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Abstract 

Recurrent congestion, traffic intra-class variability, adaptability of drivers’ behaviour to ITS 

policies and networks’ complexity in highways raise challenges in traffic management. 

Abrupt fluctuations ensued by transitional traffic states advocate the congestion phenomenon, 

could be anticipated and mitigated by a timely activation of designated control policies. In this 

scope, the study introduces a dynamic multi-level control algorithm that forecasts lane traffic 

distribution in succeeding states, examines the inter-dependence of lane vehicle allocation and 

congestion formation and provides the time frame and thresholds that could be enforced by a 

control scheme. 

In the first level of the top-down approach, separate stochastic clustering procedures are 

invoked, in order to unveil unbiasedly the spatial patterns that define the prevailing traffic 

regimes, and the time span during which maximum capacity is attained. In the following 

level, based on the ensued clusters, multivariate modeling is integrated. Dynamic multivariate 

generalized regression models are employed to capture patterns of vehicle allocation in lanes, 

during free flow and congested regimes, and forecast impending traffic behaviour that could 

proactively trigger the efficient implementation of control policies before the actual 

expression of the need, thereby moderating delays and costs. The hypothesis regarding the 

underlying spatial inter-dependence between traffic allocation per lane and traffic states 

emergence is assessed, through the parameterization of stream dynamics with lane-related 

spatiotemporal variables. Furthermore, based on the rationale that congestion propagates from 

left to right in the onset of peak period, indicating a transition to another state, lane density 

distribution ratio (LDDR) and density of the left lane for congested conditions and of the right 

lane for uncongested, are addressed as promising determinant response variables. Both 

parameters are proven site-independent and are intermittently occurring during congestion 

and free flow conditions. Potential presence of multicollinearity between independent 

variables is negligible, on account of their normalization and the presence of the bounded 

response variables.  

The algorithm is evaluated through implementation on a recent development in the Intelligent 

Transportation Systems (ITS) control policy, the hard shoulder running (HSR) system. The 

use of the hard shoulder as a temporarily regular lane, marginally increases the capacity of 

segments without additional costly infrastructure works. The case study, a two regular lanes 

highway, is located between Geneva and Lausanne (A1) and is equipped with a reactive HSR 

and variable speed limit (VSL) system. Statistical assessment indicates that the prediction 

models yield significant prediction accuracy. 

Keywords 

Dynamic spatial modeling – lane distribution – stochastic clustering – speed harmonization – 

managed lane – hard shoulder use 
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1. Introduction 

Congestion mitigation is polarized between invasive approaches, such as infrastructure 

interventions, and traffic management through implementation of Intelligent Transportation 

Systems (ITS), which promote an ameliorated network performance with sustainable 

economic, spatial and temporal requirements (Brilon et al., 2008; Geistefeldt, 2012). Recent 

operational control systems, evoked more reliable monitoring and controlling methods to 

provide a robust prediction of traffic dynamics, with forecasting models that were deployed 

based on standard traffic spatiotemporal parameters, ensuring significant accuracy.  

However, highway networks’ complexity, traffic intra-class variability and adaptability of 

drivers’ behaviour to current ITS policies, elicit abrupt fluctuations, delineated by transitional 

traffic regimes, that fortify congestion and challenge the management of control strategies. In 

this scope, a novel dynamic multilevel control algorithm with lane-scale parameterisation is 

proposed. The stochastic method that is introduced in this study, forecasts the succeeding 

traffic regimes, through the lane density distribution ratio (LDDR), based on patterns of lane 

stream dynamics, unveiling the inter-dependence of lane vehicle allocation and congestion 

formation.  

As such, the developed control algorithm for highways, consists of three levels. The aim of 

the first level is the incorporation of an unbiased definition of traffic regimes and peak periods 

and is addressed with data mining through an artificial neural network (ANN) algorithm that 

identifies three predominant regimes, separates peak periods from off-peak periods and 

denoises the dataset.  

In the following level, in order to predict impeding stream dynamics, separate multi-regime 

models are formed for each of the resulted homogeneous clusters. Two types of multivariate 

generalized regression models, static and dynamic, are deployed for congested or saturated 

regimes and for free flow regimes, in order to pursue simple and feasible, though integrable in 

real-time control policies models. Based on the rationale that congestion propagates from 

right to left in the onset of peak period, indicating a transition to another regime, left lane 

density distribution ratio (LDDR) and left lane density are addressed as promising 

determinant response variables for congested conditions. Density-related parameters are 

selected as they appear to be site-independent and because of density’s monotonicity that 

could accord an unambiguous conclusion regarding the prevailing traffic regime.  

The hypothesis regarding the link between lane distribution transitions and the onset of 

ascending or descending passages from saturated towards congested or free flow regimes, is 

evaluated at the lower level through a statistical assessment of the control algorithm, 
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implemented in a managed lane system site. The study concludes with the interpretation of the 

results and the perspectives of the current analysis.  

