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Abstract

In this paper we present a control scheme for heterogeneous transportation networks which
is based on the concept of the Macroscopic Fundamental Diagram (MFD) integrated with an
adaptive optimization technique. The heterogeneous transportation network is first partitioned
into a number of regions with homogeneous traffic conditions and well-defined MFDs. An
appropriate clustering algorithm that consumes traffic information is applied for that purpose.
A macroscopic MFD-based model is used to describe the traffic dynamics of the resulting
multi-region transportation system. A multivariable proportional integral (PI) feedback regulator
is implemented to control the nonlinear system in real-time. The control variables consist of
the inter-transferring flows between neighbourhood regions and the actuators correspond to the
traffic lights of these areas (e.g. boundaries between regions). The recently proposed Adaptive
Fine-Tuning (AFT) algorithm is used to optimize the gain matrices as well as the vector with the
set-points of the PI controller. AFT is an iterative adaptive algorithm that optimizes the values
of the tuneable parameters of the controller (e.g. gains and set-points) based on measurements
of a performance index (e.g. total delay) for different perturbations of the parameters. In each
iteration AFT receives (a) the total delay of the system and (b) some aggregate information
about the demand of each region and calculates the control parameters to be used at the next
iteration. The overall control scheme is tested in simulation and different performance criteria
are studied. The performance of the initial PI controller which corresponds to a fixed-time
policy is compared to the final controller that is obtained after the convergence of AFT. A key
advantage of the proposed approach is that it does not require high computational effort and
future demand data if the current state of each region can be observed with loop detector data.
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1 Introduction

Traffic congestion is a major problem of urban environments and modern metropolitan areas.
Real-time traffic management is deemed to be an efficient and cost effective way to ameliorate
traffic conditions and prevent gridlock phenomena in cities. Although many methodologies have
been developed for real-time signal control over the last decades (see e.g. Papageorgiou et al.

(2003) for a good review), the design of efficient control strategies for heterogeneous large-scale
urban networks that can deal with oversaturated conditions (where queues spill back to upstream
links) remains a significant challenge. Strategies that are widely used around the world like
SCOOT (Hunt et al., 1982) and SCATS (Lowrie, 1982) are based on heuristic optimization
techniques and are not efficient when the network faces propagation phenomena. Other traffic
responsive strategies (Gartner, 1983, Farges et al., 1983, Mirchandani and Head, 1998) use
complex optimization methods which make their online application to large-scale urban networks
difficult due to high computational requirements. TUC (Diakaki et al., 2002, 2003) and its
recent extensions (Aboudolas et al., 2010, Kouvelas et al., 2011b) is a practicable network-wide
control strategy which applies a multivariable feedback regulator approach that derives from a
Linear-Quadratic optimal control problem. TUC tries to deal with oversaturated conditions by
minimizing and balancing the relative occupancies of the network links. However, in the case of
heterogeneous networks with multiple pockets of congestion and heavily directional demand
flows this type of control may not be optimal.

An alternative approach for real-time network-wide control for heterogeneous urban networks
that has recently gain a lot of interest is the perimeter control (or gating). The basic concept of
such an approach is to partition the heterogeneous network into a small number of homogeneous
regions and apply perimeter control to the inter-transferring flows along the boundaries of each
region. The input flows to a region (which are also output flows for the neighbouring regions)
can be controlled at the intersections located at the borders of the region, so as to maximize
the total throughput of the system. Perimeter control (or gating) policies have been introduced
for single-region homogeneous networks (Daganzo, 2007, Keyvan-Ekbatani et al., 2012) and
multi-region heterogeneous networks (Haddad and Geroliminis, 2012, Geroliminis et al., 2013,

Aboudolas and Geroliminis, 2013) using different control methodologies.

The key modelling tool that is used by all the aforementioned strategies is the Macroscopic
Fundamental Diagram (MFD), which provides a concave, low-scatter relationship between
network vehicle accumulations (veh) or density (veh/km) and network circulating flow (veh/h).
The concept of a network MFD was firstly introduced in Godfrey (1969), but the empirical
verification of its existence with dynamic features is recent (Geroliminis and Daganzo, 2008).
Given also that a stable linear relation exists between circulating (or space-mean) flow and region





         

outflow (vehicles finishing their trips) due to time-invariant regional trip length (Geroliminis
and Daganzo, 2008), MFD can be also expressed as outflow (trip completion rate) versus
accumulation. Estimating the circulating flow of a region is much easier as it is directly
measured by loop detectors, whereas outflow would require installation of detectors at the
borders of each region or very high penetration rate of GPS data.

