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Abstract

In Kazagli et al. (2015), we introduced the concept of the Mental Representation Item (MRI) as
a modeling element and we presented the methodology for the derivation of operational random
utility models for route choice analysis based on MRIs. The use of the MRI as a modeling
element enabled us to obviate the need for choice set generation and sampling of choice sets.

In this work, we extend the MRI approach in order to apply it to more complex models such
as the cross nested (CLN) and the recursive (RL) logit. The CNL and RL models are of
interest as they tackle the two main challenges related to route choice modeling; namely the
correlation of the alternatives and the choice set generation. Their estimation for large networks
is cumbersome. We are interested in (i) investigating the potential of the MRI approach to break
down the combinatorial complexity of these models and (ii) comparing their performance under
the two representational approaches (MRI and path), using real case studies.

Keywords
Route choice, Random utility models, Mental representation item (MRI), Cross nested logit,
Recursive logit





        

1 Introduction

Route choice is one of the key travel demand problems. Given an origin (o), a destination (d) and
a transportation mode, we are interested in understanding and predicting how a traveler selects
the route that brings her from o to d. Route choice models provide a useful tool to describe
the distribution of travelers on the network. This distribution allows to identify congestion and
enables for transportation planning as well as real-time operations.

The need to go beyond the shortest and fastest path models (reference) has triggered a great deal
of research. Route choice analysis is commonly performed within the discrete choice modeling
framework. Discrete choice models (DCMs) allow for a great deal of explanatory variables to be
considered and for the behavioral heterogeneity across the population to be explicitly captured.
This transition from efficiency to behavioral realism entails additional model complexity though.
Classical route choice models assume a network representation G = (A,V), defined in terms of
nodes (vertices) V and links (oriented arcs) A, and a number of attributes associated with each
link. Following this network representation, a route choice is defined as a sequence of links
connecting the o and the d of the trip. This is denoted as a path alternative.

Letting data issues aside, the two main challenges concerning the path representation are (i) the
enumeration of paths between each o and d and (ii) the structural correlation among the path
alternatives that overlap. Different approaches that deal with the choice set generation (reference)
and tackle the correlation of alternatives (reference) have given rise to various discrete choice
models. Most of these models are path based.

Recently, Fosgerau et al. (2013) presented the recursive logit model (RL), where the path
choice problem is formulated as a sequential link choice problem in a dynamic framework. The
proposed technique avoids the full enumeration of paths and does not require sampling. The
first work to use a Multivariate Extreme Value (MEV) model with sampling of alternatives
and addressing the correlation in the stochastic part of the utility function, is the one by Lai
and Bierlaire (2015). The authors specify a cross nested logit (CNL) model and adopt the
Metropolis-Hastings algorithm proposed by Flötteröd and Bierlaire (2013) with a new expansion
factor inspired by Guevara and Ben-Akiva (2013) in order to avoid the enumeration of paths.

The general trend in the literature in order to deal with the challenges pertaining to the path
representation is to propose more and more complex models (reference). In Kazagli et al. (2015),
we aimed at simplifying the route choice problem by modeling the strategic decisions of people,
represented by the mental representations of their itineraries, instead of the operational ones,
represented by paths. We introduced the concept of Mental Representation Item (MRI) as a





        

modeling element and we presented the methodology for the definition of route choice models
based on MRIs.

In this work, we extend the MRI model and we adapt the approach for the specification of CNL
and RL models. Our objective is to evaluate the potential of the MRI approach in simplifying
the estimation of these models and rendering their application, to big real networks, feasible. In
this context, we evaluate the performance of the models under the two route representational
approaches, i.e. the MRI and the path.

The paper is organized as follows. In Section 2 we review the MRI modeling framework. Section
3 reviews the CNL and RL models and their adaptation to the MRI framework. In Section 4 we
present the available case studies. The last section summarizes the goals of the present study.

2 Route choice with MRIs

In this section, we briefly recapitulate the MRI approach and we present a way to generalize the
model for application to CNL and RL specifications. For more details regarding the definition
of the MRI elements and the specification of MRI-based models, we refer the reader to Kazagli
et al. (2015).