1.1 State of Research 

Traffic dynamics have been extensively analyzed through the main macroscopic parameters 

of flow, density and speed and traffic fundamental diagrams. Furthermore, as the geometrical 

attributes and the management strategies vary (number of lanes, ramps, existence of VLS, 

managed lanes etc.), lane-oriented behavior study could be suggested to delineate the trends 

(Daganzo, 2002; Chung and Cassidy, 2004; Duret et al., 2012). The impact of lane 

distribution at traffic flow near merging zones was observed during several traffic conditions, 

and patterns independent to the study area geometry and control policy were identified during 

free-flow regimes (Amin and Banks, 2005; Duret et al., 2012). A lane behavioral model that 

was established by Daganzo, classifies the drivers into aggressive and less aggressive and 

denotes that up to congested regimes fast drivers are reluctant to proceed to lane change 

(Daganzo, 2002). However, when the difference of speed becomes marginal, they are 

dispersing in an attempt to maximize their speed. Based in similar assumptions, a 

macroscopic theory of vehicle lane-changing in microscopic models was proposed to describe 

relaxation phenomena (Laval and Leclercq, 2008). Nevertheless, empirical researches 

acknowledged several regimes and transitional conditions whose traffic patterns could not be 

sufficiently reproduced by the fundamental diagram, as a high scatter was emerging (Helbing 

et al., 2009; Knoop et al., 2011; Duret et al., 2012).   

Data-driven models (Zhang and Rice, 2003; Antoniou and Koutsopoulos, 2006) dominated 

the most recent researches, combined in several approaches with artificial neural network-

based models (ANN) (Van Lint et al., 2005; Vlahogianni et al., 2008) and others, which were 

proved more accurate in capturing stream dynamics compared to the traditional statistical 

methods, since the optimal network parameters emerge, and the extreme traffic conditions, the 

rapid fluctuations and the transitions between states are better identified and predicted (Smith 

and Demetsky, 1997; Ishak and Alecsandru, 2003; Stathopoulos and Karlaftis, 2003; Zhang 

and Rice, 2003; Van Lint et al., 2005; Antoniou and Koutsopoulos, 2006; Vlahogianni et al., 

2008).  For real-time and near real-time forecasting implementations especially in highways, 

these are the key features that are required to be comprised for a representative modelling 

(Jiang and Adeli, 2004; Van Lint et al., 2005). In this framework, wavelets are also enlisted as 

methods with promising results (Karim and Adeli, 2002). However, based on the objectives of 

the current study, data-driven approaches are addressing better the subject in terms of traffic 

pattern recognition (Antoniou and Koutsopoulos, 2006). It is also to be noted that researches 

on traffic behaviour modeling on near-capacity or congested traffic conditions are better 

described when are introducing lane-oriented parameters (Daganzo, 2002; Chung and 
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Cassidy, 2004; Duret et al., 2012; Samoili et al., 2013) than adopting the kinematic-wave 

(KW) model (Lighthill and Whitham, 1955; Richards, 1956). 

2. Methodology and Data 

The methodological framework of the multi-level algorithm is presented as follows (Fig.1). 

Figure 1. Methodological framework of stochastic lane distribution modeling and dynamic 

management of ITS policies 

2.1 Case Study Setup and Data Description 

The study site is a single managed lane per direction in a two-lane Swiss highway between 

Geneva and Lausanne (A1), separated from the general purpose lanes with pavement 

signalization. The facility was implemented in 2010, following a continuous increase in traffic 

demand and recurrent congestion during peak hours (annual average daily traffic of working 

days in 2008: 88,500 veh/day in both directions). The hard shoulder was broadened and the 

general purpose lanes were reduced, resulting in 3.50 m of width for every lane. For safety 

levels maintenance reasons, the system is additionally equipped with a partially automated 

variable speed limit (VSL) policy. During the operation of the emergency lane as temporary 

additional lane, a speed limit of 100km/h is enforced, as opposed to the 120 km/h during non-

operation. Even though the system was designed to operate based on certain speed and density 

thresholds, currently it serves as decision support tool for the traffic control center operators, 

who open eventually the emergency lane.  

The traffic dataset (courtesy of SMETRA) is derived from four radar sensors before and in the 

beginning of the system in both directions (L-59060, L-60590, J-64900, J-63145) (Fig. 2). 

These sensors measure the traffic volume per lane, speed, percentage of heavy vehicles and 
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indications of the opening and closure of the shoulder lane. The study period comprises four 

months in 2013 and 2014 (March, May of 2013 and 2014), of which holidays and days that 

accidents occurred are excluded. The data are aggregated per   =3min intervals, in order to 

neither cover nor overly pronounce any traffic dynamics characteristics. 

Figure 2 Case study site. The detectors that are used in the modeling section are depicted in 

orange (L-59060, L-60590, J-64900, J-63145). 

