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Abstract

This paper investigates the stability of departure time choice during the morning commute with
a bottleneck model of constant capacity. It is shown that the corresponding utility function is
monotonic if and only if the marginal utility rate of time at the destination is a non-increasing
function of time. Thus, the morning commute equilibrium is likely to be unstable even in
continuous time for a wide range of schedule preferences and rational adjustment mechanisms.
This result explains the many instances of non-converging behaviors reported in the literature.
It is however observed that user sensitivity to utility differences and heterogeneity in schedule
preferences have a strong influence on the size of the oscillations. If the population is sufficiently
heterogeneous and insensitive to utility differences, the instability may be hardly noticeable
among regular seasonal variations.
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1 Introduction

In transportation economics and transportation engineering, the “morning commute problem”
refers to the study of departure time choice for a population of commuters. Commuters experi-
ence a generalized cost which depends both on the time of the day and on the duration of their
trip, which depends itself on the decisions of other users. Most studies so far have focused on
existence, uniqueness or on other static properties of the Nash equilibrium and of the social
optimum (see Small (2015) for a review).

Despite its practical importance, the question of equilibrium stability has received very little
attention. Studying stability is more challenging as it involves an additional component, referred
to as the “adjustment mechanism” in the route choice literature, or as the “revision protocol” in
evolutionary game theory. In simple words, the equilibrium stability depends on how users react
to perturbations.

To the best of our knowledge, the stability of the morning commute equilibrium was only
investigated by few authors that mostly reported negative results. Observations of non-converging
behavior in simulations were reported by de Palma (2000), Mc Breen et al. (2006), Iryo (2008),
Bressan et al. (2012), Guo et al. (2018). The analytical work is more limited. Iryo (2008)
explained that some difference with the route choice problem precludes the transposition of
Smith’s stability proof (Smith, 1984b) to the departure time choice problem . More recently,
Guo et al. (2018) proved discrete time instability provided that the population size is large
enough. Yet, all these results only apply to specific examples of adjustment mechanisms and,
except for Bressan et al. (2012), only to the conventional α − β − γ schedule preferences. The
only “positive” stability results are those based on the concept of “bounded rationality”, which
considers that users do not update their decisions if the cost reduction that would obtained
by doing so is smaller than some threshold. Yet, bounded rationality leads to a continuum of
equilibria, which is often impractical for policy evaluation.

This paper extends the works previously mentioned by formulating results that are valid for a
broad range of schedule preferences and adjustment mechanisms. These results build mostly
on the concept of monotonic utility function, which is central to many stability results in route
choice and evolutionary game theory. In line with previous works, the results obtained point
to the instability of the morning commute equilibrium. We complement these results by a
more quantitative analysis of discrete time stability and sensitivity to heterogeneity in schedule
preferences.
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Note however that the assumptions used vary throughout the paper, as we rely on results from
various fields. The choice set for instance is considered to be discrete in evolutionary game
theory and route choice, but continuous in the departure time choice literature. Similarly,
evolutionary game theory is mostly concerned with continuous time systems and only allows
inter-group heterogeneity. In the real world however, departure time decisions for the morning
commute are taken at most once a day, and schedule preferences vary continuously among users.
We did not attempt to transpose all theoretical results in a single framework of assumptions,
because we believe most of the simplicity and elegance of these results would be lost in the
process. While we do believe that the insights obtained would still hold under more realistic
assumptions, readers should be aware of this limitation.

2 Stability and monotonicity: methodological framework

2.1 Problem decomposition

To fully describe a morning commute problem, one should specify the characteristics of the
population considered and three functions: a congestion mechanism, schedule preferences and
an adjustment mechanism. The congestion mechanism maps the departure time decisions to
the corresponding arrival times (here, we consider a simple uni-directional bottleneck). The
schedule preferences translate pairs of departure and arrival times into utilities. The adjustment
mechanism, also known as revision protocol, defines how users update their decisions depending
on the situation. By applying these three functions iteratively as illustrated in Fig. 1, one can
model the evolution of departure time decisions from day to day.

This paper draws on evolutionary game theory to shed light on the stability of this dynamic pro-
cess. In game theory, the game is a function that translates the user decisions into payoffs (payoff

is the term used in game theory, utility is the term used in choice modeling). Thus, the game
considered here is the combination of the congestion mechanism and schedule preferences.