2.1 The MRI approach

According to the MRI formulation, a route is defined as an origin, a sequence of MRIs in order
and a destination. A MRI is a modeling element that captures any perceived items influencing a
route choice, such as a central part of a city, a bridge or a highway. Each MRI is characterized
by a name, a description, a geographical span and a list of representative points (Fig. 1). The
first two components capture the conceptual aspects, and the last two are needed for the model
to be operational, by enabling the association of the MRIs with more objective representations,
such as a map or a network (Kazagli et al. (2015)).

2.2 The MRI network

In Kazagli et al. (2015), we presented the simplest possible case of a MRI model where each
alternative involved exactly one MRI. The choice set consisted of four labeled alternatives,
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Name

Description

Representative points

Geographical span

Bd Périphérique

“City center” —

Go through the center

“Peripheral” —

Avoid the center

N

“D”

Adopted from Kazagli et al. (2015)

Figure 1: Examples of two MRIs and their components.

common for all travelers. As an extension of this methodology, we propose the definition of the
MRI network according to the following steps:

1. Define the MRIs and the origin o and destination d zones for the case study of interest.
2. For each MRI r creat a node.
3. For each o and d zone determine the centroid s of the zone and create a node corresponding

to it.
The number of vertices of the MRI network equals the summation of the number of

MRIs R and zone centroids S.
4. For each pair of nodes in the MRI network create a link (edge) ` if the transition from one

node to another is allowed.

An example of a MRI network with 6 MRI nodes and 6 od zones is illustrated in Fig. 2. It is
inspired by the case studies that we are utilizing, where the presence of a river splitting the cities
in two sides entails a bridge choice (MRI 5 and 6 in the blue polygon correspond to bridges) for
some od pairs.

Ideally, the MRI approach should allow for enumeration of all the MRI sequences between each
od pair. In the opposite case, the classical choice set generation procedures can be used.

The MRI network serves as the basis for the specification of the CNL and RL models presented
in the following section.
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Figure 2: The MRI graph.

3 Cross Nested and Recursive Logit with MRIs

3.1 The cross nested logit

The CNL model is a generalization of the nested logit model with a more flexible correlation
structure. It allows each alternative to belong to more than one nest. The CNL belongs to the
MEV family that was first proposed by McFadden (1978). Let i = 1, 2, ..., J be an alternative in
the choice set and m = 1, 2, ...,M be a nest, the choice probability generating function (CPGF)
of the CNL is then given by:

G(y) =

M∑
m=1

( J∑
j=1

α
µm
µ

jm yµm
j

) µ
µm

, (1)

where α jm are parameters indicating the degree of membership of an alternative j to a nest
m (also called inclusion coefficients), µ is the scale for the model, µm is the scale parameter
associated with nest m, and y j is equal to 1 if alternative i is chosen, and 0 otherwise. The
following conditions need to be satisfied (Bierlaire (2006)): (i) αim ≥ 0, ∀i,m, (ii)

∑
m αim > 0

∀i, and (iii) 0 < µ < µm, ∀m. Finally, for the estimation of the inclusion coefficients the
normalization

∑M
m=1 αim = 1, ∀i = 1, ..., J is applied.





        

Route Choice

MRI1 MRI2 MRI3 MRI4 MRI5 MRI6

o-MRI1-MRI5-d o-MRI4-MRI5-d o-MRI2-MRI5-MRI6-d o-MRI4-MRI6-d …

Figure 3: The underlying MRI nesting structure.

The cross nested logit probability is given by:

Pn(i) =

M∑
m=1

(
∑

j∈Cn
α

µm
µ

jm eµmV jn)
µ
µm∑M

p=1(
∑

j∈Cn
α

µp
µ

jmeµpV jn)
µ
µp

α
µm
µ

im eµmVin∑
j∈Cn

α
µm
µ

jm eµmV jn

, (2)

that corresponds to:

Pn(i) =

M∑
m=1

Pn(m|Cn)Pn(i|m), (3)

where Pn(i|m) is to be interpreted as the probability of an alternative i conditional to nest m and
Pn(m|Cn) as the probability of nest m given the choice set Cn.

3.1.1 CNL with MRIs

The choice set of the MRI model consists in MRI sequences. As the alternatives are sequences
of MRIs, the correlation structure can be captured by a CNL model, where each MRI is a nest.
An alternative i belongs to a nest m if MRI r appears in the sequence i (Fig. 3). This model
specification is similar to the link nested model proposed by Vovsha and Bekhor (1998). The
difference is that the nests correspond to MRIs instead of links, reducing the number of nests
and allowing for a level of complexity which is much lower, and fully under the control of the
modeler. The estimation of nest specific scales is possible1.