2.2 Clustering Analysis  

Independent stochastic clustering procedures are invoked for the unbiased definition of a) the 

three prevailing traffic regimes that capture adequately stream dynamics in three 

homogeneous groups (free flow, saturated, congested) through spatial patterns, b) time span, 

during which maximum capacity is attained per sections of a network, hereinafter referred to 

Lausanne Nord 

Yverdon 
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as the peak period, through temporal patterns. Additionally, any detected outliers are 

removed, composing a denoised and concise input space.  

A neural network algorithm, namely the “neural-gas” algorithm is employed for each 

clustering (Martinetz et al., 1993). The algorithm is a fuzzy extension of the k-means 

clustering, setting the neighbourhood of each data vector,  , based on proximity ranking with 

weight vectors, also referred to as cluster centers,        with         the number of 

observations, and    the topological manifold of real coordinate  -space. The studied data 

vectors are: (a) a six-dimensional vector of normalized densities per lane and normalized 

speeds per lane,     
   

, and a six-dimensional vector of normalized densities per lane and 

lane density distribution ratios (LDDR) per lane,     
   

, for the identification of traffic 

regimes, and (b) a two-dimensional vector of time and densities per direction,       
, for the 

separation of peak from off-peak periods. Hence, three separate clustering procedures are 

invoked for each of the three vectors,     
   

,     
   

,       
. For every reference to   

hereinafter, each of these vectors is implied, depending on the case. 

The convergence with the “neural-gas” to low distortion errors         )) is proven faster 

than the standard k-means, as each   is represented by the most suitable reference vector     ) 

of the submanifold   , or else the input dataset of empirical observations for four months 

selected over the entire years 2013 and 2014, for which the         )) (e.g. the squared error 

‖       )‖
 
 ) is minimal. This divides    into Voronoi polygons subregions, out of which 

each   is described by the corresponding reference   . The average distortion error lies on the 

error surface   that is given by eq.1: 

  ∫       )(      ))
 
                               (1) 

where the data point distribution    ) is a stochastic sequence of sample data points     

 )      )    that determines the adaptation steps for the cluster centers. Since   has 

several local minima instead of the distance ‖       )‖, a “soft-max” adaptation rule is 

applied that sets the cluster centers    based on a neighborhood-ranking                 
) for 

the given data vector  , with     being closest to  , then    being second closest to   and so 

forth, and an adaptation step for adjusting the    given by eq.2: 

          
      )

       )        (2) 

that is in fact a deterministic annealing procedure that starting from a high temperature and 

decaying gradually to 0 with each adaptation step     increasing    with a characteristic decay 

constant  , results to a slow emergence of the local minima of  , avoiding thus that the set of 
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  is being captured in suboptimal states. For a step size         and    , the     (eq. 2) 

becomes equivalent to the k-means adaptation rule, but for     all cluster centers    of the 

neighborhood ranking are updated and not only the     that sets the center for the cluster in 

question. Consequently, the dynamics of    follows the stochastic gradient descent on the cost 

function that from eq. 1 becomes eq. 3, and is the average distortion error that has to be 

minimized: 

        )  
 

    )
∑ ∫       )         ))     )

  
         (3) 

where    )  ∑      )  ∑     )   
   

 
    is the normalization factor that only depends on  . 

This sets a fuzzy clustering approach where   is assigned to a cluster   with a fuzzy 

membership function     )  
         )

   )
 and ranges from 0, namely not belonging to cluster, to 

1, belonging to cluster. Consequently, through the annealing procedure, each data point is 

assigned to a cluster based on the fuzzy membership function, denoted by the minimization of 

the average distortion error of every Voronoi polygon subregion, and hence assembling an 

error surface of several local minima.  

Therefore, neural-gas approach outperforms standard clustering techniques as the k-means, 

the maximum-entropy and Kohonen’s feature map algorithm on a number of separated data 

clusters, since they might tend to converge to local minima for non-smooth data, as in the case 

of rapidly fluctuating traffic flow, while the algorithm reduces convergence time to reach 

smaller distortion errors than the aforementioned procedures. Moreover, it requires an order 

of magnitude fewer weights to achieve the same prediction error.  

2.3 Regression Analysis  

Following the issued formation of homogeneous clusters and the compression and denoising 

of data space by the elimination of outliers, dynamic multivariate generalized regression 

models are employed in order to depict patterns of vehicle allocation in lanes during free flow 

and congested regimes and forecast impending traffic behaviour that could proactively trigger 

the efficient implementation of control policies. The aim is to predict and hence alleviate part 

of the causes of the mechanisms that trigger the hysteresis phenomenon, namely 

spatiotemporal distributions, thereby moderating delays and costs.  