2.2 Notations and definitions

We consider a single homogeneous population, i.e. a continuum of identical users. The
demand is assumed inelastic, so that all agents depart everyday. The set of possible departure
times is finite and is denoted DT = {t1, ...tn}. The set of possible populations states is X =
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Figure 1: Ingredients of the problem

{(x1, ...xn) ∈ Rn
+,

∑n
i=1 xi = 1}, where xi denotes the proportion of users choosing departure time

ti. A population game is characterized by a continuous utility function U : X → Rn, where
Ui(x) represents the utility of departing at time i when the population plays according to x.
Since agents have no mass, a population state x∗ is a Nash equilibrium if x∗i > 0 implies that
Ui(x∗) ≥ U j(x∗) for all j ∈ {1, ..., n} or, equivalently, if 〈y − x∗,U(x∗)〉 ≤ 0 for all y ∈ X.

All population games have at least one Nash equilibrium (this result was actually shown for a
broader class of noncooperative games with continuums of agents, cf. Sandholm (2010b)). The
concept of Nash equilibrium is also known as “user equilibrium” in the transportation literature,
or as “Wardrop equilibrium” in the route choice literature.

2.3 Adjustment mechanisms

Agents receive sporadically the opportunity to update their decision and do so by following an
adjustment mechanism. We focus here on reactive protocols of the form ρ : X × Rn → Rn×n

+ ,
which map population states x ∈ X and their corresponding utility vectors u ∈ Rn to matrices
of conditional switch rates ρi j. Assuming that the revision protocol is Lipschitz continuous, it
defines a “deterministic evolutionary dynamic”, i.e. a map that assigns to each continuous utility
function U : X → Rn a system of ordinary differential equations

ẋi =

n∑
j=1

x jρ ji(x,U(x)) − xi

n∑
j=1

ρi j(x,U(x)). (1)
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In the transportation literature, the most common protocols assume that users only consider
utilities to revise their decisions. This is in contrast with evolutionary game theory, where agents
are often assumed to imitate each other. “Best response” is perhaps the first utility-based revision
protocol that comes to the mind: when revising their decisions, agents simply choose one of the
currently optimal strategies. However, such a revision protocol is not continuous and implicitly
assumes that users know the utilities of all strategies.

Another well-established revision protocol is the proportional swap introduced by Smith (1984b).
It is defined by ρi j(x, u) =

[
u j − ui

]
+

(where ∀y ∈ R,
[
y
]
+ = max(0, y)) and it leads to the

following continuous dynamic:

ẋi =

n∑
j=1

x j

[
Ui(x) − U j(x)

]
+
− xi

n∑
j=1

[
U j(x) − Ui(x)

]
+

. (2)

The proportional swap can be interpreted as follows: every user regularly revises her decision
by comparing her current strategy against a randomly selected alternative. If the alternative
provides a larger utility, the user adopts it with a probability that is proportional to the utility
difference. Otherwise, she retains her current strategy. Note that while proportional swap is
the most common, all revision protocols ρi j(x, u) = φ j(u j − ui) where φ j are sign-preserving
functions1 induce dynamics that have similar properties (Hofbauer and Sandholm, 2009). These
dynamics are referred to as “impartial pairwise comparison” (IPC) dynamics.

Although we do not use them in this paper, we shall also mention the adjustment mechanisms of
the form ρi j(x, u) = φ j

(
u j −

∑n
k=1 xkuk

)
(where the functions φ j are sign-preserving) according

to which the users switch to (resp. abandon) all strategies that have a utility larger (resp. smaller)
than the average payoff experienced by the population. The corresponding dynamics are called
“separable excess payoff” (SEP) dynamics. For more details and more examples of adjustment
mechanisms, the reader is referred to Sandholm (2015).

Note that with the IPC and SEP classes of dynamics, ẋ is strongly dependent on the units
considered for utility. While our numerical simulations are all based on the proportional swap
dynamics, we varied the sensitivity to utility differences by introducing a multiplying factor λ,
such that all utilities are multiplied by λ in Eq. (2).

1Note that ρi j(x, u) is always non-negative, by definition of conditional switch rates. Thus, the sign-preserving
constraint ensures that u j ≤ ui ⇔ φ j(u j − ui) = 0.
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2.4 Stability: definitions and useful results

We now introduce some basic concepts from the theory of dynamical systems.

