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Abstract

The usage of smartphones has rapidly increased during the last years. In addition to communica-
tion capabilities, they are also equipped with several sensors, and are usually carried by people
throughout the day. The data collected by the means of modern smartphones (e.g. location based,
GSM, and other contextual data) are thus valuable source of information for transportation
analysis. In this paper we focus on smartphone data used for transportation mode detection. This
is important for many applications including urban planning, context related advertisements or
supply planning by public transportation entities. We present a review of the existing approaches
for transportation mode detection, and compare them in terms of (i) the type and the number of
used input data, (ii) the considered transportation mode categories and (iii) the algorithm used
for the classification task. We consider these aspects as the most relevant when evaluating the
performance of the analyzed approaches. Finally, the paper identifies the gaps in the field and
determines future research directions.
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1 Introduction

Smartphone penetration in developed countries is currently over 70% among adults, and the
number of smartphone users is forecast to grow from 1.5 billion in 2014 to around 2.5 billion
in 2019 (Statista, 2017). Technology improvements in smartphones have brought incremental
enhancements. Modern smartphones are more than just calling devices. The capabilities of
a smartphone also include the ability to send or receive emails, view documents, access the
Internet, send or receive multimedia messages, use GPS, other useful features such as different
applications and games. They are also equipped with various sensors that measure motion,
orientation and environmental conditions. Using the capabilities provided by smartphones, it
is now possible to capture information that was considered to be beyond our reach. Because
smartphones are almost always with their users, they know where the users are, how much
time they spend in certain places, what they are interested in, what they like, and how they feel.
Many of these capabilities do not rely on the user reporting. Instead they work passively when
collecting useful data.

The use of smartphones is not anymore limited to the traditional telecommunication field only.
It extends to applications in other fields. For instance, the explosive spread of smartphones has
provided the transportation field with a new potential. In this field, transportation activity surveys
were typically used to collect information for urban transportation planning. These surveys are
conducted through conventional questionnaires and travel diaries to investigate when, where and
how people travel in urban areas. The data collected by the means of modern smartphones have a
potential to solve most of the shortcomings associated with conventional travel survey methods,
including biased response, no response or erroneous time recording. Smartphone data is also
utilized for discovering places of interest (Montoliu et al., 2013) and visiting patterns (Do and
Gatica-Perez, 2014), capturing the daily transportation activity profiles of users (Cottrill et al.,

2013), inferring activity sequences (Danalet, 2015), modeling route choice behavior (Bierlaire
et al., 2010, Kazagli et al., 2014), estimating driving behavior (Eren et al., 2012), etc. Using
smartphones as a survey tool also brings certain challenges. They are related to battery life and
a large variety in terms of operating systems, brands and types.

In this paper we focus on smartphone data used for transportation mode detection. It is important
for many applications, including transportation studies, urban planning, health monitoring, com-
puter supported elder-care, epidemiology, etc. With the knowledge of travelers’ transportation
mode, targeted and customized advertisements may be sent to their devices. This information
is also useful for the development of context aware cell phones that sense the current context
and adapt their behavior accordingly. Also, if the precise transportation modes of individual
users are discovered, it is possible to provide a more realistic picture of travel demand. This





          

knowledge may help to determine the environmental impact of travel patterns, such as carbon
footprints of users, and track the daily step count of users and amount of calories they burn.
Another application is the detection of real-time traffic state, because companies such as Google
collect data from mobile phones in order to estimate the traffic speed on roads.

The structure of the paper is as follows. Section 2 describes main characteristics of the ap-
proaches proposed for transportation mode detection. The type of used input data, the considered
transportation mode categories and the algorithms used for the classification task are discussed.
In Section 3, several approaches proposed in the literature are described and evaluated in terms
of their performance. Finally, in Section 4 several open challenges are discussed as well as
possible ways to extend the capabilities of current approaches.

2 Characteristics of the approaches

In this section, we discuss main characteristics of the approaches proposed for transportation
mode detection. They include data sources and corresponding features, algorithms and trans-
portation mode categories considered in different approaches. In therms of the methodology,
the approaches are rather similar. First, suitable features are extracted from the raw sensor data,
then a training dataset is used to train an algorithm, and finally the algorithm is used to predict
unseen data based on the heuristics learned during the training phase. In the following, these
aspects are elaborated in details.

