR (GMM / 2IV) SAR (GMM / 2IV) 
   Network distance weights Econ. distance weights 

  Estimate Sign. Estimate Sign. Estimate Sign. 

(Intercept) 4.443 *** 5.765 *** 5.788 *** 

log(Netw. distance) -1.537 *** -1.250 *** -1.254 *** 

Rel. Income diff. 0.085 *** 0.047 ** 0.041 ** 

log(Jobs) (d) 0.473 *** 0.307 *** 0.308 *** 

log(Pop. density) (d) 0.030 *** 0.036 *** 0.036 *** 

log(Pop. access.) (d) -0.176 *** -0.207 *** -0.206 *** 

log(Jobs3rd) (d) 0.102 *** 0.082 *** 0.082 *** 

log(Car) (d) -0.071 *** -0.007  -0.006  
log(Workers) (d) 0.665 *** 0.409 *** 0.417 *** 

log(Population) (o) 0.440 *** 0.359 *** 0.358 *** 

log(Job density) (o) -0.043 *** -0.042 *** -0.042 *** 

log(Job access.) (o) -0.180 *** -0.239 *** -0.239 *** 

log(Jobs3rd) (o) -0.027 ** -0.019  -0.018  
log(Car) (o) -0.023 * -0.003  -0.002  
log(Workers) (o) 0.365 *** 0.249 *** 0.254 *** 

rho     2.387 *** 2.704 *** 

R2 0.5177      
Pseudo adj. R2   0.5898  0.5893  

HC robust std. errors yes  yes  yes  

Note:  * p < 0.1; ** p < 0.05; *** p < 0.01 

 260 
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The resulting in-sample predictions of the spatial models outperform those from the current NPVM for 261 
different accuracy measures, as can be seen in Table 56. The considered measures are: Root 262 
mean/median squared percentage error (RMSPE / RMdSPE), mean/median absolute percentage 263 
error (MAPE / MdAPE) and symmetric mean/median absolute percentage error (SMAPE / SMdAPE). 264 
Percentage errors have the advantage of being scale-independent and are frequently used to 265 
compare prediction performance across different models. The MAPE and MdAPE have the 266 
disadvantage that they put a heavier penalty on negative errors than on positive errors. This 267 
observation led to the use of the so-called “symmetric” measures (Makridakis, 1993): SMAPE, 268 
SMdAPE. RMS(P)E is often preferred to the MSE as it is on the same scale as the data. Measures 269 
based on median values are more robust to outliers and therefore smaller than those based on mean 270 
values. Apparently, the OLS gravity model prediction errors are the biggest ones among all models. 271 
The spatial models perform best without doubt. It seems that they are less sensitive to outliers due to 272 
a significantly smaller variation over all measures and only slightly bigger measures based on mean 273 
percentage errors. 274 
 275 
Table 5: In-sample predictions 276 
 277 