Definition 1 (stable equilibrium). A state xe is Lyapunov stable if for every ε > 0, there exists

δ > 0 such that, if ‖x(0) − xe‖ < δ then for every t > 0, ‖x(t) − xe‖ < ε.

Definition 2 (asymptotically stable equilibrium). A state xe is asymptotically stable if it is

Lyapunov stable and there exists δ > 0 such that if ‖x(0) − xe‖ < δ, then limt→∞ ‖x(t) − xe‖ = 0.

Furthermore, if a Lyapunov stable equilibrium xe is such that limt→∞ ‖x(t) − xe‖ = 0 for any
x(0), then it is said to be globally asymptotically stable.

Note that the stability of a Nash equilibrium depends both on the game and on the revision
protocol. In the real world, we usually know very little about the way agents take decisions.
This is in sharp contrast with mechanical engineering, where the trajectory of a solid is uniquely
determined by the different forces involved. Fortunately, previous research in evolutionary game
theory has identified general properties of games and revision protocols, that if satisfied, are
sufficient to characterize the behavior of the whole system.

2.4.1 Monotonicity and global stability results

Definition 3 (Monotonic utility function). A utility function U : X → Rn is monotonic if

〈y − x,U(y) − U(x)〉 ≤ 0 for all x, y ∈ X.

In plain words, monotonicity requires that the average utility improvement of alternatives that
are abandoned (weighted by how many users abandon them) is larger than the (also weighted)
average utility improvement of alternatives that agents are switching to (improvements can be
positive or negative). We now briefly summarize some important results related to monotonic
functions. These results are due to various authors that we do not attempt to list here, but the
reader can refer to Hofbauer and Sandholm (2009)) for more details.

An important consequence of monotonicity is that the set of Nash equilibria is convex. If
in addition the utility function is strictly monotonic at some Nash equilibrium x∗ (i.e. if
〈y − x∗,U(y) − U(x∗)〉 < 0 for all y ∈ X\{x}), then this Nash equilibrium is unique. Provided
that the utility function is continuously differentiable, monotonicity also guarantees that the set
of Nash equilibria is globally attracting for multiple dynamics, including all those introduced
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in Section 2.3. If the set of Nash equilibria is reduced to a singleton, then it is globally
asymptotically stable. Note that even though the results formulated are rather general, the
stability conditions stated are only sufficient, and not necessary.

Games with monotonic utility functions are known as “contractive games” or “stable games”.
For instance, games such that for all x and for all i ∈ {1, ...n}, ∂Ui

∂xi
(x) ≤ 0 and ∂Ui

∂xi
(x) ≤

∑
j,i

∣∣∣∣∂Ui
∂x j

(x)
∣∣∣∣

(i.e. negative diagonal dominant games) are such that the matrix DU(x) is negative semidefinite,
and therefore are contractive games.

2.4.2 Local stability

The concept of Evolutionarily Stable State introduced by Maynard Smith and Price (1973) is a
local analogue of a monotonic utility function.

Definition 4 (Evolutionarily Stable State). A state x is an Evolutionarily Stable State (ESS) of

a continuous utility function U if it is a Nash equilibrium for this function U and if there is a

neighborhood O of x such that for all y ∈ O\{x}, 〈y− x,U(x)〉 = 0 implies that 〈y− x,U(y)〉 < 0.

In other words, if users can be equally well-off by playing according to y when the population
state is at the equilibrium x, then users would be better off playing according to x if the population
state was y. Intuitively, this definition already involves some concept of stability (if the system
moves from x to y, it seems likely to come back to x), even though it characterizes the utility
function only, and not the revision protocol.

While some stability results can already be obtained with the concept of ESS, the main theorem
used in this paper relies on the stronger concept of a regular ESS (due to Taylor and Jonker
(1978)). Let us define the support of a population state x ∈ X as supp(x) = {i ∈ {1, ...n}, xi > 0
and the tangent space to X, T X = {z ∈ Rn,

∑n
i=1 zi = 0}.

