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Abstract

Citizens are increasingly sharing their location and movements through‘check-ins’ on location
based social networks (LBSNs). These services are collecting unprecedented amounts of big
data that can be used to study how we travel and interact with our environment. This paper will
present the development of a destination choice model for Ontario, Canada which uses data
from Foursquare, the largest LBSN to model destination attractiveness. Models are estimated
for leisure, visit and business long distance travel purposes separately. A methodology to collect,
process and aggregate historical check-in counts has been developed, allowing the utility of
each destination to be calculated based on the intensity of different activities performed at the
destination. Destinations such as national parks and ski areas are very strong attractors of leisure
trips, yet do not employ many people, and have few residents. Trip counts to such destinations
are therefore poorly predicted by models based on population and employment. Traditionally,
this has been remedied by extensive manual data collection. The integration of Foursquare data
offers an alternative approach to solve this problem that has not been deeply explored until
now.The Foursquare based destination choice model is evaluated against a traditional model
that is estimated only with population and employment. The results demonstrate that data from
LBSNs can be used to improve destination choice models, particularly for leisure travel.
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1 Introduction

Destination Choice modeling using multinomial logit models allows for much more sophisticated
models than the aggregate gravity models that have persisted in the field since the 1950’s (Train,

2009). Despite the opportunities for much more advanced representations of destination utility,
the models still rely on socio-economic indicators such as the population and employment
at the destination. The choice of the destination made by a traveler is not necessarily made
based on how many people live and work there. A simple example demonstrates where such
traditional metrics fall short: National parks have no population and little employment, but are
large attractors of leisure trips. Ski areas are another example of this effect.

While it is desirable to better represent the zonal utility, destination choice modeling is often
characterized by a large set of alternatives (Ben-Akiva and Lerman, 1985). As such, the the
acquisition of detailed data for each alternative can often be prohibitive within the context of
the development of a transport model. Simma et al. (2001) explored such variables in detail for
long distance leisure travel in Switzerland, and reported that the data collection work was indeed
particularly onerous. This paper presents an alternative approach, using aggregated data from
the location based social network (LBSN), Foursquare, to represent components of destination
attractiveness in the utility function of a multinomial logit model.

Big data, such as that collected by Foursquare, is a ‘topic du jour’ in transport modeling.
Foursquare enable users to ’check-in’ to a point of interest (POI), known as a ‘venue’, and
provide tips, ratings and reviews. With 50 million monthly active users and over 7.8 billion
check-ins to date (Issac, 2015), foursquare is the largest LBSN. This enormous amount of data
can be used in a multitude of ways to explore mobility patterns. In recent relevant research using
Foursquare, Lindqvist et al. (2011) looked at how and why people use location sharing services
such as Foursquare, and discussed how users manage their privacy when using such services.
Cheng et al. (2011) collected 22 million check-ins across 220,000 users to quantitatively assess
human mobility patterns. 53% of their check-ins came from Foursquare, highlighting the
dominance of Foursquare in the LBSN space. SA et al. (2015) investigated the potential for cell
phone and Foursquare data to replace the use of travel surveys in calculating an origin-destination
demand matrices .Noulas et al. (2012) used Foursquare data to design gravity model based on
Stouffer’s theory of intervening opportunities (Stouffer, 1940).

Whereas even comprehensive travel surveys such as the TSRC in Canada often have a sample
size of around only 50,000 records per year, big data sources can record the movements of
millions of individuals at unprecedented spatial and temporal accuracy (Beyer and Laney, 2012).





        

It is important to note that the high temporal and spatial resolution of geolocated big data
comes with its own trade-offs. Often social-demographic attributes are not available, making it
extremely difficult to correctly weight the sample. Furthermore the data available publicly to
researchers can be limited or highly aggregated, and the collection and sampling methodologies
are normally not available (Morstatter et al., 2013). Clearly, there is a need to investigate new
ways of combining both ‘traditional’ (travel surveys and census data) and ‘new’ (big) data
sources to harness the best attributes of both in the context of transport modeling.

