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Abstract

Free-floating car-sharing has been one of the latest innovations in the car-sharing market. It
allows its customers to locate available vehicles via a smartphone app and reserve them for
a short time prior to their rental. Because it is available for point-to-point trips, free-floating
car-sharing is not only an alternative to private cars, but also to public transportation. Using
spatial regression and conditional logit analysis of original transaction data of a free-floating car-
sharing scheme in Switzerland, this research shows that free-floating car-sharing is mainly used
for discretionary trips, for which only substantially inferior public transportation alternatives are
available. In contrast to station-based car-sharing, it does not rely on high-quality local public
transportation access, but bridges gaps in the existing public transportation network.

Keywords
free-floating car-sharing, one-way car-sharing, GPS tracking, booking data, mode choice, spatial
regression, usage patterns





            

1 Introduction

Free-floating car-sharing has been one of the latest innovations in the car-sharing market. It
allows customers to locate available vehicles via a smartphone app and reserve them for a short
time prior to their rental (typically 15 min). At the end, customers may leave the vehicle at
an eligible on-street parking space within a pre-defined (typically city-wide) service area. It
therefore offers flexible one-way trips and has been able to attract new customer groups for
car-sharing (Shaheen et al., 2015). Moreover, because it is available for point-to-point trips,
free-floating car-sharing is attractive not only as an alternative to private cars, but also to active
modes and public transportation. However, little is known about the actual use cases of free-
floating car-sharing so far.

Although there is substantial growth of free-floating car-sharing around the globe, a num-
ber of cities have already seen a cessation of operations of such schemes allegedly due to a lack
of profitability (BBC, 2014, Smiley, 2016). It appears that even after several years on the market,
it is largely unclear, which factors govern free-floating car-sharing demand.

This research uses transaction data of a free-floating car-sharing operator to better understand
the market niche of free-floating car-sharing. It does so by studying the effect of neighborhood
characteristics on free-floating car-sharing demand in a spatial regression approach and by
studying the effect of trip attributes in a mode choice model. The analysis is conducted for the
city of Basel, where at the time of this research, a car-sharing operator provides 120 free-floating
vehicles. Although the city’s agglomeration extends into Germany and France, the main service
area only spans the city of Basel as well as a number of adjacent municipalities in Switzerland.
In addition, there is an outpost of the service area at the tri-national airport, which is located in
France. Within the service area, car-sharing customers may use any free or residential on-street
parking as well as dedicated parking spaces at the main train station and the airport. In total, the
on-street parking spaces avaialble for the car-sharing scheme correspond to about 82% of the
total number of on-street parking spaces in the city.





            

2 Background

Apart from a few experimental set-ups, car-sharing has for a long time been offered as station-
based service only. In this setting, customers can reserve a vehicle, take it from a fixed parking
space and use it for the reserved period of time. Most of such schemes are operated as return-trip
schemes meaning that at the end of the rental, the vehicle needs to be brought back to the point
of departure.

Station-based round-trip car-sharing schemes are already quite well understood. For example,
it has consistently been found that round-trip car-sharing is most likely to be adopted in dense
urban areas, which are well connected by public transportation (Litman, 2000). It was also found,
that younger, highly educated and car-free households are most likely to become car-sharing
members (Burkhardt and Millard-Ball, 2006). Moreover, there is agreement that car-sharing
facilitates a car-free lifestyle by providing a vehicle in situations, in which it is actually needed
(Shaheen and Cohen, 2013). This way, it helps to reduce car-ownership and vehicle miles
travelled (Martin et al., 2010, Martin and Shaheen, 2011).

Whilst most of the empirical research on round-trip car-sharing was based on member surveys,
a few studies used geo-information to complement insights from those surveys. For example,
Celsor and Millard-Ball (Celsor and Millard-Ball, 2007) studied the socio-demographic compo-
sition of census blocks adjacent to car-sharing stations. Their results suggest that neighborhood
characteristics are even more important to car-sharing success than individual members’ demo-
graphics. In particular, they suggest that part of the local car-sharing demand can be predicted by
the average household vehicle ownership as well as the mode share of walk among commuters
in a given area. The findings were extended by Stillwater et al. (Stillwater et al., 2009) showing
that also characteristics of the built environment, particularly street width and public transporta-
tion service levels significantly affect local demand for station-based car-sharing. Including
land-use variables in their model, Kang et al. (Kang et al., 2016) point out that car-sharing is
used more intensively in business districts and areas with a high density of car-sharing stations.
However, they also find that in Seoul, station-based round-trip car-sharing is most successful in
areas featuring higher vehicle ownership rates and less rail accessibility indicating substantial
differences in car-sharing adoption and use between Asia and the North America.

Using transaction data and the monthly usage and availability as dependent variables, de Lorimier
and El-Geneidy (de Lorimier and El-Geneidy, 2013) confirm, that the number of vehicles parked
at a given car-sharing station and the number of car-sharing members living in the vicinity have
a strong positive effect on use. However, they also find large seasonal variation in car-sharing use.