Definition 5 (regular ESS). A state x is an regular Evolutionarily Stable State (ESS) of a

differentiable utility function U if

• it is a quasistrict Nash equilibrium, i.e. Ui(x) = max j=1,...n(U j(x))⇔ xi > 0 ;

• z′DU(x)z < 0 for all z ∈ T X\{0} such that supp(z) ⊂ supp(x).

Compared to an ESS, a regular ESS requires that all unused strategies are suboptimal for users
and that the stability condition 〈y − x,U(y)〉 < 0 holds after linearizing U at x. We then have the
following result:
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Theorem 1 (Sandholm (2010a)). Let x∗ be a regular ESS of U. Then x∗ is asymptotically stable

under

1. any impartial pairwise comparison dynamic for U;

2. any separable excess payoff dynamic for U;

3. the best response dynamic for U.

2.5 Additional intuition on monotonicity and convergence in

discrete-time

Results on discrete-time stability typically require a system of the form x(k) = Ax(k−1) (either valid
globally, or as a linearization around the equilibrium). We do not attempt to obtain such a model
here as (i) reasonable adjustment mechanisms are typically not continuously differentiable
around the equilibrium and (ii) we aim at understanding the importance of the congestion
mechanism, schedule preferences and adjustment mechanism separately. While usage of the
monotonicity property is usually restricted to the context of continuous-time stability, we explain
hereafter that monotonicity can also provide a rich intuition concerning discrete-time stability
issues.

Let us consider an interior equilibrium x∗, a nearby x state resulting from some perturbation,
as well as the corresponding utility vectors u∗ and u.2 Let u∗T and uT be the images of u∗ and u

by the orthogonal projection on the space tangent to X, T X. Since x∗ is an interior equilibrium,
all alternatives must have the same utility, so u∗T is the null vector. Given that x − x∗ ∈ T X, the
monotonicity condition reduces to 〈x − x∗, uT 〉 ≤ 0. Thus, with a monotonic utility function, if
the state followed exactly the projection of the utility vector into the tangent space of feasible
population changes T X, the Euclidian distance from x∗ would be decreasing with time.

In discrete time however, the relation between the vectors x − x∗ and uT should not be reduced
to their scalar product. If the vector uT is almost perpendicular to x − x∗ and the system follows
approximately its direction, the system will either get further from x∗, or it will get closer but
extremely slowly, depending on the user sensitivity λ.

In reality, the system’s direction depends on the adjustment mechanism. Yet, the proofs of
Lyapunov stability proposed by Smith (1984b), Mounce (2006), Hofbauer and Sandholm (2009)
follow a similar idea. They consider a function V that is a measure of distance to equilibrium

2The reasoning is essentially the same when the equilibrium is a corner point, except that we should focus on the
dimensions i such that either xi > 0 or x∗i > 0.
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and that it is shown to be a Lyapunov function, i.e. that (i) V(x) ≥ 0 for all x ∈ X, (ii) V(x) = 0
if and only if x is an equilibrium, and (iii) 〈∇V(x),Φ(x)〉 < 0 if x is not an equilibrium. While
it is easy to find a function V that satisfies the requirements (i) and (ii), requirement (iii) can
be more challenging as the possible choices of V differ for every adjustment mechanism. Yet,
for all three families of adjustment mechanisms introduced in Section 2.3, requirement (iii) is
proven by showing that

〈∇V(x),Φ(x)〉 = µ〈ẋ,DU(x)ẋ〉 + A(x), (3)

where µ > 0, DU(x) is the jacobian matrix of U at x and A(x) is a function that is specific to
the adjustment mechanism chosen that is strictly negative for all x that is not an equilibrium.
The monotonicity of U guarantees that 〈ẋ,DU(x)ẋ〉 ≤ 0, so the requirement (iii) is satisfied. For
more details, the reader can refer to the proof of the stability theorem in Smith (1984b) or to the
proofs of Theorem 5.3 and 7.1 in Hofbauer and Sandholm (2009).

For instance for the Proportional Swap of Smith (1984b), a possible function V is

V(x) =
1
2

n∑
i=1

xi

n∑
j=1

([
U j(x) − Ui(x)

]
+

)2
. (4)

The corresponding function A is A(x) = 1
2

∑n
i=1 ẋi

∑n
j=1

([
U j(x) − Ui(x)

]
+

)2
, where ẋ is given

by Eq. (1). It takes a few additional steps to prove that A(x) < 0 for all states x that are not
equilibria but it is already clear that the magnitude of A(x) decreases as the differences between
used alternatives becomes smaller. Thus, the influence of monotonicity on the system evolution
can be expected to be stronger near the equilibrium.