1Note that Ramming (2002) estimated this model for a network of 34, 000 links, where the estimation of
nest-specific coefficients was impossible.





        

3.2 The recursive logit

Unlike most of current state-of-the-art models the RL model (Fosgerau et al. (2013)) is not
path based. Inspired by previous works developed in the context of traffic assignment (e.g.
Akamatsu (1996); Baillon and Cominetti (2008)), the RL model decomposes the route choice
problem into a sequential link choice problem that is equivalent to a finite multinomial logit
model. The problem is then solved in a dynamic discrete choice framework, where at each node
the individual chooses the outgoing link that maximizes her utility. The link utilities consist of
an instantaneous cost, the expected maximum utility to the destination and independently and
identically distributed extreme value type I error terms. The next link choice probabilities are
given by a multinomial logit model.

Following the formulation proposed by Fosgerau et al. (2013), given a directed connected
network G = (A,V), where A is the set of links and V is the set of nodes, we denote links
`, α ∈ A and A(`) the set of outgoing links from the sink node of link `. Each link pair (`, α) is
characterized by a deterministic utility component vn(α|`), which is a function of the observed
attributes xn,α|` of the link pair and that may also include the characteristics of the individual
zn.

In the context of dynamic programming, ` is a state and α is a feasible action given state `. In the
formulation proposed by Fosgerau et al. (2013), a stochastic process with the Markov property
is used to identify the next chosen link given the current state. It is assumed that, at each current
state ` the individual observes random utility terms εn(α) and chooses the α that maximizes the
sum of instantaneous utility un(α|`) and expected downstream utility. The latter is given by the
value function Vd(α), and is computed by means of the Bellman equation (Bellman (1957)) as:

Vd(`) = E
[
maxα∈A(`)

(
vn(α|`) + Vd

n (α) + µεn(α)
)]
∀` ∈ A. (4)

An absorbing state needs to be defined for each destination link. This is done by adding to the
destination node a dummy link d without outgoing links. The set of links is then defined as

d

Vn (α)
d

A(l)

d

α

l

Adopted from Fosgerau et al. (2013).

Figure 4: Illustration of the RL model notation.





        

Ãd = A
⋃

d. vn(d|`) = 0 for all ` having the destination node as sink node. Figure 4 is adopted
from Fosgerau et al. (2013) to illustrate the notation.

The probability of choosing link α conditional on stake ` is given by the multinomial logit model

Pd
n(α|`) =

e
1
µ (vn(α|`)+Vd

n (α))∑
α′∈A(`) e

1
µ (vn(α′ |`)+Vd

n (α′))
. (5)

The value function is the logsum

Vd
n (`) =

µln
∑
α∈A δ(α|`)e

1
µ (vn(α|`)+Vd

n (α))
∀` ∈ A

0 ` = d,
(6)

where δ(α|`) = 1 if α ∈ A(`) and zero otherwise. The maximum of an empty set is zero, hence
V(d) = 0. A path σ is consequently realized as a sequence of link choices, with probability

P(σ) =

I−1∏
i=0

e
1
µ (v(`i+1 |`i)+V(`i+1)−V(`i)) = e−

1
µV(`0)

I−1∏
i=0

e
1
µ v(`i+1 |`i). (7)

Letting v(σ) =
∑I−1

i=0 v(`i+1|`i)

P(σ) =
e

1
µ v(σ)

e
1
µV(`0)

=
e

1
µ v(σ)∑

σ′∈Ω e
1
µ v(σ′)

, (8)

where Ω is the set of all paths, which is infinite.

3.2.1 RL with MRIs

As soon as the MRI network is defined, it is straightforward to apply the formulation proposed
by Fosgerau et al. (2013) to it. The only difference lies in the underlying network that provides
the input for the RL model. Figure 5 provides one example of the application of the RL model
to a MRI network.

The MRI approach reduces the state space of the RL model with the potential to improve its
efficiency in cases of large networks.
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Figure 5: Illustration of the RL model on the MRI network.