            

In a different approach, Leclerc et al. (Leclerc et al., 2013) also used vehicle tracking to
better understand usage of station-based round-trip car-sharing schemes. In particular, they have
found that car-sharing tours contain more trips than tours made with private cars. Moreover, the
stops are shorter indicating a more efficient use of the vehicle.

To better understand use cases of round-trip car-sharing, Ciari and Axhausen (Ciari and Ax-
hausen, 2012) analyzed stated preference data from a national survey in Switzerland. Using a
multinomial logit approach, they showed that while in general, round-trip car-sharing is more
attractive than public transportation, access to car-sharing stations is perceived particularly
burdensome.

Free-floating car-sharing operates without fixed car-sharing stations and return trip require-
ments. Due to such structural differences, it was found to attract different customer groups and
to also have a different impact on travel behavior (Le Vine et al., 2014, Becker et al., 2017a).
Therefore, knowledge about the drivers of station-based car-sharing demand as outlined above
may not be applicable to free-floating car-sharing.

In a first approach to better understand free-floating car-sharing adoption, Kortum and Machemehl
(Kortum and Machemehl, 2012) analyzed transaction data of a free-floating car-sharing scheme
in Austin, TX. By combining the transaction data with spatial information on the rental start
points, they found that free-floating car-sharing is particularly often used in neighborhoods with
a high population density, a high share of younger (aged between 20 and 40 years) and male
inhabitants as well as smaller household sizes. Using a similar approach for Berlin and Munich,
Schmöller et al. (Schmöller et al., 2015) were able to confirm that free-floating car-sharing
is most heavily used in areas with young residents living in smaller households. In addition,
higher residential rents and a high density of businesses (including offices, shops, restaurants
and bars) were found to have a positive effect on car-sharing utilization. They also found high
short-term variations in demand, which may partly be explained by weather effects. However,
by using simple linear regression models to study the effect of neighborhood characteristics,
both approaches neglect spatial autocorrelation, which may lead to bias in the respective results.

Moreover, given that Swiss cities are substantially smaller than most other European and
North American cities featuring free-floating car-sharing schemes, it is unclear, whether there
are different drivers of car-sharing demand. To this end, an extended version of the approach
by Kortum (Kortum and Machemehl, 2012) and Schmöller (Schmöller et al., 2015) is used to
study, which spatial attributes have an effect on long-term demand for free-floating car-sharing.
The insights are then complemented by a mode choice model to better understand short-term
variations in this demand.





            

Transaction data 

23’660 reservations 

• reservation start and end times

• vehicle ID

• customer ID

Vehicle movements 

37’825 observations 

• start and end times

• start and end coordinates

• distance travelled

Geo-Data 

shapefile for PT service level 

+ 20’754 zones in (up to) hectare resolution 

• population size

• land-use variables

• transport-related variables

Travel diary data 

24’116 trips 

• start and end times

• start and end coordinates

• mode

• trip purpose

part 1 

long-term demand 

part 2 

short-term variations 

Figure 1: Data sets used in this research

3 Data

This research builds on data sets from different sources as shown in Figure 1. In the following,
the origin and scope of the individual data sets are described in more detail.

3.1 Free-floating transaction and vehicle data

The backbone of this research is transaction and vehicle data provided by the free-floating
car-sharing operator in Basel. In total, information on 23 660 transactions and 37 825 vehicle
movements undertaken by the scheme’s customers were available.1 The transaction data con-
tained information about the start and end times of the reservation as well as a vehicle identifier
and an anonymized customer ID. The vehicle data in turn provided information on the start and
end addresses of each movement (the criterion was engine turn-off) as well as the respective
departure and arrival times for each vehicle. Moreover, it contained information on the driven
distance, although no intermediate waypoints were available.

Since no common identifier was available to link the two datasets, they were matched by
time and vehicle ID: every vehicle movement that occurred between five minutes prior and
five minuted after a given rental were assigned to this rental. For 1 510 vehicle movements, no
corresponding reservation was found. However, given that these vehicle movements were not
significantly different (at the 10% significance level) with respect to distance traveled, travel

1Service trips undertaken by the operator’s staff were also available, but were excluded from the analysis.





            

time and time of day from the ones with a reservation record, the missingness was assumed
to be random and the vehicle movements without reservation record were omitted. Another
216 vehicle movements were excluded, because they were shorter than 50 meters. Eventually,
36 099 vehicle movements in 23 660 reservations remain available for the analysis.

Finally, for each of the vehicle trips, the corresponding start and end addresses were geo-coded
using the GoogleMaps GeoCoding API (Google, 2016). Due to technical reasons, however,
geo-coding was not possible for 1 029 reservations due to ambivalent address identifiers in the
data set. This is also why the airport was not reliably identified in the vehicle data. Given that
the service area was extended to cover the airport at a relatively late point in time, which was
also after the start of the records of the vehicle data, the airport was not considered as part of
the free-floating car-sharing service area in this analysis. Hence, this research focuses on the
analysis of the role of free-floating car-sharing in day-to-day intra-city travel behavior.