3 Stability of the bottleneck model

3.1 The bottleneck model

We consider a single origin-destination pair, connected by a single route with a bottleneck
of constant capacity. As it is common in the literature, we ignore the constant component of
travel time and consider only the queuing-related delays (without loss of generality). The delay
experienced by a user that arrives at the bottleneck at time t is given by d(t) = q(t)/s, where q(t)
is the number of vehicles queuing at the bottleneck at time t and s is the bottleneck capacity (in

8



(In)stability of departure time choice with the bottleneck model May 2018

Figure 2: Additional delay imposed by a user of mass np arriving at time t = 0 at a bottleneck
of capacity s on others, as a function of others’ arrival time at the bottleneck. The
bottleneck is assumed to be congested for the entire period of interest.

veh/h). If we denote by r the arrival rate at the bottleneck, the queue length evolution obeys

q̇(t) =

r(t) − s, if q(t) > 0 or r(t) > s

0, otherwise.
(5)

The congestion mechanism described by the constant capacity bottleneck model implies highly
asymmetric externalities: users are only delayed by those traveling before them, and only delay
those traveling after them. Moreover, externalities do not vanish with time: all users traveling
after some perturbation are delayed by the same amount, as long as the queue does not vanish.
This is illustrated in Fig. 2.

3.2 The morning commute with the bottleneck model

Congestion in the morning commute arises from the fact that users have similar schedule
preferences. We follow here Vickrey (1973), Tseng and Verhoef (2008), Fosgerau and de Palma
(2012) and assume that these schedule preferences are expressed in a utility function of the form
U(t1, t3) = H(t1) + W(t2), where t1 and t2 are the times of departure (from home) and arrival
(at work) and H(td) =

∫ td
0

h(td) dt and W(ta) =
∫ 0

ta
w(ta) dt. We further assume that the marginal

utility rates at home (h) and at work (w) are positive everywhere, piece-wise continuous, and
that there exists t∗ such that for all t < t∗, h(t) > w(t) and for all t > t∗, h(t) < w(t).

In the simulations hereafter, we use h(t) = α = 1 and w(t) = α +
γ−β

2 +
β+γ

π
tan−1(w(t − t∗)),

where w = 4, β = 0.5 and γ = 2. These preferences represent a smooth approximation of the
well-known α − β − γ preferences: they share the same marginaly utility rate at home and have
similar utility rates at work, as illustrated in Fig. 3.

9
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Figure 3: Schedule preferences.

Existence (resp. uniqueness) of the equilibrium has been established by Smith (1984a) (resp.
Daganzo (1985)) for the case of a homogeneous population with constant h and continuous
and (resp. strictly) increasing w. Various types of heterogeneity were introduced by Newell
(1987) and Arnott et al. (1988). Lindsey (2004) extended these results to allow for more general
dependence of utility on the arrival time, and Fosgerau and de Palma (2012) extended them for
a general utility function depending both on departure time and arrival time, for the case of a
continuously distributed free-flow travel time.

3.3 (Non)-monotonicity with homogeneous users

3.3.1 Analytical results

The monotonicity of the utility function corresponding to a constant capacity bottleneck was
proven for the case without schedule preferences by Smith and Ghali (1990). This result was then
extended by Mounce (2006) to handle the case of a bottleneck with time-dependent capacity.

Theorem 2 (Mounce (2006)). Without schedule preferences, the bottleneck delay function is

a monotonic function of the flow into the bottleneck if and only if the bottleneck capacity is

non-decreasing with respect to time.

We first provide a simple example illustrating this result and then show how a very similar
proposition can be formulated with schedule preferences.