2.1 Data sources

To determine the mode of transportation based on smartphones, the data from different built-in
smartphone sensors can be used. Most modern smartphone devices have sensors that measure
motion, orientation, and various environmental conditions. They are capable of providing data
with high precision and accuracy. These sensors are useful for monitoring three-dimensional
device movement or positioning, or for monitoring changes in the ambient environment near
a device. Motion sensors include accelerometers, gravity sensors, gyroscopes, and rotational
vector sensors. Position sensors include orientation sensors and magnetometers. Environmental
sensors include barometers, photometers, and thermometers. In addition to mobile device sensor
information, some external data source can also be valuable. We give next an overview of
the smartphone sensors and external data sources typically employed in transportation studies
(Fig. 1).





          

Figure 1: Data sources for transportation mode detection

Accelerometers are able to measure the physical motion of a solid object. That is, they measure
the acceleration force that is applied to a device on all three physical axes, including the
force of gravity. Accelerometers are primarily used for orientation sensing in smartphones.
Transportation studies have suggested that the acceleration generated during human movement
varies across the body and depends upon the activity being performed (Hoseini-Tabatabaei et al.,

2013). The key feature that makes this sensor attractive is low energy consumption.

Gyroscope measures a device’s rate of rotation around each of the three physical axes. It
can provide orientation information, and provides an additional dimension to the information
supplied by the accelerometer. Gyroscopes are characterized by low power consumption, but
are prone to error accumulation as a result of significant calibration errors, electronic noise and
temperature (Woodman, 2007).

Magnetometer measures the ambient geomagnetic field for all three physical axes. It provides
mobile phones with a simple orientation in relation to the Earth’s magnetic field.





          

Global Positioning System (GPS) sensor provides the position and velocity of the user that is
measured based upon the distance of the mobile phone and each of a number of satellites in
two dimensions (Ajay, 2004). Connection to three satellites is required for two-dimensional
positioning, and the precision increases with more visible satellites. GPS does not work indoors,
and is therefore primarily used for outdoor positioning. Also, it is characterized by reduced
precision of positioning in dense urban environments, due to the fact that buildings reflect and
occlude satellite signals. GPS is considered as the most power consuming localization technique
for mobile computing, and it reduces the battery life of the phone significantly. The accuracy of
this system is between 50 to 80 meters and can be improved to an accuracy of up to 10 meters
(Kyriazakos and Karetsos, 2000).

Cellular network signals are used by the phone for calls and data transfer. The most widespread
cellular telephony standard in the world is Global System for Mobile Communication (GSM)
(Mun et al., 2008). A GSM base station is typically equipped with a number of directional
antennas that define sectors of coverage or cells. A cell is therefore a geographic region within
which mobile devices can communicate with a particular base station. Each cell has a unique
cell identifier. The fluctuation pattern of cell identifiers together with signal strength can provide
information on the position of a phone. To collect this type of data, an application that measures
and records the surrounding radio environment has to be installed on a mobile device (Sohn
et al., 2006). Mobile phones can be tracked in outdoor and indoor contexts. A precision varies
depending on cell size from 50 to 200 meters, but can deteriorate even more in low density areas
(Liu et al., 2007). Cellular network signals are associated with “ping-pong” phenomenon, which
appears when a user is within the coverage of two or more stations. Signal strength from the
stations fluctuates and causes repetitive changes of associated cell even when users are stationary.
Researchers have also analyzed the data from mobile phone operators (Calabrese et al., 2011,

Gonzalez et al., 2008, Onnela et al., 2007) consisting of anonymous location measurements
generated each time a device connects to the cellular network (e.g. when a call is placed or
received, when a short message is sent or received, when the user connects to the Internet, etc.).
However, these measurements are available only during the time that the device is in use, or
when the associated cell changes over time (e.g. during a trip).

Bluetooth allows wireless connectivity and short range communication. Bluetooth sensors are
able to sense devices in their vicinity, and to obtain their Bluetooth identifiers, names and types.
The range of Bluetooth scanners and penetration rate vary between 10 to 100 meters, respectively
between 7% and 11% (Versichele et al., 2012).

WiFi provides wireless connectivity to devices inside a Wireless Local Area Network (WLAN).
The WLAN provides communication ranges of up to 100 meters and allows to track devices
outdoor and indoor (Hoseini-Tabatabaei et al., 2013). Smartphones do not need to be logged





          

on to the WLAN, but their WiFi antennas has to be turned on. The positioning accuracy is low.
It is possible to improve the localization in case when there are more than one access point
available using for instance signal triangulation and fingerprinting (Danalet, 2015). WiFi is the
most power-demanding sensor after GPS when used to provide location information. The effect
called “ping-pong” is also typical for WiFi data.