3.2 Geo-Data

To allow an identification of external drivers of car-sharing demand, geo-spatial data from the
Cantonal transport model was provided by the Canton of Basel-Stadt. The data includes a num-
ber of socio-demographic, land-use as well as transport-related variables for the whole region
of Basel in (up to) hectare resolution (Bau- und Verkehrsdepartement des Kantons Basel-Stadt,
2016). 13 320 of the 20 754 zones of the transport model lie within the service area of the
car-sharing scheme.

Moreover, a shapefile of the service levels of public transport was obtained from both the
Canton of Basel-Stadt and the Canton of Basel-Land.

3.3 Travel diary data

Electronic travel diary data of free-floating car-sharing members were available from a related
study in the area (Becker et al., 2017b). In total, 24 116 trips of 678 respondents were available
for this analysis. The trips were recorded in the months October to December and April/May
(hence, during fall and spring), so that the seasons generally match the origin of the transaction
and vehicle data. The observations are almost uniformly distributed over the week (around 15%
per day except for Sundays (10%)). Trip information includes GPS positions of start and end
points of the trip, the exact start date and time, the distance travelled as well as the transport





            

mode.2 In addition, socio-demographic information as well as information on mobility tool
ownership is available for each respondent. However, the data set includes an only insignificant
number of trips conducted by free-floating car-sharing.

2A trip is defined as travel between two activities. In case multiple modes are involved, the main mode is reported;
if more than one main mode is involved (such as car-sharing and train), the corresponding stages are reported
separately.





            

4 External drivers of intensity of use

In a first step, the transaction data of the free-floating car-sharing scheme was combined with
the geo-data from the two Cantons of Basel to study the effect of spatial characteristics on
free-floating car-sharing demand.

4.1 Methodology

For the following analysis, 4 599 observations were dropped from the vehicle data, because
they were recorded almost one year before the bulk of the observations and the service area was
expanded substantially within that year. The remaining observations are from a continuous time
stretch during which the service area and price levels of the free-floating car-sharing scheme
remained unchanged. The start points of the remaining rentals from the vehicle data were then
matched to the hectare-resolution geo-data from the Cantonal transport model. The matched
data was subsequently enriched with additional information as described in the following.

For each centroid of the hectare raster, the local service level of public transportation as defined
in the Swiss standard SN 640 290 was determined using data provided by the Cantons of Basel-
Stadt and Basel-Land. Thereafter, the number of free-floating car-sharing members residing in
each hectare-zone was determined using data from an earlier study in the same area (Becker
et al., 2017a). The addresses reflect the status just before the first observation of the reduced set
of vehicle data.

None of the available data sets contains accessibility information. However, accessibility
is known to trigger economic activity and therefore travel demand (Hansen, 1959). Thus a rough
estimate of accessibility was calculated and added to the data set. The calculation followed the
original formulation suggested by (Hansen, 1959):

Ai =
∑
j,i

w j

di, j

where di, j denotes the Haversine distance between the centroids of the two zones and wi in
one case represents the number of inhabitants and in a second case represents the number
of workplaces in the given zone. Although more advanced formulations of accessibility are
available (Axhausen et al., 2015), they were not used in this research as they would require
routed travel times or other detailed attributes, which were not available from the given data sets.
Still, the accessibility scores calculated in this simplified way provide a valid representation of





            

the relative location of the zone in the city.

Eventually, all 1 567 observations starting outside of the main free-floating car-sharing ser-
vice area were omitted. The data set was then analyzed using various regression techniques
based on the R functions lm (Chambers, 1992) and spreg (Piras, 2010).

Table 1: List of Attributes for spatial model. Levels of correlation are presented in Figure 3

Variable Type Description

highPT factor zone features high level of transit service (level A or B)
ln(PopAcc) numeric population-weighted accessibility as described in the text

(logarithmic)
PopSize numeric number of inhabitants aged between 25 and 64 years

divided by 1 000
WP numeric work places divided by 1 000
PTticket numeric share of season-ticket holders
Cars numeric number of registered cars per inhabitant
FFCS numeric share of free-floating car-sharing members

per 1 000 inhabitants
modeSharePT numeric transit mode share among trips originating in the area

according to the cantonal transport model
modeShareCar numeric car mode share among trips originating in the area

according to the cantonal transport model

4.2 Results

Figure 2 shows the distribution of rental start points over the city of Basel. From the upper part
of the figure, it becomes clear that the rental start points are not uniformly distributed within the
service area, but are mostly concentrated along an axis from the north-west to the south-east, i.e.
between the Kannenfeld and the Bruderholz quarter. In the lower part, the number of rentals
per hectare was divided by the number of inhabitants to reveal areas with a particularly high
intensity of use. The plot indicates a particularly high usage around the main train station as
well as in the southern and western suburbs. Yet, other spatial attributes may also play a role.