The hypothesis regarding the underlying spatial inter-dependence between traffic allocation 

per lane and traffic states emergence is assessed, through the parameterization of stream 

dynamics with lane-related spatiotemporal variables. Based on the rationale that congestion 

propagates from left to right in the onset of peak period, indicating a transition to another 

regime, lane density distribution ratio (LDDR) and density of the right or left lane depending 
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on the regime, are addressed as promising determinant response variables. They are selected 

representative indicators, for the monotonic properties of density that accords an 

unambiguous conclusion regarding definition of congested or free flow conditions. Potential 

presence of multicollinearity within the independent variables is inquired, even though their 

normalisation and the account of bounded response variables, renders it negligible. 

Pursuing initially a simple approach that would ensure feasibility of implementation, static 

models of type    )  ∑(        )) with     constant coefficients    { } are formed 

with limited number of variables. Nevertheless, in order to address realistically the potential 

application of the models to a real-time control policy, dynamic models of type      )  

   )  ∑(        )) are separately developed for each cluster of the uncongested and 

congested regimes. Their dynamic character lays on the fact that they are providing 

predictions for an interval, t+1, one time step subsequent to the current time t. 

The forecasting parameters are subject to unity-based normalization, in order to be scale 

invariant for comparability reasons. The restriction of the range of values in the dataset of 

observations     between two arbitrary points, thus       or in this case      , is achieved 

with the following equation (eq. 4): 

    
      

        )    )

          
  

        )

          
                    (4)   

2.4 Statistical Assessment 

The attainment of prediction accuracy of the developed regression models is assessed through 

the residual standard error  ̂ that is an estimate of the standard deviation   of the sample of 

the given dataset, which sets the magnitude of difference of each observation of the sample 

from the sample mean. As the least squares regression approach is used, the residuals   ̂, 

namely the estimated errors that occur from the differences between the sample of empirical 

observations    and the predicted   ̂ (eq. 5), are described by a Gaussian (normal) distribution 

with properties of variables with mean 0 and standard deviation σ. 

   ̂       ̂       ̂   ̂  ) (1) 

Thereby, the residual standard error  ̂ is computed as follows (eq. 6): 

  ̂  √
 

     
∑   ̂)

  (2) 

where     are the statistical degrees of freedom. The assumption of normality of the 

residuals has been confirmed by appropriate Q-Q plots.  
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To evaluate the goodness of fit of the regression, a version of the coefficient of determination 

  
, the adjusted R-squared is employed. The        penalizes every dependent variable that 

is added to model without contribution to the explanation of the regression, with 1 signalizing 

the best fit to the model. 

3. Analysis 

3.1 Data Mining for Traffic Patterns Identification & Optimal 

Activation Range 

In the first level of the introduced control algorithm, peak periods (morning, evening) and 

three prevailing traffic regimes (free flow, saturated, congested) are derived from a non-

heuristic method, the clustering approach with the “neural-gas” algorithm. Furthermore, 

outliers are removed, resulting to a denoised input space. The traffic dynamics of each regime 

are emerged and are presented in Figures 3 and 4. Each cluster comprises indications about 

stream patterns that contribute to the targeted delineation of traffic dynamics, since separate 

models are developed per regime that can be applied to activate policies according to the 

traffic behavioural patterns of each cluster.  

The morning and evening peak periods serve to reduce the research area and target the 

optimal thresholds of a traffic responsive activation. Both periods are defined by a two-

dimensional input vector of time and densities per direction that was processed by the 

“neural-gas”. Since density is monotonic, an association to another parameter so as to 

determine a traffic regime, is not required as it is the case of the dual character of flow. In Fig. 

3, time is plotted against density per direction aggregated per time intervals of Δt=3-min. The 

ensued peak periods of morning range between 6:45 a.m. and 9:30 a.m (6:45 a.m.-9:15 a.m. 

for the representative day 18.03.2014, in Fig. 3a), and of the respective evening between 

15:00 and 20:00 p.m. (15:21 p.m.-19:18 p.m., in Fig. 3b). The peak periods are denoted by the 

sign “*”, and the off-peak periods before the onset or after the offset of the peak period by the 

sign “△”, or by the sign “○” between two peak periods. The operation of the system, as it is 

signalised by the current threshold, is illustrated by a continuous line, whereas the operation 

as it was effectuated by the operation center for the presented day, with a dashed lane. The 

green line depicts the activation and the red line the deactivation of the managed lane system. 

The aforementioned signs correspond to the three homogeneous clusters of free flow, 

saturated and congested regimes (cluster 1: “△”, 2: “○”, 3: “*” respectively), which are 

defined based on the six-dimensional vector of the per lane density and the lane density 

distribution ratio (LDDR) (Fig. 4). The lane density distribution, namely the ratio of the 
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density of a lane divided by the total density of the direction, can be described as follows 

through the relationship that relates the ratios of each lane (eq. 7): 

 ∑   
 
    

  )   
    ∑ (   

  

    
  )   

       (3) 

for        ∑         { } 

where   is denoting the lanes ( =1 is the left lane),    
 are the ratios of lane density distribution 

(LDDR), hereinafter expressed in percentage, over the total density per direction     , 

computed by the per lane density   , and constrained by 0 (as it is appointed as the divisor of 

the   ,), and   ,   the coefficients that are estimated by locally weighted regression 

(Cleveland and Devlin, 1988). 