4 Playground

The objective of this work is to investigate the potential of the MRI approach in facilitating the
application of the CNL and RL models to large networks. The goal is to specify and compare
these models using real data (Table 1). The logit model is used as a benchmark. By the end
of the day, we need to show that the logit and the RL model are equivalent (blue color coding
⊕ in Table 1). The estimation of the logit and CNL models with paths is omitted due to the
complexity that it entails, which is in contrast with the current objective. Yet this estimation is
feasible with the RL model (blue color coding ⊕ in Table 1).

Table 1: Scope of analysis for the comparison of the models

model type MRI path

logit ⊕ −

CNL ⊕ −

RL ⊕ ⊕





        

The analysis aims at identifying the trade-offs among model fit, complexity and computational
burden. With respect to the model fit, the comparison is conducted directly, by comparing the
resulting path probabilities, and indirectly, by comparing the resulting link flows. In Kazagli
et al. (2015), we present a simple methodology for the application of the MRI model to traffic
assignment. It can be used for the prediction of link flows given the CNL model specification.
Fosgerau et al. (2013) also provide a way of predicting link flows as a result of the application
of the RL model to traffic assignment.

It is also interesting to compare the resulting probabilities, as well as the computational savings,
given the RL model and the two representational approaches, i.e. the MRI and the path. For this
comparison, it is necessary to render the disaggregate alternatives of the specification on the
general network2 and the aggregate ones on the MRI network, compatible (Fig. 6). As several
paths may correspond to the same MRI sequence, the task consists in defining a measurement
model that maps each path to one MRI sequence3. Then, by aggregating the probabilities of
paths associated with an MRI alternative we are able to compare the estimation results

For the purpose of the analysis outlined above, as well as for the comparison of the computational
times for the CNL and RL models under the MRI approach, we use two case studies for which
GPS data is available. The first one concerns a relatively small city in Sweden, while the second
one concerns the city of Quebec, in Canada. We briefly present the two case studies in the
following paragraphs.

2With the term general network we refer to the road network, represented by a directed connected graph G = (A,V),
as defined above.

3We refer the reader to Kazagli et al. (2015) for examples of how to use the geographical span of the MRIs to
build the measurement model.
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4.1 Borlänge case study

This case study exploits a GPS dataset from the city of Borlänge in Sweden. It was used as a
proof of concept in Kazagli et al. (2015). It is extended here by including two more MRIs in the
choice context and by defining the MRI network according to Section 2.2. The general network
consists of 3077 nodes and 7459 unidirectional links.

The city is divided in seven zones, including the city center that serves both as an od zone and a
MRI. There are six MRIs as depicted in Fig. 7. The MRI network consists in 12 nodes and 58
links, allowing for the enumeration of all the routes on the graph for each od pair. The maximum
number of alternatives for an od pair in this network is 36.

4.2 Quebec case study

We are currently preparing the case study for route choice analysis in the city of Quebec in
Canada. A GPS dataset is available which has been previously processed to obtain map-matched
trajectories. Additional information regarding the users and the trip purposes is available4. The
general network consists of ∼ 20000 nodes and ∼ 40000 unidirectional links. The dataset
contains more than 20000 trips.

The city of Quebec is favorable for investigating several route choice contexts under the MRI

4We refer to Miranda-Moreno et al. (2015) for more details regarding the dataset and data collection process.





        

Figure 8: Example of MRIs in Quebec.

assumption; such as the bridge or ferry choice, the choice of autoroute, as well as combinations
of them. Figure 8 shows some indicative examples. The level of complexity depends on the
application. As the objective of the present work is to investigate the potential of the MRI-based
models, we increase the level of complexity by introducing higher number of MRIs in the model.
This allows us to identify the gains from incorporating the MRI representation in the CNL and
RL formulations, as opposed to the path representation.

5 Conclusion

In this paper, we investigate the potential of the previously proposed MRI approach to simplify
complex models, such as the CNL and RL. Instead of an algorithmic approach, the MRI model
exploits the behavioral rationale in order to facilitate the application of these models to large
networks and real case studies. This is accomplished by reducing the number of nests for the
CNL model and the state space for the RL model. Eventually, we are interested in comparing
the performance of the two models under the MRI approach. As the analysis is ongoing we do
not provide any results.
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