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Abstract

An alternative approach for real-time network-wide control that has recently gained a lot of
interest is the perimeter flow control. The basic concept of such an approach is to partition
heterogeneous cities into a small number of homogeneous regions (zones) and apply perimeter
control to the inter-regional flows along the boundaries between regions. The inter-transferring
flows are controlled at the intersections located at the borders between regions, so as to distribute
the congestion in an optimal way and maximize the total throughput of the system. In the current
work we focus on the same problem described above, studying three aspects that are not covered
in the literature: (a) the uncertainties in some model parameters that are not measurable in real
life implementations and can affect the performance of the controller (advanced estimation
schemes can be developed to estimate these parameters in real-time implementations), (b)
integration of external demand information that has been considered system disturbance in
the derivation of feedback control in previous works, and (c) mathematical formulation of
the original nonlinear problem in a convex optimization form, so that optimal control can be
applied in a (rolling horizon) model predictive concept. This work presents the mathematical
analysis of the optimal control problem, as well as the approximations and simplifications that
are assumed in order to derive the convex formulation. Preliminary simulation results for the
case of a macroscopic environment (plant)are presented, in order to demonstrate the efficiency
and performance of the proposed approach.

Keywords
Macroscopic fundamental diagram; model predictive control; convex optimization; urban
perimeter control; parameter estimation.





            

1 Introduction

Traffic congestion is a major problem of urban environments and modern metropolitan areas.
Most cities around the world become persistently denser and wider over the last decades and
the problem of urban traffic management is steadily gaining momentum due to its economic,
social and environmental impacts. Many efforts have been carried out to optimize the signal
settings during the peak hours, during which networks face serious congestion problems and the
performance of the infrastructure degrades significantly. The state-of-practice strategies fail to
deal efficiently with oversaturated conditions (i.e. queue spillbacks and partial gridlocks), as
they are either designed by use of simplified models that do not accurately replicate the traffic
flow phenomena (e.g. propagation of congestion), or they are based on application-specific
heuristics.

An alternative approach for real-time network-wide control that has recently gained a lot of
interest is the perimeter flow control (or gating). The basic concept of such an approach is
to partition heterogeneous cities into a small number of homogeneous regions (zones) and
apply perimeter control to the inter-regional flows along the boundaries between regions. The
inter-transferring flows are controlled at the intersections located at the borders between regions,
so as to distribute the congestion in an optimal way and minimize the total delay of the system
(an alternative objective could be to maximize the total throughput). This can be viewed as
a high-level regional control scheme and may be combined with other strategies (e.g. local,
distributed or coordinated controllers) in a hierarchical control framework (as a matter of fact
this topic has gained a lot of attraction in the research community lately). For a recent review on
this research direction the reader is referred to Daganzo (2007), Keyvan-Ekbatani et al. (2012),
Geroliminis et al. (2013), Aboudolas and Geroliminis (2013), Ramezani et al. (2015), Kouvelas
et al. (2015, 2016).

In the current work we focus on the same problem described above and we study a convex
formulation of an optimal control problem. We investigate three aspects of the problem that
have not been covered in the literature: (a) the uncertainties in some model parameters that are
not measurable in real life implementations and can affect the performance of the controller,
(b) integration of external demand information that has been considered system disturbance
in the derivation of feedback control in previous works, and (c) mathematical formulation
of the original nonlinear problem in a convex optimization form. The original model for
the dynamics of the multi-region process (plant) is highly nonlinear and the modelling tool
that is utilized is the Macroscopic Fundamental Diagram (MFD). MFD provides a concave,
low-scatter relationship between network vehicle accumulations [veh] or density [veh/km]





            

and network circulating flow [veh/h] or production [veh·km] for every region of the system.
The proposed methodology includes the real-time estimation of some model parameters from
measurements and the inference of a simple prediction model from real data. The problem is
solved in a rolling optimization time horizon, by deriving a model predictive control (MPC)
framework and the control decisions are applied to the nonlinear plant for evaluation. Different
objective functions are investigated and the efficiency of the control decisions is compared to
the “benchmark” case, where the nonlinear MPC problem is solved using advanced nonlinear
numerical solvers. Simulation results for the case of a macroscopic model (plant) are presented.
Note that this “benchmark” approach is more challenging for application in real life due to
computational requirements, and most importantly, the lack of detailed data. In the real world
data availability constraints the methodologies that can be applied, and as a consequence the
real-time applicability of the “benchmark” approach is considered cumbersome.