The relationships of per lane density to LDDR aim to provide an insight into traffic behaviour 

and traffic distribution dynamics in lanes, which can unveil the transitions between the 

regimes and highlight the thresholds for a timely activation of an ITS. In these transitions that 

occur between free flow and congested regimes, represented by the saturated or otherwise 

known as synchronised regimes, lay the range of thresholds to be inquired for a traffic 

responsive system operation, since they precede or succeed the periods of rapid fluctuations 

of traffic demand in highways, which require the system’s activation or deactivation. Cluster 

2, is called synchronised regime as it represents the transitions, or else fluctuations see 

passages, that comply with the free-flow or congested regimes upstream or downstream, 

towards a regime different than the current. The saturated regime may only result from a) an 

ascending passage from the free flow regime (12), b) a descending passage from the 

congested regime (32), or from c) an interrupted passage by the congested regime 

(232). The congested regime may only occur either by a) an ascending passage from the 

saturated regime (123), or by b) an interrupted passage by a saturated regime (323). 

In the contrary, the free flow regime can only occur from a descending passage from the 

saturated regime (21), hence the passages 1 2 1 and 3 1 cannot happen.  

More explicitly, if a series of observations is attributed to the saturated cluster (cluster 2), and 

there is at least one observation     ) attributed to cluster 3 (23), then the transitions period 

and thus the saturated regime is over, and the following observations,       ) ,will be 

classified to cluster 3, since the distortion error has been already used to compare the     ) to 

the minima of every vector of the sectors of the managed lane section both upstream and 

downstream, resulting to permitting the classification, until the time    that an observation 

    ) maximises the error. While a saturated cluster succeeds a free flow cluster (12), only 

a congested cluster (3) may follow (123). Therefore, when this condition is satisfied 

(123), the respective values of density of this interval, which begins with the first 

observation attributed to cluster 2 and ends with the first observation of 3, are proposed to be 
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studied as candidate thresholds for the activation of the hard shoulder. Likewise, the candidate 

range for the inquiry of the optimal evening activation, can be located among the last 

observations of the saturated regime and the first of the congested, when the condition of 

passage 323 is satisfied. Regarding the system’s deactivation, when a congested regime 

cluster is preceded and followed by a saturated regime (232), the respective density 

values of the first observations classified to the second appearance of cluster 2, form the 

candidate set of thresholds to examine. This clustering approach has the advantage that an 

observation is classified to a cluster, only when the result of the comparison of each of the 

distorting errors of the observations of the surface between them, is minimal. This explains 

the fact that there is no recurrence when after the emergence of a cluster. It is noted that this 

surface is created by the vectors of the t-1 observations of all the detectors of the study area, 

and the error is recalculated and updated for each added observation. 

Based on the LDDR and density per lane relationships, the hypothesis regarding the lane 

vehicle allocation and the saturated regime is confirmed. In a range of normalised density of 

left lane    
 [0.03,0.08] veh/km/lane that depicts the synchronised cluster (2), the maximum 

value,    
 0.08 veh/km/lane, indicates the onset of congestion. In addition, a 

underutilisation of the left lane is observed, as the emergency lane system is activated when 

the left lane is occupied only by a    
   % for    

 0.08 (Fig. 4a), when the    
 0.10 

and heads towards the onset of congestion (Fig. 4b), uncovering the existence of margins for 

amelioration of the operation. The uneven distribution is further verified also in free flow 

regimes that the right lane is favored over the left, as for    
  0.06 veh/km/lane the right 

lane’s LDDR,    
, ranges from 65% to 95% (Fig. 4b), hence it is preferred over the left lane 

that presents a     
 15%,35%] (Fig. 4a). Only during congested regimes,    

 0.08 

veh/km/h, an equilibrium between left and right LDDR is noted. 
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Figure 3 Clusters of peak periods of (a) morning and (b) evening (L-60590, 18.03.2014) 
Density per direction, 3min (veh/km) 

Ti
m

e
 (

h
h

:m
m

) 
   

 

C
lu

st
er

s 

C
lu

st
er

s 

(b) 
Density per direction, 3min (veh/km) 

(a) 

Ti
m

e
 (

h
h

:m
m

) 
   

 



15
th
 Swiss Transport Research Conference                                                                                                 April 15-17, 2015 

 ______________________________________________________________________________________________  

14 

 

 

 

(a) 

 

 

 

(b) 

 

(c) 

Figure 4 Clusters of traffic regimes per lane (a) left, (b) right, (c) emergency lane (L-60590, 

18.03.2014) 
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3.2 Lane Distribution Modeling for Managed Lanes Management 

In the level in question, the aim is to predict and hence alleviate part of the causes of the 

mechanisms that cause extended congested phenomena, through impending spatiotemporal 

distributions that could be integrated to existing control algorithms of ITS schemes, 

moderating thereby delays and costs. The hypothesis regarding the underlying spatial inter-

dependence between traffic allocation per lane and traffic states emergence is assessed, 

through the parameterization of stream dynamics with lane-related spatiotemporal variables. 