Other sensors include barometers that measure atmospheric pressure and can be used to detect
how high the phone is above sea level, thermometers and humidity sensors that measure ambient
temperature and air humidity, cameras, microphones, etc.

External data sources can provide additional useful information in transportation studies. They
include network infrastructure data and route maps, as well as the time schedules of public
transportation modes in a static or a real-time form (OpenStreetMap, 2017, geOps, 2016).

2.2 Feature extraction

Raw data collected by different smartphone sensors is typically transformed into more computa-
tionally efficient and lower dimensional sets of features. The extracted features are intended to be
informative and relevant for the learning task. A variety of feature-extraction techniques are used
in the literature, based on different mathematical and statistical procedures. The raw sensor data
is usually segmented into several windows and features are extracted from a window of samples.
The window size, as well as the sampling frequency, are important parameters, as they both
affect computation and power consumption of sensing algorithms. Smaller window sizes cause
classification accuracy to suffer due to certain features not being effective (e.g. accelerometer
frequencies) and larger window sizes may introduce noise in the data.

Time domain and frequency domain features are commonly used for transportation mode
detection tasks. Time domain features are used to characterize the information within the time
varying signal (Biancat et al., 2014). Many studies use raw speed or acceleration data, and GPS
positioning information over time as input features. The difference in distance covered between
measurements and heading changes are used in addition. For accelerometer signals, the features
such as mean, standard deviation, median, minimum or maximum of the signal are the most
commonly used in time domain. GSM signal strength and cell tower fluctuations are utilized for
inferring different states of user motion.

Frequency domain features are regarded as more computationally demanding compared to
the time domain features. This is due to an additional processing step, related to the data
transformation from the time to the frequency domain. An example of these features, the peak





          

frequency of the power spectral density of the accelerometer signal, is reported in Ermes et al.

(2008).

Features extracted based on external data typically include bus location closeness, bus stop
closeness and rail line closeness (Stenneth et al., 2011).

2.3 Algorithms

The algorithms used for transportation mode detection can be categorized as discriminative or
generative (Fig. 2). Generative algorithms model class-conditional probability density func-
tions and prior probabilities. As such, they allow to generate samples from the derived joint
distributions, and are typically flexible in expressing dependencies in complex learning tasks.
Popular algorithms from this group include Naïve Bayes, Bayesian Networks, Mixture Models
and Hidden Markov Models.

Discriminative algorithms do not attempt to model underlying probability distributions. Instead,
they are focused on a direct estimation of posterior probabilities. Popular discriminative
algorithms include Support Vector Machines, Neural Networks, Nearest Neighbor, Decision
Tree, Random Forests, Clustering, etc. For more details on the algorithms, we refer to Bishop
(2006).

2.4 Transportation mode categories

Different studies reported in the field have proposed different categorization of transportation
modes. Transportation modes can be roughly classified into motorized and non-motorized, or
soft modes (Fig. 3). Motorized modes include cars, motorcycles, trucks, buses, trams, metros
and trains. Walking, running and biking are typical representatives of soft modes. Soft modes
contribute to the reduction of congestion and pollution, the enrichment of the local environment,
the improvement of quality of life, enhanced accessibility and social equity. One strategic
objective in many European countries is therefore the promotion of soft modes, which together
with public transport represents an energy-efficient and low resource-consuming means of
transport (Oja and Vuori, 2000).

Intuitively, different transportation modes have different mobility patterns. For instance, mo-
torized modes generally have a higher speed than soft modes. Fig. 4 shows the normalized
histograms of the recorded speed data and the estimated speed distributions for five modes,
as reported in Chen and Bierlaire (2015). Walking and biking can be in general successfully





          

Figure 2: Methods used for transportation mode detection
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differentiated from other modes. However, slow walking can be rather similar to no movement,
and biking can be very similar to the cars. As for the latter, the similarities are reflected through
similar speeds and routes of bikes and cars in the cities and absence of fixed schedules. Buses
are supposed to follow fixed routes and schedules, which places them apart from the categories
above. However, due to high volumes of traffic, significant discrepancies may occur making
buses one of the categories that are more difficult to predict. Trams, metros and trains follow
routes and schedules like buses, but are not subject of delays induced by traffic congestion.
Their routes may contain underground parts, causing poor quality or non-existence of certain
smartphone signals. Many studies additionally consider stationary mode, which refers to a not
moving state of an object, and as such significantly differs from other categories.