2 Methodology

Consider an urban network partitioned in N homogeneous regions with well-defined MFDs
(Figure 1). The index i ∈ N = {1, 2, . . . ,N} denotes the region of the system, ni(t) the total
accumulation (number of vehicles) in region i and ni j(t) the number of vehicles in region i

with final destination region j ∈ N , at a given time t. Let Ni be the set of all regions that are
directly reachable from the borders of region i, i.e. adjacent regions to region i. The discrete time
MFD dynamics of the N-region system can be described by the following first order difference
equations

nii(km + 1) = nii(km) + Tm

qii(km) − Mii(km) −
∑
h∈Ni

Mh
ii(km) +

∑
h∈Ni

Mi
hi(km)

 , i ∈ N (1)

ni j(km + 1) = ni j(km) + Tm

qi j(km) −
∑
h∈Ni

Mh
i j(km) +

∑
h∈Ni

Mi
h j(km)

 , i, j ∈ N , i , j (2)

where km = 0, 1, . . . ,Km − 1 is the model discrete time index, Tm [sec] the sample time period
of the model (i.e. time t = kmT ) and ni(km) =

∑
j∈N ni j(km). The exogenous variables qi j(km)

[veh/sec] denote the (uncontrollable) traffic flow demand that is generated in region i at time
step km with final destination in region j (i.e. qii(km) is the demand generated in region i that
has final destination in region i). The variables Mh

i j(km) [veh/sec] denote the transfer flows from
region i to region h that have final destination region j, while Mii(km) [veh/sec] is the internal
trip completion rate of region i (without going through another region).





            

Figure 1: The network of a city partitioned in a multi-region MFD system.
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We assume that for each region i there exists a production MFD between accumulation ni(km)
and total production Pi(ni(km)) [veh·m/sec], which describes the performance of the system in an
aggregated way. This MFD can be easily estimated using measurements from loop detectors
and/or GPS trajectories. Transfer flows Mh

i j(km) and internal trip completion rates Mii(km) are
calculated according to the corresponding production MFD of the region and proportionally to
the accumulations ni j(km) as follows

Mii(km) = θii(km)
nii(km)
ni(km)

Pi(ni(km))
Li

, i ∈ N (3)

Mh
i j(km) = min

{
Ch

i j(nh(km)), uih(kc)θh
i j(km)

ni j(km)
ni(km)

Pi(ni(km))
Li

}
, i, j ∈ N , h ∈ Ni (4)

where kc = 0, 1, . . . ,Kc is the control discrete time index, Li is the average trip length for region i,
which is assumed to be independent of time and destination, internal (inside region i) or external
(to some other region j). Note that the model discrete time index km must always be a multiple
of the control discrete time index kc, i.e. km = βkc must always hold for some integer β. This
implies that the control cycle is always a multiple of the model sample time in order to avoid
numerical issues. The parameters θii(km), θh

i j(km) reflect the route choice and are assumed to be
exogenous (i.e. can be constant or time varying and they are provided by another methodology).
The transfer flows Mh

i j(km) are the minimum between the sending flow from region i (which only
depends on the accumulations of the region), and the receiving capacity Ch

i j(nh(km)) [veh/sec]
of region h. This flow capacity is a piecewise function of the accumulation nh(km) (usually





            

modelled with two pieces, one constant value and a decreasing curve) and is introduced to
prevent overflow phenomena within the regions, i.e. each region i has a maximum accumulation
ni,max

0 ≤ ni(km) ≤ ni,max,∀i ∈ N . (5)

If ni(km) = ni,max the region reaches gridlock and all the inflows along the periphery are restricted.
Finally, the control variables uih(kc),∀i ∈ N , h ∈ Ni denote the fraction of the flow that is
allowed to transfer from region i to region h at time kc. Physical constraints are applied to the
values of the control variables as follows

0 ≤ uih(kc) ≤ 1, ∀i ∈ N , h ∈ Ni. (6)

Equations (1)–(4) are a discretized version of equations presented in Yildirimoglu et al. (2015)
and represent the traffic dynamics of an N-region urban network considering the heterogeneity
effect and integrating an aggregated routing model. Note, that these equations allow the drivers to
choose any arbitrary sequence of regions as their route and their path can cross region boundaries
multiple times.