This paper explores how data from Foursquare can be combined with traditional data sources in
the development of a long distance destination choice model for Ontario, Canada. Section 2
presents a methodology to develop a zoning system for the destination choice model, and enrich
it with the foursquare data. Section 3 presents the results of the model estimation and a scenario
analysis. Section 4 provides a discussion of the results, including limitations and areas for future
work, and section 5 concludes.

2 Methodology and Data

2.1 Applying the Travel Survey of Residents of Canada

The Transport Survey of Residents of Canada (TSRC) is a monthly, cross-sectional survey
collected by Statistics Canada to measure the volume, characteristics and economic impact of
domestic travel. In this paper, the TSRC provides the ‘traditional’ data source for the estimation
and calibration of the destination choice model. All spatial data points, namely those for
trip origins and destinations and stopovers are provided in the microdata at three resolutions
(from lowest to highest): Province or Territory, Census Division, and Census Metropolitan
Agglomeration (CMA).

The TSRC trip files provide trip records for all of Canada. However, as a model for Ontario,
trips are removed that do not interact with Ontario, namely:

• Trips by air that do not arrive or depart Ontario.
• Ground based trips where the shortest path does not contain Ontario.

In total 69,328 individual trip records remain from the TSRC dataset for model estimation after
filtering (see Table 1).





        

Table 1: Sample size by trip purpose

2011 2012 2013 2014 Total

Business 1,798 1,640 1,449 1,341 6,228
Leisure 5,939 5,878 5,515 5,577 22,909
Visit 9,057 8,777 7,962 7,618 33,414

Total 18,694 18,016 1,6547 16,071 69,328

2.2 Defining a zone system for Ontario based on the TSRC data

For this particular destination choice model, a domestic zone system was already provided
by the project partner, consisting of 6,495 Traffic analysis zones (TAZs) for Ontario and 48
representing the rest of Canada. Sociodemographic data was provided for each TAZ. However,
the trip origins and destinations in the TSRC are only defined at broader spatial resolutions,
namely province, Census Division and CMA. Hence, a new internal zone system for Ontario is
defined for this destination choice model, based on the TSRC.

The provided external TAZs were previously defined by the project partner from the TSRC
Census Divisions and selected CMAs of interest to the model, and as such, can be transferred
directly to the new model. The Internal TAZs were not comparable to the TSRC resolution, as
they were allocated using a gradual raster based zone approach, based on the method developed
by Moeckel and Donnelly (2015). The 6495 generated TAZs vary in size from 0.879km2 to
3600km2, with smaller cells defined for more populous areas, and larger cells for regional
areas.

Since CMAs often overlap multiple Census Divisions, zones are defined by the union of the
Census Divison and CMA geometries. This fully reflects the number of destination choices
discernable in the TSRC schema. The resulting zone system has 69 internal zones for Ontario.
Using this approach, the distinction between urban and rural areas is encoded into the zone
system. It is worth noting that 51.5% of trips in the filtered TSRC survey originated in a CMA,
and 48.3% had destination recorded as a CMA. Both urban and regional areas contributing
to long distance travel, and CMAs more likely to be origins than destinations. The final zone
system used is presented in figure 1





        

Figure 1: Zones by province for Canada

The travel time, population and employment data was provided at the TAZ level by the project
partner. Each TAZ was assigned to the respective TSRC zone, and the Socioeconomic variables,
namely population and employment, summed for each zone over the grouped TAZs. To
aggregate the auto travel times between all TAZs to the zonal level, the travel time t between
each child origin-destination pair was weighted by the multiplied populations p of the origin
and destination.

ti j =

∑
k∈i,l∈ j tkl · pk · pl∑

k∈i,l∈ j pk · pl

2.3 Foursquare

Foursquare collects a wealth of data, on where and when users check-in. Data was collected
using the Foursquare public venue API1. The API returns a list of venues in JSON format. Each
venue record provides the following relevant information:

• Name
• Venue category

1more details on the API can be found at https://developer.foursquare.com/overview/venues.html



https://developer.foursquare.com/overview/venues.html


        

• Geo-referenced location
• Number of unique visitors
• Number of total check-ins

Each request is limited to roughly 1 square degree of longitude and latitude in search area, and
only the top 50 venues for that search are returned. A limit of 5000 requests per hour is also
enforced. Search results are returned based on the popularity of the venues. How the rank of
returned venues is determined by Foursquare is not specified. The API does not return check-in
counts by date, so it can only be used to generate a total metric of activity for each venue, up to
the time of the search. For the forecasting of trips to individual venues, this would present a
significant obstacle. However, in this paper, the foursquare metrics are only used for identifying
the intensity of activity in zones that may not be reflected by socioeconomic variables.