  RMSPE RMdSPE MAPE MdAPE SMAPE SMdAPE 

NPVM 87.50 6.49 271.76 64.92 74.12 64.24 

Gravity model (OLS) 131.20 68.76 913.60 687.62 143.36 154.94 

SAR (GMM / 2IV); Network. dist. weigths 6.81 4.75 51.53 47.52 62.59 55.22 

SAR (GMM / 2IV); Economic. dist. weigths 6.40 5.13 51.99 51.34 68.96 63.03 

 278 

2.7 Endogeneity in the gravity model 279 
 280 
The problem of endogeneity is severe for any model if it exists. It results in biased and inconsistent 281 
estimates, making parameter estimates and inference invalid. In this framework, the mean income as 282 
an economic characteristic of origins/destinations and as part of the spatial weight matrix is used to 283 
explain variation in commuting flows. Due to the economic nature of income it may as well be that 284 
there is an omitted variable bias, causing the disturbances to be correlated with the regressor in the 285 
case of the OLS gravity model. Even worse in SAR models, where the regressor and spatially 286 
weighted dependent variable are both correlated with the error terms. This fact violates the conditional 287 
mean assumption which essentially means that is not possible to fully distinguish the influence of and 288 
between each variable in the model. 289 
 290 
To account for endogeneity in the gravity model we employ an Instrumental variable (IV) approach in 291 
order to get a consistent, but biased, and less efficient estimator (compared to OLS). In general, 292 
instruments provide a solution for threats to internal validity that cause a non-zero expected 293 
conditional error term. Methodologically, the estimation of the model takes place in two stages: A first 294 
step to isolate the uncorrelated part of the explanatory variable(s) with the disturbances. In the second 295 
step the predictions from the first step are used in the original causal relationship. Both stages use 296 
OLS, but despite the name, estimation is done in a single step in order to get right standard errors. 297 
The most difficult part is basically finding valid instruments, satisfying two conditions: Instrument 298 
relevance and exogeneity. 299 
 300 
As stated before, it is difficult to think of income to be exogenous in the case of commuting. First and 301 
foremost, there may be other (omitted) variables explaining variation in travel-to-work trips that are 302 
correlated with income - taxes at municipality level for example. Second, it is difficult to assume no 303 
interaction with other variables in the model. In general terms, because of strong interrelations of 304 
transportation, human settlement, urban agglomeration and economic activities concentrated in cities, 305 
the gravity model should be tested for endogeneity since income is used as a variable. Usually, family 306 
background, workforce variables or characteristics of job positions are used when it comes to find 307 
instruments for income. Sarlas et al. (2015) found evidence for the positive impact of the latter on 308 
mean salaries. The variables that are chosen as instruments are given in Table 6. Generally, two 309 
groups of instruments can be distinguished: Instrumental variables 1-4 reflect sector specific attributes 310 
of jobs while the latter ones relate to required skills. All above listed IV’s are included in the 2SLS 311 
regression framework. 312 
 313 

                                                           
6 See Sarlas and Axhausen (2015) for a definition of the accuracy measures. 
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In order to have a valid IV model according to existing theory, three tests are considered. The rejection 314 
of the F-test on the instruments in the first stage reveals that there are actually no weak instruments, 315 
i.e. no weak first stage-relationship. The Wu-Hausmann test examines the consistency of the OLS 316 
estimates under the assumption that IV is consistent. Due to its rejection OLS indeed is inconsistent, 317 
suggesting that endogeneity is present. The last test is called Sargan or J-test and tests instrument 318 
exogeneity using overidentifying restrictions. Since it is not rejected we can conclude that the chosen 319 
instruments are valid. 320 
 321 

Table 6: Gravity model (IV) and instrumental variables 322 
 323 

Dependent variable: log(commuting flows)    

 Gravity model 
(IV / 2SLS) 

 Instruments 

      

  Estimate Sign.  Name Description 

(Intercept) 4.452 ***  Working 1 Positions in the hotel/restaurant sector 

log(Netw. distance) -1.537 ***  Working 2 Positions in the manufact. sector 

Rel. Income diff. 0.134 ***  Working 3 Positions in the servce sector 

log(Jobs) (d) 0.471 ***  Working 4 Positions in the private sector 

log(Pop. density) (d) 0.028 ***  Tertiary education Positions requiring tert. education 

log(Pop. access.) (d) -0.177 ***  Prof. training Positions requiring prof. training 

log(Jobs3rd) (d) 0.103 ***  Vocational training Positions requiring less than voc. train. 

log(Car) (d) -0.071 ***  Qualification 1 Positions with highest qualific. demand 

log(Workers) (d) 0.669 ***  Qualification 2 Positions with professional skills 

log(Population) (o) 0.441 ***  Management Positions with no managerial duties 

log(Job density) (o) -0.041 ***    

log(Job access.) (o) -0.178 ***    

log(Jobs3rd) (o) -0.028 **    

log(Car) (o) -0.023 *    

log(Workers) (o) 0.363 ***    

    IV diagnostic tests 

R2 0.5178   Weak instruments 1286.218 *** 

Pseudo adj. R2    Wu-Hausmann 4.751 * 

HC robust std. errors yes   Sargan 18.293  

Note:    * p < 0.1; ** p < 0.05; *** p < 0.01 

 324 
The estimation results concerning the variables reveal almost the same values compared to the OLS 325 
gravity model. Just the estimate of relative income difference has probably changed the most in the IV 326 
framework, yielding stronger and positive impact on commuting flows (0.134 versus 0.085). The model 327 
fit statistic has not changed (substantially) compared to the R-squared of the OLS model. 328 
 329 