The existence of low-scatter MFD and the stability of its shape under different O-D patterns and
adaptive control remain a research question. The main challenges are hysteresis phenomena that
appear at the onset or offset of congestion and the heterogeneity of traffic in urban networks.
Heterogeneous networks do not have a well-defined MFD, especially in the congested regime.
Partitioning such a network into homogeneous regions (i.e. areas with compact shape that
have small variance of link densities) can result in well-defined MFD as shown in (Ji and
Geroliminis, 2012). The objectives of partitioning are to obtain (i) small variance of link
densities within a region, which increases the network flow for the same average density and
(ii) spatial compactness of each region which makes feasible the application of perimeter
transferring flow control. The MFD concept has already been used for designing control policies,
as it provides aggregated relationships between traffic variables and reduces the complexity of
traffic flow dynamics for model-based approaches (e.g. model predictive control).

There are only few works (Geroliminis et al., 2013, Aboudolas and Geroliminis, 2013) that
deal with perimeter control for multi-region systems with MFD-based modelling. However,
none of this works deals with parameter uncertainties in the model or short-term and long-term
variations in the dynamics of the system. In Geroliminis et al. (2013) a model predictive control
approach is proposed and a nonlinear MFD-based model is used to describe the dynamics of
the system. Although the controller is tested for different levels of error in the MFDs and the
demand profiles, perfect information about the model parameters is assumed. In Aboudolas and
Geroliminis (2013) a Linear-Quadratic state feedback Regulator (LQR) and two versions of the
optimization problem (with and without integral action) are studied. The LQ/LQI gain matrices
are designed by linearizing the nominal nonlinear traffic dynamics around the equilibrium points.
Note that such nominal-optimal control laws do no guarantee the robustness properties with
respect to uncertainties. Some more recent works (Haddad and Mirkin, 2015, Ampountolas and
Kouvelas, 2015) try to deal with adaptive schemes in order to improve the performance of the
controller.

In this work a multivariable proportional integral (PI) feedback regulator is implemented to
control the multi-region system. The structure of the PI controller is similar to the ones used in
Keyvan-Ekbatani et al. (2012) and Aboudolas and Geroliminis (2013), however the gain matrices
and the targets (set-points) of the controller are updated in real-time based on performance
measurements by an adaptive optimization algorithm. The overall control scheme is tested





         

in microsimulation for the urban network of Barcelona, Spain and the impact of the applied
perimeter control is evaluated via the corresponding MFDs and other performance measures.
More precisely, the derived control scheme (which only affects a small number of intersections
at the boundaries between regions) is compared to the case where fixed-time control is applied
to the network.

2 Aggregated dynamics for multi-region system based on

MFDs

Consider an urban network partitioned in N homogeneous regions with well-defined MFDs
(see Figure 1). The index i ∈ N = {1, 2, . . . ,N} denotes the region of the system, ni(t) the
total accumulation (number of vehicles) in region i and ni j(t) the number of vehicles in region i

with final destination region j ∈ N , at a given time t. Let Ni be the set of all regions that are
directly reachable from the borders of region i, i.e. adjacent regions to region i. The discrete time
dynamics of the N-region MFDs system can be described by the following first order difference
equations

nii(km + 1) = nii(km) + Tm

qii(km) − Mii(km) −
∑
h∈Ni

Mh
ii(km) +

∑
h∈Ni

Mi
hi(km)

 (1)

ni j(km + 1) = ni j(km) + Tm

qi j(km) −
∑
h∈Ni

Mh
i j(km) +

∑
h∈Ni

Mi
h j(km)

 i , j (2)

where km = 0, 1, . . . ,Km − 1 is the discrete time index, Tm [sec] the sample time period of
the model (i.e. t = kmT ) and ni(km) =

∑
j∈N ni j(km) the total accumulation of region i. The

exogenous variables qi j(km) [veh/sec] denote the (uncontrollable) traffic flow demand that is
generated in region i at time step km with final destination in region j (i.e. qii(km) is the demand
generated in region i that has final destination in region i, without going through another region).
The variables Mh

i j(km) [veh/sec] denote the transfer flows from region i to region h that have
final destination region j, while Mii(km) [veh/sec] is the internal trip completion rate in i with
destination i.