Separate models are formed for each of the resulted homogeneous clusters, enhancing thus 

their statistical power and contributing to the acquired significant accuracy for the modeling 

of both congested and uncongested conditions.  

The data mining of the preceding level of the algorithm, revealed that the left lane related 

LDDR and density could serve as indicative predictors during congested conditions, as 

congestion propagates in this site from right to left, and thus any alteration could suggest 

transition to/from free flow or saturated regimes. In the same scope, the LDDR of the right 

lane and the density could be evoked as representative response variables during uncongested 

regimes. Density was selected as an appropriate response variable as it is site-independent and 

its monotonic property accords an unambiguous conclusion regarding the potential 

association of lane density distribution and traffic regimes.  

Two types of multivariate generalized regression models, static and dynamic, are deployed for 

congested or saturated regimes and for free flow regimes, in order to pursue simple and 

feasible models for reactive management schemes, and respectively integrable models in real-

time proactive control policies, as a result of their rapid computation time, that will eventually 

improve the policies performance. Although multicollinearity within independent variables is 

negligible, since they are normalised and on account of the bounded response variables, it is 

inquired based on the significance of the estimated regression coefficients.  

To assess the impact of the implementation of the developed models in terms of network 

performance, an exploratory analysis is effectuated at the aforementioned reactive managed 

lane and variable speed limit (VSL) system of a segment of a Swiss highway. In order to 

provide a timely operation of the Hard Shoulder Running (HSR) control policy system, 

forthcoming stream dynamics are monitored in two sections per direction; upstream (L-59060, 

J-64900) and in the HSR system (L-60590, J-63145), ensuring sufficient time interval for its 

activation before the propagation of any upstream triggering conditions to downstream. In the 

following subsections, the proposed models are given for one direction, denoted as “up” for 

the upstream section L-59060, and “dwn” for the downstream section L-60590. 
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3.2.1 Reactive Management – Static Models 

Initially, simple static models were established with limited number of variables, introducing 

though LDDR as response variable. Nevertheless, statistical assessment demonstrated that 

precision and principally fit could be improved. This is remedied by raising the 

parameterization complexity with adding parameters that describe better the forthcoming 

motion, granting though a significant improvement in fit to data. An adaptation of a certain 

threshold of a control algorithm in line with the developed static models could be proved 

efficient. 

Two separate models for congested and uncongested regimes are formed, based on the 

previously stated rationale that left lane is associated to congested conditions and right lane to 

free flow regimes. For the congested conditions model, given the congested and saturated 

clusters, the left lane LDDR upstream of the system,    

  
, is set as response variable, based on 

the rationale that traffic conditions can be described by observing only the regime in the 

acceleration (left) lane that merge to the leftmost lane to prevent the anticipated incoming 

traffic to the system downstream. Thereby, a lower LDDR of left lane implies that the 

rightmost lanes are in a regime of similar or higher magnitude of density. The explanatory 

variables, refer to the current time  , and are the normalized density of the left lane 

downstream,    
     ), the lane flow distribution ratio (LFDR) of the right lane downstream, 

   

     ) , the derivative of the normalised left lane density upstream, 
    

  

  

  ), and the 

derivative of the normalised left lane speed upstream, 
    

  

  

  ). The function that describes 

the model is the following (eq.7) 

Multivariate static regression model for congested conditions: 

    

    )       
     )      

     )      
     )      

     )       
  

  

  )
      

  

    )       
  

  

  )
      

  

    ) 

(7) 

The statistical results presented in Table 1, are based on  =4293 observations and indicate 

that the predicted left lane LDDR (LLDDR) upstream is inversely related to the right lane 

LFDR downstream, the derivative of left lane density upstream and the derivative of the left 

lane speed upstream. This implies that greater LLDDR upstream indicates the onset of 

congestion, and entails slow attainment of lower densities and speeds in the left lane, since it 

is highly occupied. It also denotes lower right lane LFDR downstream, which is expected as 

the right lane is not preferred during congestion or when an ascending passage towards 

congestion occurs. Consequently, the hypothesis regarding the underlying spatial inter-

dependence between traffic allocation per lane and traffic states emergence is justified. 
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Table 1 Static multivariate models for congested and uncongested conditions, as resulted by 

clustering. 