2.8 Endogeneity in spatial models 330 
 331 
In this paper we don’t present further calculations regarding the endogeneity problem described 332 
before. Clearly, this issue affects spatial models in an even more complex way than gravity models, 333 
since we do not only include an endogenous regressor, but also endogenous weight matrices. Thus, 334 
the spatial model estimates in Table 4 are biased and inconsistent. In this section we therefore 335 
present a brief summary for a recipe to treat for endogeneity according to Drukker et al. (2013). 336 
 337 
The presented IV gravity model now acts as a kind of basis in order to calculate the corrected relative 338 
income difference variable estimate spatial autoregressive models. Since we have found valid 339 
instruments for the income difference between origin and destination municipalities, it is now possible 340 
to use the predicted and thus corrected income values (see the first equation below) of the first stage 341 
in IV for constructing the spatial weights. 342 
 343 

(
𝑖𝑛𝑐𝑑 − 𝑖𝑛𝑐𝑜

𝑖𝑛𝑐𝑜

)
̂

= 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠 + 𝑎𝑙𝑙 𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 +  𝜀 344 
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𝐸𝑐𝑜𝑛. 𝑑𝑖𝑠𝑡. 𝑤𝑒𝑖𝑔ℎ𝑡𝑠:    𝑤𝑖𝑗 =  (
𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒𝑖𝑗

exp ((𝑖𝑛𝑐𝑑 − 𝑖𝑛𝑐𝑜) 𝑖𝑛𝑐𝑜⁄ )̂
)

−1

 345 

 346 
By directly including predicted values of income in the construction of the spatial weight matrix, we can 347 
account for previously endogenous elements. Drukker’s 4-step estimation method (Drukker et al., 348 
2013) can be then used to get consistent coefficients. An implementation in R (sphet package) is 349 
available. 350 
 351 

3. Conclusion 352 
 353 
In this paper we implemented a direct transport demand model for OD public transport commuting 354 
flows in Switzerland. It is based on data from the Federal Census of 2000, the Lohnstrukturerhebung 355 
2000 and the National Transport Model 2000. Further variables are based on calculations by the 356 
Institute for Transport Planning and Systems of ETH Zurich. 357 
Methodologically, we employed a three step process to examine the problem of spatial dependence in 358 
OD commuting flows when network and economic distance are used as underlying impedance 359 
function. The starting point was a simple OLS gravity model relying on independent observations, 360 
which we then replaced by spatial autoregressive models that are based on two weighting schemes 361 
(network and economic distance) in order to account for untreated spatial dependence in the residuals 362 
of the OLS gravity model. We used an origin- and destination-centric weight matrix to account for both 363 
origin and destination effects. In the last step we checked if endogeneity is present in the OLS gravity 364 
model by applying an IV regression approach using valid instruments for relative income differences. 365 
Furthermore we presented a way to treat for endogenous regressors and weight matrices in spatial 366 
models. 367 
We applied a filter method due to a large fraction of zero-valued flows and income data available for 368 
only 1595 communes, which gave a final sample of 46,659 observations. The estimates of the OLS 369 
gravity model were in line with expectations of existing literature concerning its statistical and 370 
economical importance. Four Moran’s I tests showed that the gravity model's residuals contain 371 
patterns of remaining autocorrelation up to a radius of 120 minutes of travel time. Lagrange multiplier 372 
tests indicated to estimate spatial autoregressive models with spatial error terms, but due to computer 373 
memory issues we could only calculate spatial autoregressive/lag models where we used network and 374 
economic distance weighting schemes. We were able to show that neighbouring communes have a 375 
positive influence on OD commuting flows under consideration. This finding supports the lower 376 
coefficients for network distance in the spatial models compared to the aspatial gravity model. The 377 
impact of relative income differences were found to be lower in both spatial models and slightly less 378 
statistically significant. The remaining explanatory variables remained stable across all models in sign 379 
and magnitude, except for car ownership and jobs in the service sector being insignificant in the 380 
spatial models. Last, we showed that the relative income difference variable indeed is endogenous 381 
using a valid set of instruments.  382 
 383 
  384 
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