          

Figure 3: Transportation mode categories considered in the literature

Non-motorized 
 0 

Non-motorized 
 

      Motorized 
 

3 State of the art

This section discusses several approaches for transportation mode detection proposed in the
literature. First, we give a general description of the approaches. Then, a comparison of the
methods and their performances are reported.

3.1 Description

Patterson et al. (2003) present an unsupervised method of learning a Bayesian model from
a GPS sensor stream. The approach simultaneously learns a unified model of the traveler’s
current mode of transportation and her most likely route. Car, bus and walking are considered
transportation mode categories. It is also demonstrated that the accuracy of the approach is
improved by adding more external GIS knowledge.





          

Figure 4: Speed distributions of five transport modes

Source: Chen and Bierlaire (2015)

Muller (2006) demonstrate that by using the patterns of GSM signal strength fluctuations and
changes to the current serving cell and monitored neighboring cells it is possible to distinguish
between various states of movement such as walking, driving in a motor car and remaining
stationary. They present a Hidden Markov Model for inferring the current activity of the cell
phone carrier.

Sohn et al. (2006) explores how coarse-grained GSM data from mobile phones can be used
to recognize high-level properties of user mobility. The proposed approach is a two-stage
classification scheme. The first stage classifies an instance as stationary or not. If the instance
was classified as not stationary, a second classifier would determine if the instance was walking
or driving. Both classifiers are trained using a boosted logistic regression technique. The
algorithm is able to distinguish if a person is walking, driving, or remaining at one place. In the
experiments the authors have also shown the superiority of the proposed two-stage classification
compared to Naïve Bayes, Support Vector Machines, and heuristic-based methods.

Reddy et al. (2008) focus on the transportation mode of an individual based on GPS and
accelerometer smartphone data. The goal is to determine whether an individual is stationary,
walking, running, biking, or uses motorized transport. The proposed classification system
consists of a decision tree followed by a first-order Hidden Markov Model.





          

Mun et al. (2008) propose a Decision Tree-based algorithm, that utilizes GSM and WiFi traces
for transportation mode detection. The algorithm infers a user’s mobility, being either dwelling,
walking or driving.

Zheng et al. (2008) propose an approach based on supervised learning to infer transportation
modes from GPS logs. The authors present a graph-based post-processing algorithm, that
considers both the constraint of real world and typical user behavior based on location in a
probabilistic manner. The approach focuses on transportation modes including driving, walking,
taking a bus and riding a bicycle.

Miluzzo et al. (2008) present a rule learning algorithm to determine whether a smartphone user
is sitting, standing, walking or running. The algorithm is based on accelerometer data. The
derived classifiers execute in part on the phones and in part on the backend servers to achieve
scalable inference.

Reddy et al. (2010) propose a classification system that uses a mobile phone with a built-in
GPS receiver and an accelerometer. The transportation modes identified include whether an
individual is stationary, walking, running, biking, or in motorized transport. The classification is
composed of a decision tree followed by a discrete Hidden Markov Model.

Stenneth et al. (2011) propose an approach to inferr a mode of transportation based on the GPS
data collected via smartphones and the underlying transportation network data. The algorithm
can detect various transportation modes including car, bus, train, walking, biking and stationary.
Five different inference models, Bayesian Net, Decision Tree, Random Forest, Naïve Bayesian
and Multilayer Perception, are tested in the reported experiments.

Xiao et al. (2012) propose a transportation mode detection algorithm that uses the speed
statistics derived from GPS and cellular network information, together with statistics obtained
from accelerometer samples. The algorithm uses decision tree rules and can distinguish between
bus, Mass Rapid Transit (MRT) and taxi.

Montoya et al. (2015) designed a system to infer multi-modal itineraries from a combination of
smartphone sensor data (e.g., GPS, WiFi, accelerometer) and the transport network infrastructure
data (e.g., road and rail maps, public transportation timetables). In the first phase, the algorithm
uses a dynamic Bayesian network based on network and sensor data, and can distinguish between
walking, biking, road vehicle, and train. The second phase attempts to match parts recognized
as road vehicle or train with possible bus, train, metro, or tram based on their timetables.

Chen and Bierlaire (2015) propose a probabilistic method for inferring the transport modes and
the physical paths of trips. This method uses data from GPS, Bluetooth, and accelerometer





          

smartphone sensors. The method is based on a smartphone measurement model that calculates
the likelihood of observing the smartphone data in the multi-modal transport network. It is
formed of a structural travel model that captures the dynamic of the state of a smartphone user in
the transport network, and sensor measurement models that capture the operation of sensors. The
approach distinguishes between five transport modes: walking, biking, car, bus and metro. The
performance of the approach is analyzes by the similarity indicator (SI) proposed by Bierlaire
et al. (2013).