As a first step to understand the actual drivers of free-floating car-sharing demand, a linear
regression model has been estimated using maximum likelihood. However, the model is not
valid given a significant level of spatial autocorrelation of the residuals (Moran I standard deviate



R
lm
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Figure 2: Free-floating car-sharing rentals per hectare
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Figure 3: Correlation matrix of spatial attributes

= 10.07, p < 2.2 · 10−16).

Given that a Lagrange-Multiplier test (Anselin et al., 1996) indicates significant spatial de-
pendence for both the dependent variable and the disturbances (LMerr = 163.42, df= 1,
p < 2.2 · 10−16; LMlag = 194.91, df= 1, p < 2.2 · 10−16), a linear Cliff-and-Ord-type (Cliff and
Ord, 1973) SARAR model of the form

y = λWy + Xβ + u

u = ρWu + e

with e ∼ N(0, σ2
i ) has been estimated, where W denotes the row-standardized spatial weights

matrix for 24 nearest neighbors. The 24 nearest neighboring zones represent all neighboring
zones closer than 300 meters, which is assumed an acceptable walking distance to a free-floating
car-sharing vehicle. The model formulation assumes that the number of departures in a given
zone not only depends on the spatial characteristics of this zone, but also on the number of depar-
tures in adjacent zones (local spillovers). Moreover, the model captures spatial autocorrelation
in the error terms, i.e. assuming spatial clustering of the unobserved effects. From a behavioral
standpoint it is intuitive that there is spatial clustering in the unobserved effects given that the





            

Table 2: Spatial regression model for free-floating car-sharing demand. Please refer to Table 1
for a description of the variables.

Coef. t

number of departures
highPT 0.26 0.53
PopAcc -3.78 ** -2.25
PopSize 27.60 *** 6.93
WP -2.89 *** -2.74
PTticket 0.58 0.64
Cars 0.23 0.25
FFCS 0.05 *** 8.49
modeSharePT -3.90 ** -2.24
modeShareCar -3.45 ** -2.35
(Intercept) 47.30 ** 2.28

λ 0.76 *** 11.70
ρ -0.50 *** -3.39

N 2 664
AIC 5 163

Significance codes: 0.10 * 0.05 ** 0.01 ***

model includes only a limited number of explanatory variables leaving space for unobserved
effects (e.g. cinemas, concert halls, shopping centers), which affect the level of demand in their
surroundings. In contrast, an interpretation of the spatial lag of the dependent variable is less
immediate. However, one may argue that a high number of departures in a given hectare zone
may eventually drain supply of vehicles in that zone, so that the demand spills over to adjacent
zones.

Given the large number of observations, a maximum likelihood estimation of the model is
not feasible in this case (Kelejan and Prucha, 1999). Therefore, the model was estimated using
a general method of moments approach. Table 1 summarizes the attributes used in the final
model, Figure 3 presents the respective correlation matrix. As can be seen from the plot, there is
substantial correlation between accessibility and car mode share. Yet, the plot does not hint at
multicollinearity issues. The results are presented in Table 2. The model offers a better fit than
the simple model described above (AICspatial model = 5 163 compared to AIClinear model = 5 259).





            

The model reveals that - as suggested by Figure 2 - a substantial share of the variance can
be explained by the population size of an area. Also the share of free-floating car-sharing
members residing in an area has a highly significant positive impact on the number of departures
in that area. In contrast, the intensity of free-floating car-sharing use is inverse to an area’s
number of work places and accessibility score.

In addition, the model indicates that areas experiencing a high share of departures with motorized
modes (car and public transportation) see less free-floating car-sharing activity.

It is also important to note that a number of spatial variables were not found to have a signifi-
cant effect on the number of free-floating car-sharing departures. Among those are the work
place-weighted accessibility, the distribution of mobility tools (cars, season tickets), retail space,
parking costs or proximity to the main train station as well as to the university campus. Moreover,
some variables, in particular gender distribution and household sizes, were not available.





            

5 Free-floating car-sharing mode choice

To better understand the short-term variations in free-floating car-sharing demand, a mode choice
model for free-floating car-sharing was developed. Given the flexible nature of free-floating
car-sharing, it is assumed that the decision to use it needs to be modeled on the trip level.

5.1 Methodology

The following analysis is based on the vehicle data. However, it is impossible to estimate any
choice model based on a data set in which only one alternative (car-sharing) is chosen and
observed. To overcome the constraint of missing variation in choice, the vehicle data was pooled
with the travel diary data of free-floating car-sharing members. The pooled dataset then contains
of 35 070 vehicle trips and 24 116 trips from the diary. It includes technical information on the
respective trip (such as start and end points and times, distance travelled) and an anonymized
customer ID, but no further details (such as any socio-demographic attributes).