To collect the venue data from the Foursquare API, the following procedure was followed:

1. The maximum search area allowed is smaller than most external zones, so a search grid of
one degree raster cells was generated for the study area.

2. Using the activities specified in the TSRC as a reference, a selection of potentially
important venue categories was curated.

3. Each category was mapped to at most 5 main foursquare venue categories, for which the
search was performed, to exclude Foursquare subcategories such as ‘States & Municipali-
ties’.

4. The Foursquare API is queried for each cell and category, returning the top 50 venues,
while adhering to the rate limit of 5000 requests per hour.

5. Resulting individual venues are stored in the PostGIS database, and the number of check-
ins for each category and zone calculated (see Table 5 in Appendix A). In total, 34,041
unique venues and 7,981,458 check-ins were collected for the different categories.

2.4 Other Model Variables

Metropolitan areas are not homogeneous in land use patterns. Within urban areas there are
certain residential areas and central business districts to which people are more likely to travel.
However, at the spatial resolution of our zone system these differences are hidden, resulting in a
very high correlation between population and employment across the destination choice set of
98.95%. Therefore as with the gravity model, population and employment are summed together.
In order to simplify the further model equations, we assign a new variable for each destination





        

j:
civic j = log

(
p j + emp j

)
with population as p j and employment emp j.

Mishra et al. (2013) found that interaction terms between the origin and the destination were
significant for their destination choice model for Maryland. In a similar vein, three variables are
presented here to control for intra- and inter-zonal effects, where metro indicates that the zone is
a CMA:

intrametroi j =

1, if metro(i) ∧ i = j

0, otherwise



intermetroi j =

1 if metro(i) ∧ metro( j) ∧ i , j

0, otherwise



intrarurali j =

1 if !metro(i) ∧ i = j

0, otherwise


The first variable intrametroi j identifies trips within the same zone, where that zone is a
metropolitan zone. This allows the model to reflect the propensity of a traveler to leave a
metropolitan zone when they travel. The second, intermetroi j is 1 when the traveler is traveling
from one metropolitan zone to another and 0 otherwise. This may be a common pattern for
business travelers, but less likely for recreational trips. The third variable, intrarurali j allows
the model to consider the intra-zonal behavior in larger, rural zones separately.

In discrete choice models that include distance or travel time terms in the form exp(x), it is
common to include an additional parameter α exp(αẋ). However, such exponential parameters
are not estimable with simple multinomial logit models.

To avoid the necessity of using more complex models from the GEV family (Train, 2009), or
trial and error methods, the α for each model were taken from a previously designed gravity
model previously, estimated with the same dataset as the discrete models in this paper (see the
masters thesis of Molloy (2017) for further details). This method produces good results, with
an improved model accuracy and a more significant travel time parameters than models tested
without the α parameter.





        

tripsi j =
A j · e−α·tti j∑J

j Civic j · e−α·tti j
· Pi

Where
P j is the number of trips produced in origin zone i

civic j is the attraction at destination zone j

α is the impedance factor, calibrated with the average trip travel time
tti j is the travel time between zones i, j

Table 2: Gravity Model calibration

Model Trips t̄t tt α r2 NRMSE

Business 34,229.43 244 243.20 0.0013 0.42 0.94
Leisure 83,357.94 149 148.13 0.0035 0.36 1.03
Visit 129,843.18 163 164.77 0.0030 0.52 0.93

3 Results

3.1 Estimation Results

This section discusses the estimation results of the destination choice model. The dataset was
split into three categories, representing the three travel purposes: leisure, visit and business. In
the first model iteration, model A, only the TSRC data is used to generate parameters.

The NRMSE considers the sample size of the estimation data by dividing the RMSE by the
standard division of the observed values, which allows for the comparison of the model per-
formance across the trip purposes, despite their varying samples. In terms of bpth the r2 and
normalized root mean square error (NRMSE), the results of this first model are good, particularly
when compared to the a simple singly constrained gravity model estimated on the same dataset.
However, the performance of the leisure sub-model is significantly weaker than the others.