Consider a constant capacity bottleneck that is consistently congested during some time period.
Consider then the modification of the departure rate illustrated in Fig. 4, occurring entirely

10
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Figure 4: Influence of a small perturbation of the departure rate on experienced delays.

inside the congested period. Let r1 and r2 denote the original and modified departure rates. If
utility is simply given by U = −T (where T is the travel time), we have that 〈r1− r2,Ur1 −Ur2〉 =∫ ∞
−∞

(r1(t) − r2(t))(Ur1(t) − Ur2(t)) dt =
∫ t1+δt

t1
ε2

s (t − t1) dt +
∫ t2+δt

t2
− ε

2

s (t2 + δt − t) dt = 0. In other
words, the change in utility function is perpendicular to the change in departure rate: users have
exactly the same incentive to choose a strategy in the time slot [t1, t1 + δt] (where users were
added) and in the time slot [t2, t2 + δt] (where users were removed).

In this light, it is not surprising that the global stability result of Smith and Ghali (1990)
represents a limit case. If capacity slightly decreased during [t1, t2 + δt], delays would increase
for users arriving after the capacity decrease, leading to 〈r1 − r2,Ur1 − Ur2〉 > 0. Similarly, if
there was even the slightest increase in marginal utility rate at the destination, the delays after
this increase would be more costly for users, and the same conclusion would apply. This leads
us to formulate the following corollary of Theorem 2.

Corollary 1. Assume that w(t) > 0 for all t. With a bottleneck of constant capacity, the bottleneck

utility function is a monotonic function of the flow into the bottleneck if and only if the marginal

utility function at work w is a non-increasing function of time.

Proof. Let s(t) denote the capacity of the bottleneck at time t and let A(t) =
∫ t

0
s(τ) dτ denote

the maximum possible cumulative number of arrivals at destination at time t, starting from time

11
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0. In the general case (variable w and variable s), the utility u(t0) of departing at time t0 is

u(t0) =

H(t0) + W(t0), if q(t0) = 0

H(t0) + W(t0) −
∫ A−1(A(t0)+q(t0))

t0
w(τ) dτ, otherwise.

By making the change of variable a = A(t), this becomes

u(t0) =

H(t0) + W(t0), if q(t0) = 0

H(t0) + W(t0) −
∫ A(t0)+q(t0)

A(t0)
w(A−1(a))
s(A1−(a)) da, otherwise.

Thus, the utility function does not depend on w and s separately, but only on their ratio. In
particular, a problem with constant capacity s0 and time varying marginal utility at work w0(t)
has the same utility function as a problem with time varying capacity s0/w0(t) and constant
marginal utility at work equal to 1.

Since the marginal utility rate w is expected to be an increasing function of time (Tseng and
Verhoef, 2008), the utility function associated with a constant capacity bottleneck is expected
not to be monotonic.

Although the focus of this paper is on the user equilibrium, note that we can also obtain a
result on the stability of the social optimum at almost no additional cost. Indeed, consider the
following socially optimal toll function of the passage time at the bottleneck:

$(t) = max(H(t) + W(t) − Ū, 0), (6)

where Ū denotes the minimum utility under a socially optimal inflow function, excluding
any toll. Since the social optimum does not involve any queueing, the bottleneck should be
used at capacity at all times such that Ū < H(t) + W(t). At such times, the utility becomes
U = H(td) + W(ta) + Ū −H(ta)−W(ta) = H(td) + Ū −H(ta) = H(td) + Ū +

∫ 0

ta
h(t) dt. This utility

function has the same structure as in the no-toll case, except that h(t) in the tolled case plays the
role of w(t) in the no-toll case. We thus obtain another corollary:

Corollary 2. With a bottleneck of constant capacity and the toll (6), the bottleneck utility

function is a monotonic function of the flow into the bottleneck if and only if the marginal utility

function at home h is a non-increasing function of time.

Note that unlike w, h is expected to decrease during the morning period, so that the social
optimum would be globally attracting for many adjustment mechanisms.

12
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Figure 5: Two runs with homogeneous users (t∗ = 8) and sensitivity λ = 0.5 and λ = 1.

3.3.2 Simulations

This section relies on simulation to complement the results previously derived analytically. The
following simulations were carried out with the smooth preferences described in Section 3.2 and
with the proportional swap adjustment mechanism. Additional details on the simulations are
provided in appendix A.

Fig. 5 provides various graphs illustrating two runs of the dynamic process, with different
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sensitivity λ. The graphs in the first row represent the evolution of the function V , defined in
Eq. (4) and providing an index of disequilibrium. The graphs in the second row represent the
time derivative of V(x) and its two components described in Eq. (3). The third row shows the
proportion of users moved per day and the fourth describes the distribution of travel times over
the last 100 days, as a function of departure time.