In a next step, the choice set was defined. In principle, free-floating customers can choose
mainly between free-floating car-sharing, walk, bike, public transportation, taxi and their private
car. However, given that not all of the alternatives were necessarily available or considered in
the given choice situation, the choice set had to be reduced to a more realistic representation.
A preferable way to do so would be to apply a two-stage approach, i.e. to first estimate indi-
vidual consideration sets based on which then the actual choice model is estimated (Swait and
Ben Akiva, 1987). However, given the lack of any further information on the decision makers’
socio-demographic characteristics or more detailed trip information such as purpose or group
size, the actual choice set had to be defined in a deterministic way. The reasoning is as follows:
On the trip level, a private car can be seen as a dominant alternative to free-floating car-sharing,
because it has a lower marginal cost per minute/kilometer and parking prices are either relatively
low or inexistent in the Basel area. Therefore, it is assumed that free-floating car-sharing is used
only if a private car is unavailable for the given trip or if the tour contains an earlier or later trip,
which cannot be performed by car.3 Therefore, car is excluded from the choice set. In addition,
taxi had to be excluded because of the low number of corresponding observations (56 out of
24 116).

In contrast to car and taxi, it was less clear how to properly deal with the bike alternative.
It has to be noted that excluding bike from the choice set is a substantially stronger assumption

3In addition, 73.2% of the free-floating car-sharing members do not even have a private car in their household
(Becker et al., 2017a).





            

than excluding car, because bike is not a dominant alternative and only 7.3% of the members
of the free-floating car-sharing scheme do not own a bike (Becker et al., 2017a). However,
only a minority of free-floating car-sharing members was found to use a bike on a daily basis.
Moreover, like a car, a bike has to be carried through all trips of a (sub-)tour if chosen for the
first trip. Hence, not only do the attributes of the specific trip play a role, but also the attributes of
the preceding and/or successive trips, which are not available in this data set. Also, this is unlike
free-floating car-sharing, public transportation or walk, which generally provide point-to-point
trips. In particular for trips not starting at home, it is furthermore unknown, whether a bike
was even available in the given situation. Given the arguments outlined above, including bike
in the choice set appears to represent a stronger assumption than excluding it from the choice
set. Therefore, it was assumed that for the situations in question, the choice set consisted of
free-floating car-sharing, public transportation and walk. However, a reference model including
bike as an alternative was estimated to allow a comparison of the two approaches. Observations
in which other modes were chosen were therefore dropped.

The pooled data set contains revealed preference data only. Therefore, non-chosen alterna-
tives had to be generated in order to allow estimating a multinomial logit model. To do so, each
of the trips was routed using the GoogleMaps Directions API (Google, 2016) for the three modes
car (for car-sharing), public transportation and walk. The routing was conducted according
to the shortest path given the respective historic traffic situation and public transport schedule.
The results of the routing were then used as attributes for the three alternatives. Yet, to cover
direct and one-way trips only, choice situations for which the routed travel time deviated by
more than 50% from the reported travel time in the original data set were excluded. Moreover,
trips starting or ending outside of the free-floating car-sharing service area were excluded from
further analysis, given that in these cases, free-floating car-sharing is not an available alternative
(as only one-way trips are considered). In total, 44 674 choice situations remain. In some of
the remaining cases, a public transport alternative is not available (e.g. during night times).
Table 3 presents the choice frequencies of the pooled data set. Given this overrepresentation of
car-sharing in the choices, the model cannot be used for a prediction of mode shares. However,
to confirm consistency of the estimates, the model was also estimated on a re-weighted data set,
in which the weight of car-sharing observations was scaled down.

To determine the price of the free-floating car-sharing alternative, the routed travel time was
multiplied with the current rental rate of 0.41 CHF/min. For public transportation, the fare
was calculated based on the routed distance using the official distance-based fare for public
transportation in Switzerland (ch-direct, 2016). No concessions or fare reductions (season
tickets or other subscription) were assumed. Given the high share of public transport sub-
scriptions among free-floating members reported by earlier studies (Becker et al., 2017a),





            

this is a rather strong assumption. Yet, assuming a lower fare appears arbitrary given that it
is unclear which subscription would have been available in the individual choice situations.
Moreover, an amortization factor for the subscription would have to be added to any reduced fare.

For each trip start and end point, the local service level of public transportation as defined
in the Swiss standard SN 640 290 was determined using data provided by the Cantons of Basel-
Stadt and Basel-Land. As above, service levels for Germany and France were not available, they
were therefore assigned the lowest category.4

Eventually, the positions of available free-floating car-sharing vehicles were reconstructed
based on the transaction data in 5 min intervals. This way, for each of the trips in the data
set, the city-wide distribution of available free-floating car-sharing vehicles was determined at
the individual trip start time. Based on this, the distance of the trip start point to the closest
available vehicle was calculated for the four cardinal directions. The average of the four cardinal
directions was then used as a proxy for access distance to the free-floating vehicle. Given the
generally good parking availability in Basel, parking search time was not considered.

Using the data as described above, the mode choice model has then been estimated as alternative-
specific conditional logit model (McFadden, 1974) with clustered standard errors (by person
ID). For each case i, the utility function of this model can be expressed as

ui = Xiβ + (ziA)′ + εi

where X is a J × p matrix (with J the number of alternatives and p the number of alternative-
specific variables) and z is a 1 × q vector capturing the case-specific variables. Hence, β is
the p × 1 vector of alternative-specific regression coefficients, while A is the q × J matrix of
case-specific regression coefficients. The model was estimated using Stata SE 14.2 (StataCorp,

2015). The variables used in the model are summarized in Table 4.