Furthermore, all the parameters are highly significant, and have the expected signs. The
parameter signs and magnitude vary strongly across trip purposes. Business is the only purpose
where an urban destination is more likely to attract urban trips. On the other hand, leisure





        

Figure 2: Model A: Errors by observed trip count for OD pairs by trip purpose

travelers are much more likely to head for destinations outside the city. For visitation, there is a
weak positive effect toward urban areas.

For intra-zonal travel in urban areas, there is a strong negative effect for all trip purposes while
for intra-zonal rural travel the effect across all trip purposes is positive. This is as expected.
Urban areas are often smaller, making long distance trips (those over 40km) physically much
more unlikely. In rural zones, since they are much larger, the power law of travel distance means
that long distance trips crossing into other zones are less likely (Gonzalez et al., 2008). Of note
is the large negative coefficient for leisure intra-metro travel. This, combined with the other
two origin-destination interaction parameters for leisure travel suggest a strong preference for
leaving urban areas for leisure. This is supported by the TSRC data, where the key leisure travel
reasons include the outdoor activities such as skiing, visiting national parks and camping.

On closer inspection, the residuals graph in Figure 2 illustrates a trend for the model to underes-
timate the demand of OD pairs with large numbers of trips, and overestimate some other smaller
OD pairs. These sources of error fall into two categories:

1. Overestimation of intra-zonal trips within metropolitan zones such as Toronto.
2. Underestimation of leisure and visit trips from metropolitan centers to tourist attractions

such as Niagara Falls.

Accounting for the attraction of zones such as Niagara is difficult, as the attractiveness is due
to factors not observable from parameters used in model A. For the second, expanded model,





        

B, variables based on the foursquare data are included. Each of these variables represents the
natural log of the check-in count collated for the respective category.

medical j =(purpose == “visit”) · log(medical j)

hotel j = log(hotel j)

sightseeing j = log(sightseeing j)

naigara j =(purpose == “leisure”) · ( j == “niagara”) · log(sightseeing j)

outdoors j =(purpose == “leisure”) · (season == “summer”) · log(outdoors j)

skiing j =(purpose == “leisure”) · (season == “winter”) · log(skiing j)

Certain categories were found to be significant for particular trip purposes. For example,
the outdoor category is only significant for leisure trips, and the medical category is only
significant for visit trips. As would be reasonably expected, the number of hotel check-ins
is a significant variable across all trip purposes for long distance travel. It is logical that the
presence of hotels and sightseeing venues is particularly important for leisure travel, and this is
appropriately reflected in the coefficients in the model. Business conferences are often located
in areas of tourist significance as a way of promoting the event, supporting the large coefficient
for sightseeing in the business category. The presence of medical facilities was found to be
influential on the attractiveness of visit trip destinations. In model A, leisure trips to the zone
containing Niagara Falls are underestimated by 85%. In model B, a niagara variable controls
for this using the sightseeing category for leisure travel to the Niagara zone. Two variables
outdoors and skiing were found to be significant only for leisure travel in the season in which
the respective activity is normally performed.

Overall, model B performs better across all trip purposes than model A, demonstrating the benefit
of including the foursquare based parameters. Particularly noticeable is the large improvement
across all metrics for leisure travel. Figure 3 shows impact of the foursquare variables for leisure
travel. While it is hard to see the impacts for smaller OD pairs, the graph does illustrate how the
errors for major OD pairs have been reduced.