2.1 Nonlinear model predictive control (NMPC)

The MFD dynamics described in the previous section derive a nonlinear model that has been
used in other works (Geroliminis et al., 2013, Ramezani et al., 2015) to apply nonlinear model
predictive control (NMPC). Here, we solve the same problem again just to have it as a benchmark
to evaluate the results that we get from the convex formulation presented later. In order to have
a well defined problem and without loss of generality – since this is a nonlinear MPC problem –
the following assumptions are made for formulating the problem:

• the quantities qii(km), qi j(km) and θii(km), θh
i j(km) are considered exogenous variables that

can be measured or given by another algorithm beforehand,
• as in many similar works, the capacity constraint Ch

i j(nh(km)) in (4) is dropped since from
a control viewpoint it is not necessary; the control actions will not allow the system to
operate to states close to gridlock and this constraint is never activated inside the NMPC.

Given these two reasonable assumptions the nonlinear optimal control problem for a horizon of
Km model steps is defined as follows





            

minimize
nii(km),ni j(km),uih(km)

Θ(n(Kc)) +

Km−1∑
k=0

Φ(n(k)) (7)

subject to

equations (1), (2), (3) (5), (6)

Mh
i j(km) = uih(km)θh

i j(km)
ni j(km)
ni(km)

Pi(ni(km))
Li

, i, j ∈ N , h ∈ Ni (8)

ni(km) =
∑
j∈N

ni j(km), i ∈ N (9)

km = 0, 1, . . . ,Km − 1 (10)

kc = 0, 1, . . . ,Kc − 1 (11)

where n = vec(ni) and Θ(·), Φ(·) derive the objective function (e.g. total delay, throughput, etc.).
This problem can be solved by using advanced nonlinear optimization toolboxes (e.g. ipopt1)
and in our case serves as a benchmark for the results reported later. Note that if we want to
compare the results with the convex approach described later, the objective function should be
the same in both cases in order to have a fair comparison and as a results this limits our choices
only to convex functions.

2.2 Convexifying the problem

In the current work we derive a convex approximation of the model described earlier and we
formulate a convex MPC problem that can be utilized for real-time control purposes. In order
to convexify the dynamic equations we assume the following simplifications and approxima-
tions:2

1http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Solvers/IPOPT
2Note that for simplicity the time index is omitted in some of the definitions hereafter.





            

• We introduce the model parameters αi j = ni j/ni, i ∈ N , j ∈ Ni. These parameters can
be estimated in real-time from measurements (e.g. using Kalman filter or maximum
likelihood approximation) and the goal is to develop a simple model that can predict their
future dynamics without affecting the convexity of the formulations; this can be also done
with machine learning techniques and historical data. Note that the parameters can be
time varying but they need to be exogenous signals for the optimization.

• New “dummy” control variables uii(kc) are introduced ∀kc = 0, 1, . . . ,Kc − 1, that restrict
the trip completion rates at every region i. Although these variables are not reasonable
from a physical point of view, they are required in order for the problem to be convex.
A conjecture is that the solution of MPC will always result in uii(kc) = 1,∀i ∈ N ,∀kc =

0, 1, . . . ,Kc − 1, but this needs to be validated with the results.
• We approximate the MFDs of the regions with piecewise affine (PWA) functions G j

i (ni),
j = 1, 2, . . . ,Ni, that form a convex set (see e.g. Figure 3 for a case study with 4 regions).
Each MFD can be approximated with j = 1, 2, . . . ,Ni affine functions.

• Most importantly, we introduce new decision variables

fii(km) = uii(kc)θii(km)

1 −∑
j∈Ni

αi j(km)

 Pi(ni(km))
Li

, i ∈ N (12)

f h
i j(km) = uih(kc)

∑
h∈Ni

(
θh

i j(km)αi j(km)
) Pi(ni(km))

Li
, i, j ∈ N , h ∈ Ni (13)

f i
h j(km) = uhi(kc)

∑
h∈Ni

(
θi

h j(km)αh j(km)
) Ph(nh(km))

Lh
, i, j ∈ N , h ∈ Ni (14)

that help convexify the equations. In equations (12)–(14) the variables θii(km), θh
i j(km),

αi j(km) are considered time varying exogenous signals and as a result the nonlinearity of
the problem comes from the product of the control inputs uih(kc) with the MFD functions
Pi(ni(km))/Li. The control variables have the property that they are bounded between 0
and 1 and the MFDs that can be approximated by PWA functions. As a result, we are
looking for an optimal solution within a convex set, and in this particular case the product
can be convexified by introducing the new variables (see Gomes and Horowitz (2006) for
some theoretical analysis of a similar convexification in a ramp metering control problem).