The nature of the data sets used for this mode choice analysis entails methodological limi-
tations. Those limitations mainly arise, because in the vehicle data set, car-sharing is always
the chosen alternative. Due to this structure, no decision model can be estimated based on the
vehicle data set alone (all effects are captured by the constant, while other predictors cannot be
identified). As a consequence, it was neither possible to estimate a scale parameter (Swait and
Louviere, 1993) to control for the different origin of the two (partial) data sets nor was it possible
to take into account panel effects (Hole, 2007). From a behavioral standpoint, the limitations
mean that in this analysis, the differences both between the data sets and between the individual

4This is uncritical also because the car-sharing service area does not extend to Germany and France (with the
exception of the airport, which is not considered as part of the main service area in this research).





            

Figure 4: Distribution of travel times for the three modes (routed trips).

decision makers are assumed non-significant - an assumption, which can be motivated by the
fact, that both data sets describe revealed preferences of the same group in the same city and
that according to earlier research, the group of free-floating car-sharing members appears to be
relatively homogeneous (Becker et al., 2017a).

Table 3: Choice frequencies

Alternative n share

car-sharing 29 963 67.1%
public transportation 3 716 8.3%
bike 5 193 11.6%
walk 5 802 13.0%

5.2 Results

In a first step, the routing results were analyzed descriptively to get first insights in the situations
in which free-floating car-sharing was used. As presented in Figure 4, with an median travel
time of 8 min, free-floating car-sharing was more than twice as fast as public transportation (19
min) and also substantially faster than walk (34 min) in the instances it was actually chosen
(vehicle data). The travel time differences are much less substantial for diary trips, where the
median travel time of car-sharing (5 min) was not substantially faster than public transportation
(9 min; walk: 14 min), but public transportation alternatives would have involved a median of





            

Table 4: List of Attributes for mode choice model

Variable Type Description

cost numeric car-sharing rental fee / public transportation fare
in CHF (zero for walk)

ttcar numeric car-sharing travel time in hours
(zero for all other modes)

ttbike numeric bike travel time in hours
(zero for all other modes)

ttpt numeric public transportation travel time in hours
(zero for all other modes)

ttwalk numeric walk travel time in hours (zero for all other modes)
dvehicles numeric average Haversine distance of closest available

car-sharing vehicle by cardinal direction
(zero for all other modes)

tpt-walk numeric time of access/egress walk to/from public transportation
in hours (zero for all other modes)

tpt-wait numeric waiting time at the first public transport stop before
commencing the ride in hours (zero for all other modes)

npt-transfers numeric number of transfers involved in the public transportation
alternative (zero for all other modes)

high level of pt service factor both the start and the end point of the trip are situated
in an area with the highest transit service level (level A)

mid level of pt service factor both the start and the end point of the trip are situated in an
area with an acceptable level of transit service (level B or C)

inner-city trip factor origin and destination of the trip within the same municipality
night factor trip start between 10 pm and 6 am
rainy factor precipitation > 0 during the hour of the trip start
cold factor temperature < 2◦C during the hour of the trip start

0.6 km access and/or egress walk for the vehicle data compared to 0.3 km in the diary data. No
difference is observed in the average number of transfers of the public transport alternative.

The descriptive statistics outlined above already implies that the free-floating car-sharing scheme
is mostly used for relations with inferior public transportation options. However, many other
covariates may also play a role in the decision to use free-floating car-sharing. Therefore, a
mode choice model as described above has been estimated to better understand free-floating
car-sharing use.





            

Table 5: Mode choice model: multinomial logit model with alternative specific constants and
clustered standard errors. Please refer to Table 4 for a description of the variables.

reduced choice set extended choice set
Coef. z Coef. z

mode
cost -0.433 ** -2.06 -0.461 ** -2.20
ttcar -8.027 -1.52 -2.881 -0.55
ttbike -12.732 *** -17.52
ttpt -6.843 *** -8.27 -4.822 *** -6.81
ttwalk -14.542 *** -28.02 -13.338 *** -29.61
dvehicles -0.188 *** -2.83 -0.132 ** -2.21
tpt-walk -28.085 *** -24.87 -26.047 *** -24.69
tpt-wait -4.624 *** -9.43 -4.427 *** -9.52
npt-transfers -0.764 *** -6.20 -0.812 *** -6.90

car-sharing
high level of pt service -1.248 *** -6.01 -1.159 *** -5.50
mid level of pt service -0.357 * -1.72 -0.283 -1.36
inner-city trip -1.369 *** -3.40 -1.245 *** -3.17
night -0.157 -1.52 -0.170 * -1.73
rainy 0.699 *** 5.26 0.673 *** 5.20
cold 0.182 ** 2.13 0.187 ** 2.26
constant 2.009 *** 3.97 1.733 *** 3.59

bike
high level of pt service -0.046 -0.23
mid level of pt service 0.043 0.19
inner-city trip -0.810 *** -3.73
night -0.116 -1.02
rainy -0.247 * -1.67
cold 0.005 0.05
constant -0.811 ** -2.56

public transport
high level of pt service -0.657 *** -3.05 -0.546 *** -2.62
mid level of pt service -0.415 * -1.72 -0.352 -1.52
inner-city trip -1.149 *** -4.18 -1.108 *** -4.09
night 0.416 *** 3.33 0.264 ** 2.25
rainy 0.153 1.08 0.184 1.34
cold 0.190 ** 1.87 0.171 * 1.75
constant 2.537 *** 3.46 2.485 *** 3.43

walk (base alternative) (base alternative)