Static 

Congested Uncongested 

Variables*          Variables*        

    

    )  (n=4293)     

    )   (n=3765) 

Intercept 0.81 Intercept 0.43 

    
     ) 0.30  

   
     )

  0.19 

    
     ) -   0.77     

    ) 2.02 

     
  

  

  )
 - 44.00     

     ) - 0.37 

     
  

  

  )
 - 11.41     

    ) - 1.96 

      
     ) 0.11 

        

    ) 0.05 

        
     ) - 0.07 

Residual S.E. 0.05 Residual S.E. 0.01 

   adjusted 0.84    adjusted     0.92 

* All variables are statistically significant at the 99.9% confidence level, 

 based on t-test. 

The developed static model for uncongested conditions (eq. 8), consists of the explanatory 

variables, which all refer to the current time  , of right lane LDDR downstream,    

     ), the 

right lane normalised density upstream,    

    ) , the right lane normalised density 

downstream,    
     ) , the left lane normalised density upstream,    

    ) , the left lane 

normalised density downstream,    
     ), the normalised difference of right and left lane 

speed upstream,      

    ) , and the normalised difference of right and left lane speed 

downstream,      
     ) . The right lane LDDR upstream,    

    ), is assigned as response 

variable, based on the justified hypothesis that the right lane is preferred during any other 

regime but the congested. 

Multivariate static regression model for uncongested conditions: 

    

    )    
   

     )
  

   
     )      

    )     
    )      

     )     
     )      

    )     
    )  

    
     )     

     )        

    )        

    )        
     )        

     )  

(8) 

Indeed, the LDDR of the right lane upstream is inversely related to the right lane normalised 

density downstream, the left lane normalised density upstream and the normalised difference 

of right and left lane speed downstream. This confirms that an increase to the right lane 
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LDDR downstream results to a decrease of the left lane density and hence depicts a transition 

towards uncongested conditions, which triggers the decrease of the right lane density 

upstream and the attainment of similar speeds between the right and left lane, since low 

densities concede circulation in maximum allowed speeds and distribution to any lane with 

acceptable time or distance gap (Table 1). 

Based on the statistical assessment, both static approaches model adequately traffic 

behaviour. The static model for uncongested conditions yielded borderline higher accuracy 

(1% vs. 5%) and notably better fitting than the model for congested (92% vs. 84%), as 

uncongested patterns are more repetitive and thus more predictable for modeling. 

3.2.2 Proactive Management – Dynamic Models 

For the operation of real-time control systems, dynamic models are formed. The dynamic 

character of the following models for congested and uncongested conditions lays on the fact 

that they are providing predictions for an interval, t+1, one time step subsequent to the current 

time t. The prediction horizon is set on  =3-minutes, commensurating with the aggregation 

interval, which is considered as adequate to detect essential alterations, without overleaping or 

accentuating rapid fluctuations that may signalize the impendence of a successive regime. For 

scalability purposes the variables are normalized. 

A dynamic model for congested conditions (eq. 9) is intended to describe stream dynamics 

during this regime, through a left lane related variable for the reasons described to the 

corresponding static model. The model predicts the response variable of left lane LDDR 

upstream one time step subsequent    

      )to the current,    

    ), with an accuracy of 5% 

(Table 2), when as explanatory variables are set the current values of normalized density of the left 

lane downstream,     

     ) , the right lane LFDR downstream,    

     ), the derivative of the 

normalised left lane speed upstream, 
    

  

  
  ), and the discrete normalised number of lanes that are 

used as general purpose lanes downstream (0 for 2 lanes, 1 for 3 lanes),        
     ), for the normalised 

variable of time that the managed lane system is open downstream,   
   (t).  

Multivariate dynamic regression model for congested conditions: 

    

      )      

    )       
     )      

     )      
     )      

     )       
  

  
  )

      
  

    )  

   
       

     )
  

       
     )      

     )     
     )  

(9) 
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Based on  =4293 observations, the LLDDR upstream one time step following to the current is 

inversely related to the right lane LFDR (RLFDR) downstream and the derivative of the 

normalised left lane speed upstream, which suggests that a decrease to the latter indicates a 

subsequent 3-min transition towards denser conditions, thus the decrease of the left lane LDDR 

upstream is justified as the congestion propagates up to the section in question. The model 

successfully provided adequate fitting to the data with an adjusted    of 81% (Table 2). 

Table 2 Dynamic multivariate models for congested and uncongested conditions, as resulted by 

clustering. 

Dynamic 

Congested Uncongested 

Variables*              Variables*             
    

      )      

    )       ( =4293)     

      )      

    )      (n=3765) 

Intercept 0.43 Intercept 0.02 

    
     ) 0.30     

     )  0.12 

    
     ) -   0.46     

     ) 0.31 

     
  

  

  )
 

-19.40 
 

    
  

   

  )
 

- 0.18 

 
       

     )
   0.01     

    ) - 0.04 

   
     ) 0.23     

    ) - 0.06 

 
      

  

  

  )
 0.13 

   
       

     )
  0.004 

     
     ) 0.01 

Residual S.E. 0.05 Residual S.E. 0.02 

   adjusted 0.81    adjusted     0.79 

* All variables are statistically significant at the 99.9% confidence level, based on t-test. 