        

Figure 3: Effect of adding foursquare variables in model B on leisure trip counts

Table 3: Model Estimation Results (for all coefficients, Pr(> |t|) < 0.001)

Parameter Visit Leisure Business

A B A B A B

α 0.0013 0.0035 0.0030
e−α·tti j 4.83 5.00 4.75 5.35 4.19 4.37
civic j 0.57 0.21 0.52 -0.15 0.76 0.36

intermetroi j -0.08 -0.87 -0.81 0.56 0.72
intrametroi j -1.68 -1.75 -2.56 -2.88 -0.89 -0.87
intrarurali j 0.39 0.24 0.85 0.58 1.66 1.51

hotel j 0.11 0.27 0.17
sightseeing j 0.04 0.13 0.08

niagara j 0.13
outdoors j 0.03

skiing j 0.10
medical j 0.07

# Coefficients 5 6 5 10 5 7
Loglikelyhood - 115,666 -114,557 - 83,663 -78,038 - 20,596 -20,288

AIC 231,342 229,128 167,337 156,095 41,201 40,590
r2 0.80 0.82 0.56 0.80 0.73 0.77

NRMSE (%) 0.62 0.59 0.84 0.61 0.70 0.66





        

3.2 Scenario Analysis - Case study of a new ski resort

This section presents a hypothetical application of the developed destination choice model. For
any large scale land-use planning or development, it is important to model the impacts that
such development will have on the transport network. As an example of this, a hypothetical
scenario of the development of a large new ski resort is presented. Such resorts not only provide
infrastructure for skiing and other snow-based activities, but require the development of multiple
new hotels, employee housing, and retail infrastructure. In the winter months, ski resorts can
generate significant demands on the transport network, and this needs to be taken account when
considering such a development.

In the hypothetical scenario, a new resort is proposed for the highlands area north of Toronto in
Dufferin (Toronto CMA) (see Figure 4). Its development is expected to bring similar numbers of
visitors as other large resorts in Ontario. Three average sized hotels will also be built at the base
of the resort to accommodate guests. In the summer, the resort will attract visitors by providing
mountain biking facilities and hiking. Additional housing for 400 new residents will be required
to support 300 jobs.

Figure 4: Scenario analysis: Location of a new ski resort on Dufferin (Toronto CMA). Elevation
data from the Ontario Provincial Digital Elevation Model - Version 3.0

This scenario does not consider other policy and development considerations, such as site
location and transport access. The design of the scenario presents the opportunity to investigate
the sensitivity of the variables based on the foursquare data. The variables concerned are hotels,
skiing and outdoor. The impact of the new development is estimated through adjusting these
variables for the zone in which the development will take place. The foursquare POI database





        

Table 4: Inputs for scenario analysis

Parameter Old Value Adjustment New Value

civici j 42,216 700 42,916
hotel j 1,393 8,304 9,697

outdoors j 1 3,389 3,390
skiing j 40 3,550 3,590

developed in Section 2.3 is used to estimate adjustments for each of the categories. Taking
all venues in Ontario, the average number of check-ins per venue for each search category is
calculated. The following adjustments are made for the respective zones, and their values are
displayed in Table 4.

• Skiing: The average number of check-ins for ski areas
• Hotel: Twice the average number of check-ins for hotels
• Outdoor: The average number of check-ins per outdoor venue

The trips from the TSRC data used for estimation were inputted to the scenario, with w/(365 ∗ 4)
copies of each record added to the trip table, where w is the trip weight of the record. The
weighted TSRC data represents the total trips over 4 years, and for simplicity, the weights are
scaled to give the approximate number of daily trips. 20 iterations of the scenario were performed
using a calibrated version of Model B to account for the stochastic nature of destination choice.
The calibration process is documented further by Molloy (2017). Figure 5 shows the increase in
incoming trips to Dufferin due to the new ski resort. The impacts of each input is presented from
left to right, with the most right column being to total impact of the combined parameters. The
results show that the parameters behave reasonably. In particular the attractive effect for leisure
travel is well modeled. Without the foursquare based parameters, the number of leisure trips
would actually decrease with the addition of a new ski resort, due to the negative coefficient of
the civic j variable in model A for leisure travel. This would clearly be unrealistic, and as such,
this scenario gives a good example of why better representations of destination attractiveness
are important, particularly for leisure travel.

4 Discussion

A closer inspection of the OD matrix generated by model B on the estimated data indicates the
model still overestimates the number of intra-zonal trips within Toronto, and underestimating
the inter-zonal trips between large population centers, such as Toronto, Ottawa and Montreal.