N 38 765 43 958
null log pseudolikelihood -32 853 -48 457
log pseudolikelihood -15 681 -30 974
Wald χ2 1 890 *** 2 395 ***

Significance codes: 0.10 * 0.05 ** 0.01 ***

The mode choice model is presented in Table 5. The left column presents the actual choice
model (reduced choice set), whereas the right column shows the reference model (including
bike as alternative). A Hausman-McFadden test (Hausman and McFadden, 1984) has been





            

used to test the consistency of the two models. With a χ2 = 122.44 (d f = 20, p = 0.000) it
indicates that the IIA property does not apply for the bike alternative, i.e. excluding bike does
have a significant effect on the estimates of the remaining parameters. Yet, with the exception of
the parameters for travel time, none of the differences is substantial (c.f. Table 5). Hence, the
following analysis is based on the mode choice model with the restricted choice set.

Due to its high correlation with cost (ρ = 0.68), ttcar could not be estimated efficiently. Yet, the
results can give a first indication of the actual trade-offs taken for each trip. The model indicates
a value of travel time savings (VTTS) of 16 CHF for public transportation and 33 CHF for
walk5, which is comparable to results from earlier studies in Switzerland (Hess et al., 2008).
Moreover, it is interesting to note that for walk towards or from a public transport stop, the
VTTS is twice as high as for normal walk. Again, the value for access walk matches the results
of earlier studies (Hess et al., 2008). Therefore, the model is assumed to give a valid estimate of
the actual elasticities.

A first result with respect to free-floating car-sharing is that access walk to a vehicle has a
very low value of travel time savings (VTTS). Converting the parameter for dvehicles by a detour
factor of

√
2 and a walk speed of 5 km/h (Dal et al., 2009) yields β = −0.668 h−1 and thus a

VTTS of less than 2 CHF/h - a value substantially lower than for public transportation. This
indicates that car-sharing members are more willing to walk towards a car-sharing vehicle than
towards a bus stop.

Yet, free-floating car-sharing has a lower alternative-specific constant than public transport.
Thus, with all attributes being equal, public transportation is generally preferred over free-
floating car-sharing. This holds particularly true for connections between areas with a high level
of service of public transportation, for which the attractiveness of free-floating car-sharing is
substantially reduced compared to public transportation.

From the case-specific variables, it can be seen that free-floating car-sharing becomes more
attractive relative to public transportation during the night and when it is rainy and/or cold. In
turn, it becomes less attractive for trips between areas which are frequently and densely served
by public transportation. The walk alternative seems to be particularly attractive for (short) trips
within a municipality.

Given the disproportionately high share of car-sharing observations in the data set, the es-
timates for the alternative specific constants are biased. It is therefore not possible to reliably
predict a market potential of free-floating car-sharing. However, all other predictors in the model

5In the model for the extended choice set, the values are 10 CHF and 29 CHF. However, given the large confidence
bands (Oehlert, 1992) of these elasticities, the differences are not significant.





            

proved robust when re-weighting car-sharing observations and therefore provide a valid estimate
of the respective elasticities.





            

6 Discussion

The results of the two models presented above can be combined with insights from earlier
research to provide new perspectives on the drivers of free-floating car-sharing demand.

Beginning with the spatial analysis, this research has shown that in general, free-floating
car-sharing activity scales with population density. This way, it complements findings from
Berlin and Munich stating that demand scales with the size of the target population (aged 30-50
years) as well as the number of registered businesses in a given area (Schmöller et al., 2015). Yet,
in this research, the number of work places was found to have a negative effect on car-sharing
activity.

A possible interpretation of this is, that free-floating car-sharing activity in general scales
with social activity in a given area, whereas economic activity has a much lower - or even
inverse - effect, which is in contrast to station-based car-sharing (Kang et al., 2016). This implies
that although opening up car-sharing for one-way and especially commute trips, free-floating
car-sharing is still mostly used for discretionary trips.

Also the share of car-sharing members residing in an area was found to have a significant
impact on the system’s use, which confirms an assumption made in Schmöller et al. (Schmöller
et al., 2015), that a substantial share of the free-floating car-sharing trips actually starts or ends
at the members’ homes. The results are similar to earlier research finding that station-based
car-sharing activity scales with the number of members nearby (de Lorimier and El-Geneidy,

2013).