 

Idem, the developed dynamic model for uncongested conditions (eq.10), predicted with a 

significant low residual standard error (2%), the normalised left lane density upstream one 

time step subsequent,    

  
    ), to the current,    

  
  ). The explanatory variables comprise the left 

lane normalised density downstream,    
     ) , the right lane normalised density downstream, 

   
     ), the derivative of the normalised left lane speed downstream, 

    

  

   
  ), the normalised left 

and right lane flow upstream,    

    ) and    

    ) respectively, the derivative of the normalised right 

lane flow upstream, 
    

  

  
  ), and the discrete normalised number of lanes that are used as general 

purpose lanes downstream (0 for 2 lanes, 1 for 3 lanes),        
     ), for the normalised variable of time 

that the managed lane system is open downstream,   
   (t). 

Multivariate dynamic regression model for uncongested conditions: 
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      )      

    )       
     )      

     )      
     )      

     )   
    

  

   
  )

  
    

  

     )  

      

    )      

    )      

    )      

    )       
  

  
  )

      
  

    )    
       

     )
  

       
     )  

    
     )     

     )  

(10) 

The normalised left lane density upstream one time step subsequent to the current is inversely 

related to the normalised left and right lane flow upstream and to the derivative of the normalised left 

lane speed downstream, implying that an increase to the latter variables induces a subsequent 3-min 

transition towards less dense conditions that signify less attractiveness to the left lane, thus an 

increase to the right lane density. 

4. Conclusions 

This research is aiming to provide a stochastic approach that adapts to a designated ITS 

proactive or reactive system that may be implemented, providing amelioration of designated 

policies’ performance and hence of the impending stream dynamics. As such, a multilevel 

control algorithm is proposed that forecasts succeeding traffic regimes through lane 

distribution parameterisation, based on hypothesis of the existence of an inter-dependence of 

a patternised lane vehicle allocation and traffic regimes.  

The first level of the algorithm comprises data mining, in order to incorporate an unbiased 

definition of traffic regimes and peak periods into the subsequent level of modeling, which 

generates a concise input dataset and thus promotes accuracy prediction. With the “neural-

gas” NN algorithm and independent clustering procedures, three homogeneous groups of the 

predominant traffic regimes and two of the time span of peak/off-peak periods are derived. 

The clustering analysis on the relationships between density per direction and lane density 

distribution ratios revealed an uneven vehicles’ distribution, which favours the right lane even 

when saturation is reached, while left lane remains underutilised up to the onset of congestion 

conditions. The reason lies potentially on the destination of the drivers’. These lane density 

patterns that are intermittently occurring during respective traffic conditions, induce the 

conjecture that congestion moves from right to left in the onset of peak periods and from left 

to right in the offset, and that traffic inter-lane propagation delineates a potential transition to 

another state. This justifies the initial hypothesis that certain lane distribution denotes the 

offset of a current state and the ascending or descending passage to another.  

Based on the findings of the first level of the algorithm, the sequence between congested and 

uncongested conditions can be anticipated through lane-related parameterisation of the 

stream. Therefore, the second level serves to alleviate part of the causes of the mechanisms 

that cause extended congested phenomena, through prediction of impending spatiotemporal 

distributions that could be integrated to existing control algorithms of ITS policies, 
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moderating delays and costs. In this scope, two types of multivariate generalised regression 

models are developed; static models, pursuing a simple approach that would ensure feasibility 

of implementation to reactive control management systems, and dynamic models with one 

time step (  =3-minutes) ahead prediction, for integration into real-time proactive systems. 

Furthermore, for each type a model per regime is formed, as it is ensued by the clustering, 

which results to a static and a dynamic model for congested regimes, and a static and a 

dynamic model for uncongested regimes. Following the aforementioned analysis and the 

rationale that in the onset of congested conditions the left lanes receive the inflow, implying 

that the right lanes are already saturated, left lane density distribution ratio (LDDR) is 

introduced as determinant response variable for the congested regimes model, and of the right 

lane for the uncongested. 

To assay the impact of the implementation of the algorithm to an existing system in terms of 

network performance, an exploratory analysis is effectuated at a managed lane and variable 

speed limit (VSL) system in a segment of a Swiss highway. Statistical assessment of the 

models indicates that both static and dynamic prediction models yield significant prediction 

accuracy, with the models for uncongested conditions maintaining marginally stronger 

prediction estimation, as their traffic patterns are more repetitive. 

The perspectives of the study are lying on revalidating the conjecture, by assessing 

stationarity of the models in case of  networks equipped or deprived of ITS control policies 

(e.g. managed lanes system, ramp metering etc.), of incident occurrence or of non-

homogeneous flow. A possible extension could be the modeling of transition phases in the 

same location, as a system of nonlinear equations. 
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