Note first that the term ẋDU(x)ẋ is almost always positive, suggesting that counter examples to
monotonicity are the rule rather than exceptions. As expected, the term A(x) is always negative.
Its great magnitude during the first days brings the system close to equilibrium. Then, the
magnitude of A(x) decreases and V̇(x) becomes closer to zero. Interestingly however, V̇(x)
remains mostly negative with both values of sensitivity, while V(x) actually exhibits a quasi-
periodic behavior. This apparent contradiction illustrates the limitations of using continuous-time
tools for the study of a discrete-time systems. While the system is pushed by the adjustment
mechanism in a direction that reduces the function V(x) for small population shifts, larger shifts
(obtained with a larger sensitivity λ) can make this distance increase. It is thus difficult to
distinguish the effect of non-monotonicity from the effect of a too strong sensitivity. It would be
interesting to determine whether there exists a threshold λ0 such that reducing λ bellow λ0 does
not help reducing the oscillation size anymore. In practice, this threshold might be unrealistically
small.

The last two rows provide some order of magnitude regarding the importance of this oscillatory
behavior. On any given day, the proportion of the population that shifts departure time is about
2 % with λ = 0.5 and about 5 % with λ = 1.3 This oscillatory behavior leads to a maximal
difference of about 26 min between the 1st and 9th deciles of arrival time for λ = 0.5 and of about
32 min for λ = 1. Note that in the real world, daily variations in demand and supply produce
additional variations in travel time uncertainty, producing a different dependance on departure
time (Fosgerau, 2010).

3One may be tempted to conclude that these rather large proportions suggest an exceedingly large value of λ. Yet,
we would like to highlight that these proportions largely depend on the state of the system itself and that with
λ = 0.5, the system already takes about 20 days to approach its equilibrium. Given the rather high frequency of
perturbations in the real world (e.g. seasonal demand and capacity variations), we believe that a system with a
significantly lower sensitivity would not have enough time to approach its equilibrium before being perturbed
again.
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3.4 Heterogeneous users

3.4.1 Expected effects

We investigate in this section the influence of heterogeneity in schedule preferences on the size of
oscillations by considering different t∗. Note that this can be interpreted either as heterogeneity
in the marginal utility rate at work, or as heterogeneity in the constant travel time required
between the bottleneck location and the working place. We consider heterogeneity in t∗ because
it allows breaking the symmetry of the system, thereby limiting the occurrence of unrealistic
shifts from the congestion onset to the offset, and vice versa.

We are not aware of any tools that would allow us to study the stability of the morning commute
with a continuum of heterogeneous users (with continuously distributed t∗ here). Although we
do not prove it, we expect the analytical monotonicity results derived in Section 3.3.1 to be
transferable to the case with a finite number of homogeneous groups. We focus here on the
effect of heterogeneity on the oscillation size, rather than on the existence of oscillations.

Intuitively, heterogeneity can be expected to reduce the oscillation size in various ways. At
equilibrium, users are likely to strictly prefer their own departure time (or those of identical
users) over those chosen by users with different preferences. This by itself is expected to reduce
variability, as users should remain close to their equilibrium departures. Then, this reduction of
the interval considered by each user for possible updates has other advantages. First, making
shifts more local reduces the number of users that are perturbed by each decision update (recall
that a user shifting from a departure time t to another t′ only affects users that depart between
t and t′). Second, all the adjustment mechanisms presented in Section 2.3 are based on the
assumption that the probability to shift is proportional to the number of alternatives proposed
(the distribution of utilities being the same). Thus, reducing the range of “interesting alternatives”
reduces the shift frequency. Finally, making shifts more local also reduces the variations of
marginal utility rate at work, which might contribute to curb the effects of non-monotonicity.
The following section confronts these predictions with simulation results to quantify the effect
of user heterogeneity. We do not attempt to distinguish the effects aforementioned as they are all
intricately related.
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3.4.2 Simulations

In the following simulations, the population is divided into N homogeneous groups, with only
inter-group heterogeneity. Let xp

i denote the proportion of the total population that belongs to
group p and departs at time ti, and xi =

∑N
p=1 xp

i .