We assume that for each region i there exists a production MFD between accumulation ni(km)
and total production Pi(ni(km)) [veh.m/sec], which describes the performance of the system
in an aggregated way. This MFD can be easily estimated using measurements from loop
detectors and/or GPS trajectories. Transfer flows and internal trip completion rates are estimated
corresponding to the production MFD of the region and proportionally to the accumulations





         

Figure 1: A network modeled as a multi-region MFDs system.
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ni j(km) as follows

Mii(km) =
nii(km)
ni(km)

Pi(ni(km))
Li

(3)

Mh
i j(km) = min

{
Ci

h j(nh(km)), uih(km)
ni j(km)
ni(km)

Pi(ni(km))
Li

}
(4)

where Li is the average trip length for region i, which is assumed to be independent of time
and destination, internal or external, in i. The transfer flows Mh

i j(km) are the minimum between
the sending flow from region i (which only depends on the accumulations of the region), and
the receiving capacity Ci

h j(nh(km)) [veh/sec] of region h. This flow capacity is a function of the
accumulation nh(km) and is introduced to prevent overflow phenomena within the regions, i.e.
each region i has a maximum accumulation ni,max

0 ≤ ni(km) ≤ ni,max,∀i ∈ N (5)

If ni(km) = ni,max the region reaches gridlock and all the inflows along the periphery are restricted.
Finally, the control variables uih(km),∀i ∈ N , h ∈ Ni denote the fraction of the flow that is
allowed to transfer from region i to region h at time km. The values of the control variables are
constrained by physical or operational constraints as follows

0 ≤ uih,min ≤ uih(km) ≤ uih,max ≤ 1, ∀i ∈ N , h ∈ Ni (6)

where uih,min, uih,max are the minimum and maximum permissible transferring rates of flows,
respectively. Equations (1)–(4) are a discretized version of equations presented in Yildirimoglu
et al. (2015) and represent the traffic dynamics in an N-region urban network considering the





         

heterogeneity effect and integrating an aggregated route choice model. Note, that these equations
assume that drivers can choose any arbitrary sequence of regions as their path and cross region
boundaries multiple times.

3 Feedback control structure

The nonlinear N-region MFDs system that was described in the previous section can be controlled
in real-time by defining the values of the control variables uih(km),∀i ∈ N , h ∈ Ni. The control
goal is to keep the traffic state of each region around a set value, so that the throughput is
maximized and the region does not enter the saturated regime of the MFD. In this work, the
following classical multivariable proportional-integral-type (PI) state feedback regulator is
applied

u(kc) = u(kc − 1) −KP [n(kc) − n(kc − 1)] −KI [n(kc) − n̂] (7)

where kc is the control discrete time index, u(kc) is the control vector of uih(kc),∀i ∈ N , h ∈ Ni,
n(kc) ∈ RN the state vector of region accumulations ni(kc),∀i ∈ N , n̂ ∈ RN the vector of
the set points n̂i for each region i and KP,KI ∈ R

M×N are the proportional and integral gains,
respectively. It should be noted that the number of control variables M depends on the network
partition and the sets Ni, i ∈ N ; however it is always greater than the number of state variables
N for any network partition, since each region i ∈ N is equipped with (at least) one boundary
controller uih, h ∈ Ni (the only case where M = N is for N = 2, i.e. we only have two regions).
Note also, that the states of the system consist of the aggregated accumulations ni, i ∈ N and not
all the accumulations ni j described in equations (1)–(4). Finally, it should be emphasized that a
well-known property of the PI regulator (7) is that it provides zero steady-state error (due to the
existence of the integral term), i.e. n(kc) = n̂ under stationary conditions.

The structure of the controller (7) is similar to the one used in Aboudolas and Geroliminis
(2013); however here there are no control variables at the borders of the network but only at the
borders between regions. As a consequence, there are no vehicles kept outside of the network in
order to protect the congestion of the regions (which is also the case in Keyvan-Ekbatani et al.