Sonderen (2016) focuses on accurate determination of the transportation mode while minimizing
the strain on the phone’s processor and battery. The data from the internal sensors such as
accelerometer, gyroscope and magnetometer are used. The authors evaluate the performance of
several algorithms, such as Decision Trees, Random Forest and k-Nearest Neighbors. The most
satisfactory results are obtained using Decision Trees. In this paper, the transportation modes
are limited to walking, running, riding a bike and driving a car.

3.2 Evaluation

A summary of general characteristics of the approaches is provided in Table 1. Accuracy in
Table 1 is defined as the ratio between the number of correctly classified instances of mode m

and the number of instances classified as mode m. The duration of test data and the number of
participants (journeys/path sequences) in the experimental phase of the approaches is reported
in Table 2.

The comparison suggests that one or two sensors are typically used in most of the studies. The
GPS and accelerometer are the most widely used sensors for transportation mode detection.
The accelerometer is particularly attractive, given that it captures relevant features while being
energy efficient. The studies that use three or more smartphone sensors are quite rare. The
accuracy of transportation mode detection is higher if more data sources are utilized, as expected.
External data sources are rarely employed, and typically include transportation network data
and timetables of public transportation services.

The features used in the classification task depend on a given sensor and the classification
techniques considered in the studies. It is preferable to use as few features as possible in
order to minimize the computational burden of feature extractions as well as the risk of model
over-fitting.

Generative models are better suited for the case when mobile phones are used only as a sensing
system and the data analysis and classification are performed on back end servers. If the





          

detection is intended to run on mobile devices directly, generative models are less popular due to
their computational costs in contrast discriminative models. In this case, the approaches based
on Decision Trees appear to be the most suitable for achieving satisfactory accuracy while using
the least resources.

The studies usually focus on stationary, walking, biking and motorized modes. In general,
walking and stationary modes are predicted with higher accuracy compared to other modes.
Contributions that achieve high accuracies typically consider a unique motorized transport mode.
This is not surprising given that a key challenge in transportation mode detection appears to be
the differentiation between motorized classes such as bus, car, train and metro. With multiple
motorized modes, the detection problem becomes more difficult due to common characteristics
that these modes share (e.g. the average speed and accelerations). The studies that employ
external data have demonstrated their added value in detecting various motorized transportation
modes. Public transportation modes are only considered and detected when external data sources
are combined with smartphone sensor data. External data appears to be effective for improving
the accuracy of detecting running and biking as well, which can be similar to driving.

Most data sets and sample sizes used in the reported studies are rather small. This may question
generality and statistical significance of reported results.

The most satisfactory accuracy is achieved by the approach proposed by Stenneth et al. (2011),
when taking into account all of the above-mentioned characteristics. This approach demonstrated
that Random Forest yields higher travel mode prediction accuracies, when compared to other
methods. This finding is also supported by other studies, including Abdulazim et al. (2013),
Ellis et al. (2014), Shafique and Hato (2015).

4 Conclusion

This paper presents a review of transportation mode detection approaches based on smartphone
data. The approaches considered in the study differ in therms of the type and the number of
used input data, (ii) the considered transportation mode categories and (iii) the algorithm used
for the classification task, which affect their prediction capabilities. Clearly, the accuracy of
transportation mode detection is higher if more data sources are utilized. The review reveals the
necessity of external data for the detection of various motorized transportation modes.

Interestingly, GSM logs provided by the operators are not used for transportation mode detection.
This data set is coarse-grained, and its combination with external sources might potentially solve





          

Table 1: Characteristics of the evaluated approaches

Source Modes Smartphone data External data Algorithm Accuracy

Patterson et al. (2003)
Walking
Bus
Car

GPS GIS Bayes Model 84%

Muller (2006)
Walking
Stationary
Car

GSM /
Artificiel Neural Network
Hidden Markov Model

Average: 80%
Walking: 87%
Stationary: 98%
Car: 75%

Sohn et al. (2006)
Walking
Stationary
Driving

GSM /

Naïve Bayes
Support Vector Machines
heuristic-based methods
2-stage boosted Logistic Regression

Average: 85%
Walking: 70.2%
Stationary: 95.4%
Driving: 84.3%

Reddy et al. (2008)