Once the optimal solution is computed then there is a unique transformation of the new
variables fii(km), f h

i j(km), f i
h j(km) to the original control variables uii(kc), uih(kc), uhi(kc).

This is a modelling trick that allows us to simplify the problem without loosing any
accuracy in the dynamics.





            

2.3 Convex model predictive control (CMPC)

The assumptions outlined above are reasonable approximations/simplifications of the nonlinear
model in order to derive a convex formulation that can be used for online MPC. In the sequel
we formulate two different versions of the convex model predictive control (CMPC) problem,
depending on whether the model keeps track of the origin-destination information of vehicles or
not. The models require different online data (as they carry different level of information, i.e.
state and demand trajectories i j instead of only i), but under certain assumptions can provide the
same optimal solution for the control variables.

2.3.1 CMPC with OD information

The derived convex optimization problem that approximates the original system and can be
solved online is as follows

minimize
nii(km),ni j(km),

fii(km), f h
i j(km), f i

h j(km)

Θ(n(Km)) +

Km−1∑
k=0

Φ(n(k)) (15)

subject to

nii(km + 1) = nii(km) + Tm

(
qii(km) − fii(km) − f h

ii (km) + f i
hi(km)

)
, i ∈ N (16)

ni j(km + 1) = ni j(km) + Tm

(
qi j(km) − f h

i j(km) + f i
h j(km)

)
, i ∈ N , j ∈ N \ i (17)

0 ≤ fii(km) ≤ Gl
i(km), i ∈ N , l ∈ Ni (18)

0 ≤ f h
i j(km) ≤ Gl

i(km), i, j ∈ N , h ∈ Ni, l ∈ Ni (19)

0 ≤ f i
h j(km) ≤ Gl

i(km), i, j ∈ N , h ∈ Ni, l ∈ Ni (20)





            

ni(km) =
∑
j∈N

ni j(km), i ∈ N (21)

0 ≤ ni(kc) ≤ ni,max, i ∈ N (22)

km = 0, 1, . . . ,Km − 1 (23)

2.3.2 CMPC without OD information

Moving one step forward with our approximation, the new model does not need to keep track
of the OD information (aggregated information about each region may be sufficient for control
purposes). Hence, by adding all the states ni j and nii for each region i we get a convex model
that does not consider OD data but only aggregated demands in the region level. In that case, the
derived convex optimization problem that approximates the original system and can be solved
online is as follows

minimize
ni(km), fii(km),
f h
i j(km), f i

h j(km)

Θ(n(Km)) +

Km−1∑
k=0

Φ(n(k)) (24)

subject to

ni(km + 1) = ni(km) + Tm

(
qi(km) − fii(km) − f h

ii (km) + f i
hi(km) − f h

i j(km) + f i
h j(km)

)
, i ∈ N (25)

0 ≤ fii(km) ≤ Gl
i(km), i ∈ N , l ∈ Ni (26)

0 ≤ f h
i j(km) ≤ Gl

i(km), i, j ∈ N , h ∈ Ni, l ∈ Ni (27)

0 ≤ f i
h j(km) ≤ Gl

i(km), i, j ∈ N , h ∈ Ni, l ∈ Ni (28)





            

0 ≤ ni(kc) ≤ ni,max, i ∈ N (29)

km = 0, 1, . . . ,Km − 1 (30)

where Θ(·), Φ(·) are any convex functions (e.g. Θ = Φ =
∑Kc−1

k=0

∑
i∈N ni(k) represents the total

delay, but also quadratic functions can be used, e.g. Φ =
∑Kc−1

k=0 nᵀ(k)Qn(k), where Q is an
appropriate weighting matrix). Note that all the constraints of this problem are linear and as
a consequence the computational requirements are quite low, even for a network with many
regions and large prediction horizons.