Interestingly, free-floating car-sharing activity is higher in areas which see a lower overall
car or public transportation mode share. A possible interpretation is that - depending on the
situation - free-floating car-sharing is used as an alternative to both car and public transportation.

Moreover, according to the model outlined above, free-floating car-sharing is also used with
disproportional intensity in areas with lower accessibility. This observation goes in line with
findings from the mode choice model revealing that free-floating car-sharing is most attractive for
tangential relations, which are not well served by public transportation. A possible interpretation
is that free-floating car-sharing is used to bridge gaps in the public transportation network. In
this aspect, it differs from station-based car-sharing, which was earlier found to thrive best in
areas with low car-ownership levels and superior level of service of public transportation (Celsor
and Millard-Ball, 2007, Stillwater et al., 2009).





            

The results also show that customers are willing to accept a substantially longer access walk to
the car-sharing vehicle than for public transportation. Yet, the additional walk is usually made
up for by a shorter overall travel time. However, an alternative interpretation would be that
also the use cases may be different beyond the variables captured by the model. Eventually,
as in the literature (Schmöller et al., 2015), adverse weather was found to fuel the demand for
free-floating car-sharing.

Yet, there are various limitations in the two modeling approaches presented above, which
should be considered when interpreting the results and which should be addressed in future
research. For example, in the spatial regression model, it would be interesting to include de-
partures from the airport. Moreover, the quality of the model would benefit from an enhanced
measure of accessibility based on routed travel times in the network and from the inclusion of
additional attributes such as gender distribution and household sizes, which were not available
in this research.

Estimating the mode choice model on a pooled data set incurs several limitations. For ex-
ample, given the lack of any individual information on the traveler or trip, it is not possible to
account for the ownership of mobility tools or trip purposes when determining the individual
choice set and attribute levels (reduced ticket prices for season ticket holders). Instead, in this
analysis, the same (reduced) choice set was assumed for all individuals, which likely causes
bias in the estimates (Stopher, 1980). Yet, all of the observations stem from the same group of
members of the free-floating car-sharing scheme, which should reduce heterogeneity given that
in earlier research, this group was found to be relatively homogeneous (Becker et al., 2017a).
Moreover, a comparison of the two models presented in Table 5 indicates that their general
behavioral interpretation is consistent.

The nature of the pooled data set (in the vehicle data, the car-sharing alternative is always
chosen) entails further limitations on the methodological side in that neither the (possibly)
different utility scale nor the obvious panel structure (and thus individual-specific effects) could
be captured in the model. Although the underlying assumptions can be motivated by the fact
that both the data sets and the decision makers are relatively homogeneous, this aspect deserves
further investigation once better data becomes available.

In addition, the pooling of the data set comes with the drawback that car-sharing trips are
over-represented in the sample. While this does not bias the estimates of the model parameters,
it does affect the estimation of the alternative-specific constants, so that the model cannot be
used to make any predictions (e.g. of potential demand levels of an area nearby).





            

A minor drawback of the mode choice model is that it only captures one-way trips. For
future research, it would be worthwhile to study the nature of multi-stage trips in more detail.
Moreover, the final prices for car-sharing use were assumed in the model. However, customers
do not have perfect information on their exact travel time (especially during peak hours), so that
unobserved factors (e.g. risk of delay and thus higher cost) may in fact also play a role. More-
over, psychological factors may have an effect on the choice, too. Yet, despite the limitations
discussed above, it should be noted that the results of the mode choice model are in line with the
results of earlier research as far as conventional modes are concerned. Hence, it can be assumed
that the insights generated with respect to free-floating car-sharing generally are valid.





            

7 Conclusion

The results presented in this research contribute to a better understanding of the drivers of free-
floating car-sharing demand. The results indicate that free-floating car-sharing is mainly used
for discretionary trips, for which only substantially inferior public transportation alternatives are
available.

Moreover, comparing the results to findings from earlier research indicates substantial dif-
ferences in the use cases of free-floating and station-based car-sharing. Although both systems
are mostly used for discretionary trips, station-based car-sharing relies on local public transporta-
tion access, whereas free-floating car-sharing bridges gaps in the public transportation network.

However, given various methodological limitations due to the nature of the available data,
the results of the mode choice model have to be interpreted as a first attempt to study use cases
of free-floating car-sharing in a quantitative way and should be re-evaluated once better data
becomes available. In addition, only one-way trips could be covered in this research. Yet, there
also is a substantial share of multi-stage trips conducted using free-floating car-sharing, which
exhibit different usage patterns. A future analysis of those trips may yield further insights on the
interoperability between station-based round-trip and free-floating car-sharing.

Nonetheless, the results of this research can already be used in microscopic transport sim-
ulation tools such as MATSim (Horni et al., 2016) to improve the representation of free-floating
car-sharing. In particular, given the limited availability of empirical data about such schemes so
far, applying the results of the mode choice model can help to improve the behavioral realism of
of agent-based simulations. In turn, comparing the results of an agent-based model to the spatial
regression results may provide an additional layer of validation.
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