We introduce two segregation metrics: group homogeneity is defined as the average over all
users of the proportion of users belonging to their group among those that depart with them. It
can be computed as

∑n
i=1

∑N
p=1(xp

i )2

xi
. We also define the w-diversity as

∑n
i=1 xiσi, where σi is the

standard deviation of the marginal rate at arrival among the users departing at ti. Letting ai(x)

denote the arrival time for these users, σi =

√∑N
p=1

xp
i

xi

(
w(ai(x)) −

∑N
p=1 xp

i w(ai(x))

xi

)2

.

Before investigating the influence of heterogeneity itself, we ran multiple simulations with the
same amount of heterogeneity, but with various numbers of groups (see the left column of Fig.
6). The values of t∗ assigned to each group follow a discrete uniform distribution centered
around 8 h with standard deviation σ∗ = 0.4 h. It appears that the group homogeneity index is
always significantly smaller than 1, indicating that users are for the most part rather far from
being segregated. While the group homogeneity tends to increases as the disequilibrium index
V(x) decreases, it remains rather small while V(x) reaches extremely small values (especially
for large N). Note also that the w-diversity is essentially the same for N = 10 and N = 20.
Altogether, this indicates that the system is rather insensitive to the exact number of groups,
provided it is large enough.

The next simulations, illustrated in the second column of Fig. 6, were run with a given number
of groups (N = 10) but various heterogeneity levels. Again, the values of t∗ follow a discrete
uniform distribution, but with different standard deviations σ∗. With small standard deviations,
the differences in t∗ are not sufficient to produce any segregation: the group homogeneity index
is almost identical to the proportion that each group represents (0.1). The disequilibrium index
V(x) consequently follows an evolution that is extremely similar to the one observed with
homogeneous users (see Fig. 5).

With larger σ∗ however, the amplitude of oscillations decreases and oscillations fully disappear
for σ∗ = 0.4 h (for the time horizon considered). This phenomenon coincides with a large
increase in group homogeneity. The rise in segregation between the cases σ∗ = 0.2 h and 0.4
h is actually sufficient to keep the w-diversity constant at the 150th day, despite the additional
population diversity.

Finally, Fig. 7 provides more intuitive orders of magnitude, that can be compared with those
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Figure 6: Simulations with various numbers of population groups (N) and various inter-group
heterogeneity levels (σ∗) (sensitivity λ = 1).

Figure 7: Impact of heterogeneity in t∗ on variability.

provided in Fig. 5) for the homogeneous case. With σ∗ = 0.4 h, the proportion of shifts per day
decreases to less than 1% after about 28 days and the maximum difference between the 1st and
the 9th decile of travel time over the last 100 days is approximately equal to 4 min.
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4 Discussion

Our analysis has shown that the morning commute equilibrium should be expected to be
unstable for a wide range of rational adjustment mechanisms and schedule preferences, due
to the non-monotonicity of the utility function. This instability translates in a quasi-periodic
oscillatory behavior. The magnitude of these oscillations and their proximity to the equilibrium
depend strongly on the sensitivity of users to utility differences and on the amount of user
heterogeneity.

Previous work (de Palma, 2000, Mc Breen et al., 2006) identified similar dependence on user
heterogeneity but could not fully explain the phenomena observed without the concept of
monotonic utility functions. It is true that “congestion externality explains why several intuitive
adjustment processes do not converge” (de Palma, 2000). Yet, continuous time stabity is not as
much about the aggregate magnitude of externalities, as it is about their distribution across the
other available alternatives. On-going work by the authors applying similar methods to another
type of congestion mechanism (the Macroscopic Fundamental Diagram of an isotropic urban
area) should provide further intuition regarding the complex dependency of stability on the
distribution of externalities.
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A Implementation of the simulator

The simulations were carried out for a case where it takes 2h to serve all users, with possible
departures regulary spaced every 1 min from 6 AM to 9 AM.

To better represent the real world, the simulator was designed such that users choosing to depart
at time ti were actually departing uniformly over the interval [ti −

δt
2 , ti + δt

2 ], where δt = 1min

is the time between two consecutive departure time alternatives. The resulting departure rate
is piece-wise constant, allowing for simple analytical derivations of the queue dynamics. The
experienced utility was then computed based on the distribution of arrival times for users
departing [ti −

δt
2 , ti + δt

2 ].
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