        

Figure 5: Scenario analysis: Impact of a new ski resort on Dufferin (Toronto CMA)

Figure 6 identifies the connections where the model falls short. The connections between the
triangle of major cities, Toronto, Montreal and Ottawa, are underestimated. The car journey
from Toronto to Ottawa takes over 4 hours, while flying takes only 55 minutes. For this thesis,
only a skim matrix for car travel was available. The incorporation of travel times for all modes,
and the inclusion of feedback from the mode choice model, when available, would improve the
estimation of these connections.

Figure 6: Trip length distribution of model (CITE) after calibration (0-750km window)





        

While there has been a ‘virtual explosion of data availability’ (Nagel and Axhausen, 2001),
Horni and Axhausen (2012) note that the collection of big data such as GPS and GSM data “is
generally associated with privacy, cost and technical issues". These challenges go against the
ideal of general models that are flexible and transferable (Patriksson, 2015). None the less, big
data undoubtedly has a role to play in the future of transport modeling. Erath (2015) suggests
further research into probabilistic models based on big data and the blending of big data with
data from travel diaries.

The venue data for each zone essentially acts as database of the points of interest (POI) at a
particular destination. POI data is available from many sources, such as Open Street Maps.
However, LBSNs such as Foursquare take this POI database one step further, by measuring the
popularity of each POI. In the case of Foursquare, check-ins measure the intensity of activity
at each POI. A measure of importance is clearly beneficial in the model presented above, as
not all POIs are equal; hotels are of different sizes, and some national parks are more visited
than others. Of course, the importance of each POI can be measured based on attributes such as
the number of hotel beds or recorded visitors per year. However, the data collection required is
prohibitive for most large scale models. LBSN data provides an easily accessible data on the
importance of individual POIs, and in turn, destination utility.

4.1 Limitations and future work

One of the benefits of models based on socioeconomic variables is the ability to run the model
for future years and model the impacts of demographic change. Forecasting the Foursquare
check-in counts for different categories presents challenges to the modeler. Not only is it hard
to predict the how the popularity of certain venues will grow or decline in future years, but the
quantity of check-ins depends on uptake of the Foursquare platform and the potential emergence
of competing platforms. Further study of the demographics of Foursquare users would help to
define the statistical limitations of LBSN-based models. In future work utilizing more detailed
Foursquare data, check-ins could be filtered for those performed only by residents of Canada, or
grouped by season to further improve the modeling of different trip purposes.

In study on why people use Foursquare, Lindqvist et al. (2011) found that ‘participants expressed
reluctance to check-in at home, work, and other places that one might expect them to be at’.
This suggests that there are limits to how effectively Foursquare can model travel behavior. A
potential alternative would be to use Foursquare or a similar LBSN as a POI database, and use
GPS traces to identify or impute the intensity of activity at these locations, thereby avoiding the
selective reporting behavior evident in Foursquare usage.





        

5 Conclusion

In conclusion, this paper confirms the hypothesis that aggregated geo-tagged big data can
improve the modeling of destination choice when combined with traditional data sources. First,
a zone system for Long distance travel in Ontario, Canada was presented. Then, a methodology
for the aggregation of historical Foursquare checkins as measures of destination attractiveness
for particular categories was developed. Two multinomial logit models were estimated to
explore the potential of the foursquare check-ins for measuring destination attractiveness. The
‘traditional’ model based primarily on population,employment and zonal interactions was found
to work well enough for visit and business travel, but not leisure travel. With the addition
of alternative specific parameters based on the Foursquare check-in data, the model accuracy
across all trip purposes improved significantly, particularly for leisure travel. A scenario analysis
using the expanded model further reinforced the importance of properly measuring destination
attractiveness for leisure travel.
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A Appendix

Table 5: Foursquare venue categories

Category Venue Categories Venues Check-ins

Medical Dentist’s Office 6,294 586,082
Doctor’s Office
Hospital
Medical Center
Veterinarian

Ski Area Ski Area 1,048 203,266
Ski Chairlift
Ski Chalet
Ski Lodge
Ski Trail

Hotel Bed & Breakfast 7,268 1,502,248
Hostel
Hotel
Motel
Resort

Outdoors National Park 7,262 709,274
Campground
Nature Preserve
Other Great Outdoors
Scenic Lookout

Sightseeing Art Gallery 4,387 1,125,385
Historic Site
Museum
Theme Park
Scenic Lookout

Total 34,041 7,981,458
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