Walking
Stationary
Biking
Running
Motorized

GPS
Accelerometer

/

Naïve Bayes
Support Vector Machines
Decision Trees
k-Nearest Neighbors
Continuous Hidden Markov Model
Decision Trees
and Discrete Hidden Markov Model

>90%

Mun et al. (2008)
Walking
Stationary
Driving

GSM
WiFi

/ Decision Trees

Average: 88%
Walking: 90.17%
Stationary: 90.26%
Driving: 87.83%

Zheng et al. (2008)
Walking
Biking
Driving

GPS / Graph-based

Average: 76.2%
Walking: 89.1%
Biking: 66.6%
Driving: 86.1%

Miluzzo et al. (2008)

Sitting
Stationary
Walking
Running

Accelerometer / JRIP rule learning

Average: 78.9%
Sitting: 68.2%
Stationary: 78.4%
Walking: 94.4%
Running: 74.5%

Reddy et al. (2010)

Walking
Stationary
Biking
Running
Motorized

GPS
Accelerometer

/

Naïve Bayes
Decision Trees
k-Nearest Neighbors
Support Vector Machines
k-Means Clustering
Continuous Hidden Markov Model
2 stage Decision Tree
and Discrete Hidden Markov Model

Average: 93.6%
Walking: 96.8%
Stationary: 95.6%
Biking: 92.8%
Running: 91%
Motorized: 93.9%

Stenneth et al. (2011)

Walking
Bus
Car
Train
Stationary
Biking

GPS GIS

Naïve Bayes
Decision Trees
Bayesian Network
Multilayer Perception
Random Forest

Average: 93.7%
Walking: 96.8%
Bus: 88.3%
Car: 87.5%
Train: 98.4%
Stationary: 100%
Biking: 88.9%

Xiao et al. (2012)

Mass Rapid Transit
Bus
Taxi
Running

GPS
GSM
Accelerometer

/ Decision Trees NA

Montoya et al. (2015)

Walking
Biking
Bus
Train
Tram
Motorized

GPS
WiFI
Accelerometer
GSM
Bluetooth

Road maps
Rail maps
Public transport schedules
Public transport routes

Dynamic Bayesian Network

Average: 75.8%
Walking: 91%
Biking: 36%
Bus: 80%
Train and Motorized: 81%
Tram: 91%

Chen and Bierlaire (2015)

Walking
Biking
Car
Bus
Metro

GPS
Bluetooth,
Accelerometer

Open Street Map Probabilistic method SI>90%

Sonderen (2016)

Walking
Running
Biking
Car

Accelerometer
Gyroscope
Magnetometer

/

Decision Tree
Random Forest
k-Nearest Neighbors

98%





          

Table 2: Test data

Source Test data duration Number of users (u) /

journeys (j) / sequences (s)

Patterson et al. (2003) 12 hours 1 u

Muller (2006) 323 hours 3 u

Sohn et al. (2006) 1 month 3 u

Reddy et al. (2008) 20h 6 u

Mun et al. (2008) 13 hours 2 u

Zheng et al. (2008) 10 months 65 u

Miluzzo et al. (2008) 4 hours 8 u

Reddy et al. (2010) 50 days 16 u

Stenneth et al. (2011) 3 weeks 6 u

Xiao et al. (2012) NA NA

Montoya et al. (2015) 42.5 hours 87 j

Chen and Bierlaire (2015) NA 36 s

Sonderen (2016) NA 2 u

the issue of sparsity of observations. Also, water transportation modes are not considered in the
reviewed approaches, even though this mode represents a regular public transportation system
in many countries. These two aspects represent interesting directions of future investigations.
The development of techniques able to extract a relevant and optimal set of features is yet
another aspect missing in the literature. Additionally, there are several data sources that were not
exploited in the reported studies. They include census information, or data about the current day,
month or season, and associated weather conditions, and can be used to provide information
on the usage patterns of different transportation modes. Also, models can adopt the real time
traffic information observed from sensors such as loop detectors. Exploitation of innovative
information provided by additional sensors such as temperature, humidity sensor or barometer
can result in more powerful transportation mode detection. Studies with lager samples and over
a longer time period could confirm the reported results and lead to wider acceptance of the
proposed methodologies. Further analysis could investigate the effect of various data collection
frequencies on the classification accuracy of the used algorithm as well as the computational
costs incurred. Moreover, understanding the role of population heterogeneity in transportation





          

mode detection could be considered in future research (e.g. variation in data and classification
accuracy among different users).
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