3 Preliminary simulation results

This Section presents the simulation results obtained for the described methodologies. The
simulation model (plant) is the nonlinear model presented in Section 2. The test case consists of
a network partitioned in 4 regions (Figure 2). It is a replica of the network used in Kouvelas
et al. (2015, 2016) and corresponds to a part of the CBD of Barcelona in Spain. The partitioning
of the network into homogeneous regions has been done by use of the methodology described
in Saeedmanesh and Geroliminis (2016). Figure 3 presents the MFDs of the 4 regions from
data obtained from a microsimulation model in Kouvelas et al. (2015, 2016). The red lines
present the PWA approximation of the MFDs with the affine functions employed in the convex

Figure 2: Test case network: CBD of Barcelona partitioned into 4 homogeneous regions.
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Figure 3: MFDs for the 4 regions of the case study network (blue); piecewise affine approxima-
tion of the MFDs to be used in convex MPC (red).
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approximation (6 pieces have been used for each MFD here). The approximation is pretty
accurate and this relaxation should not cause any problems in the optimization procedure (in
that respect the nonlinear model and PWA approximation are almost identical; note also that
this approximation can be done with many more lines than presented here without hardening
significantly the computations of the convex solver).

First we do a comparison of the plant and the convex models presented in Section 2.3. Figure 4
presents a demand scenario (i.e. generated vehicles per time unit for all the simulation horizon)
for the case study with 4 regions (e.g. 4×4 OD matrix). For this demand, Figure 5 displays
the evolution of accumulations ni j for the plant and for the model used for CMPC with OD
information (Section 2.3.1). Equivalently, Figure 6 displays the evolution of accumulations
ni for the plant and the CMPC model without OD information (Section 2.3.2), which actually
corresponds to the estimation of ni used within the MPC framework. The prediction horizon for
both linear models is 12 times higher than the sample time of the plant (e.g. km = 12kc). The
trajectories of the accumulations ni and ni j demonstrate that both these models can be used to
approximate the original nonlinear one (for small prediction horizons). They are both quite
accurate representations of the original system, thus appropriate to be used for the convex MPC
framework.





            

Figure 4: Traffic demand for the four regions and all simulation horizon (4×4 OD matrix, i refers
to origin and j to destination).
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Figure 5: Vehicle accumulations ni j for the plant (solid lines) and the convex model with OD
information (dashed lines) when applied for 12 steps of prediction (km = 12kc).
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Figure 6: Vehicle accumulations ni for the plant (blue lines) and the convex model without OD
information (dashed black lines) when applied for 12 steps of prediction (km = 12kc).
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Finally, Figure 7 displays the results for the accumulations when the nonlinear MPC is applied
to control the transferring flows between regions. The objective of the controller is to maximize
the summation of all trip completions over time in the network (i.e.

∑
i
∑

km
Mii(km)). It is clear

that the controller improves the traffic states of the system and the area between the blue and the
dashed black lines corresponds to the total delay improvement in the system. These results are
quite promising and preliminary results for the CMPC (not presented here) show that we can
achieve almost the same level of improvement by using the two convex approximations of the
model described in Section 2.3.

4 Conclusions

A convex formulation is derived for solving the perimeter control problem in multi-region
cities. The originally nonlinear system is relaxed and approximated by a simplified linear model
that under certain assumptions can track the behaviour of the multi-region system. The new
model requires less information in terms of real-time measurements (e.g. traffic states, OD
demands) and as a convex problem it guarantees optimality and fast convergence of the solver.
The simulation results need to be further investigated in order to assess how close is the solution





            

Figure 7: Vehicle accumulations ni for the 4 regions for no control case (blue lines) and nonlinear
MPC (dashed black lines) when applied for 12 steps of prediction (km = 12kc).
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of the convex MPC to the benchmark, which consists of the nonlinear MPC problem with full
information about demands and feedback measurements. Note that the benchmark approach in
a field implementation would require real-time measurements (or estimates) of ni j and di j, while
the second version of CMPC requires only region-based measurements (i.e. ni and di) and not
detailed origin-destination data.

Future work will deal with the development of a more solid methodology for estimating the
model parameters αi j (e.g. online Kalman filter), as the values of these parameters are crucial
for the optimization horizon. These parameters can be estimated at every control cycle and
then considered constant for all the optimization horizon of the MPC but maybe this is not
sufficient for the improvement of the system. Simple estimation/prediction techniques can be
used to enhance the knowledge for this parameters and help the convex problem to track the
nonlinear dynamics in a better way. Investigations about different convex objective functions for
the MPC is also another research topic. The proposed methodology needs to be evaluated for
different realistic objective functions and demand profiles. Finally, another research direction is
to use perimeter control as a first-level controller in cities (as it deals with zone interactions) and
develop a second-level of distributed control (e.g. Kouvelas et al. (2014)) for optimizing locally.
The combination of the two provides a hierarchical control scheme that could potentially be more
efficient in alleviating traffic congestion in cities, but this needs to be further investigated.
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