(2012)) and all the (gating) queues created by the controllers are internal to the network and thus
affecting other movements. Moreover, in Aboudolas and Geroliminis (2013) the gain matrices
KP,KI are computed by applying linear control theory and solving the Riccati equation of a
linearized version of the original nonlinear system. Here, the gain matrices as well as the vector
of the set points of the controller n̂ are optimized in real-time by the use of an adaptive algorithm
and based on real performance measurements. The closed-loop adaptive optimization scheme





         

that constantly updates the parameters of the controller is presented in the next section.

The state feedback regulator (7) is activated in real-time at each control interval Tc [sec] and
only within specific time windows based on the current accumulations n(kc) (i.e. by use of two
thresholds ni,start and ni,stop and real-time measurements). The required real-time information
of the vehicle accumulations n(kc) can be directly estimated via loop detector time-occupancy
measurements. Equation (7) calculates the fraction of flows u(kc) to be allowed to transfer
between neighborhood regions. In case the ordered values uih(kc) violate the constraints (6) they
should be adjusted to become feasible, i.e. truncated to

[
uih,min, uih,max

]
. Moreover, the values of

u(kc − 1) used on the right-hand side of (7), should be the bounded values of the previous time
step (i.e. after the application of the constraints) in order to avoid possible wind-up phenomena
in the PI regulator. The obtained uih(kc) values are then used to derive the green time duration
for the stages of the signalized intersections located at the boundaries of neighborhood regions.
The ordered transferring flows are equally distributed to the corresponding intersections and
converted to a transfer link green stage duration, with respect to the saturation flow of the link
and the cycle time of the intersections. Note, that each controlled intersection can operate in a
different cycle time, which means that the control decisions may be applied at different times in
different locations, i.e. at the end of each intersection control cycle.

4 Adaptive optimization algorithm description

The parameters KP, KI, n̂ of the regulator (7) are updated in real-time based on measurements
of an objective function, so as to optimize the performance of the controller. The Adaptive
Fine-Tuning (AFT) algorithm is used for that purpose. AFT is a recently developed algorithm
(see Kosmatopoulos and Kouvelas (2009), Kouvelas et al. (2011a) for details) for tuning the
parameters (in the specific case the gain matrices and set points) of controllers in an optimal
way. It is an iterative algorithm that is based on machine learning techniques and adaptive
optimization principles and adjusts the control gains and set points to the variations of the
process under control. The working principle of the integrated closed-loop system (PI regulator
and AFT) is presented in Figure 2 and may be summarized as follows:

• The N-region MFDs system is controlled in real-time by the PI regulator (7) which
includes a number of tunable parameters θ = vec (KP,KI, n̂) ∈ R2×(M×N)+N .

• At the end of appropriately defined periods To (e.g. at the end of each day), AFT algorithm
receives the value of the real (measured) performance index J (e.g. total delay of the
system), as well as the values of the most significant measurable external disturbances x
(e.g. aggregated demand). Note that the scalar performance index J (θ, x) is a (generally





         

Figure 2: The integrated closed-loop adaptive system (PI regulator and AFT algorithm).
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unknown) function of the external factors x and the tunable parameters θ.
• Using the measured quantities (the samples of which increase iteration by iteration), AFT

calculates new tunable parameter values to be applied at the next period (e.g. the next day)
in an attempt to improve the system performance.

• This (iterative) procedure is continued over many periods (e.g. days) until the algorithm
converges and an optimal performance is reached; then, AFT algorithm may remain active
for continuous adaptation or can be switched off and re-activated at a later stage.

The main component of the employed algorithm is a universal approximator Ĵ (θ, x) (e.g., a
polynomial-like approximator or a neural network) that is used in order to obtain an approx-
imation of the nonlinear mapping J (θ, x), based on all previous samples. At each algorithm
iteration ko, the following main steps are taking place (the reader is referred to Kosmatopoulos
and Kouvelas (2009), Kouvelas et al. (2011a) for a complete description of the algorithm):

1. A new polynomial approximator with Lg regressor terms is produced, which has the
following structure

Ĵ(ko) (θ, x) = ϑᵀ(ko)φ(ko) (θ, x) (8)





         

where Lg = min
{
2 (ko − 1) , Lg,max

}
(i.e. the number increases with iterations up to a maxi-

mum value), ϑ(ko) ∈ RLg are the weights of the approximator for iteration ko (equivalent
to the synaptic connections in neural networks) and φ(ko) (θ, x) is a vector with Lg sig-
moidal functions of polynomials constructed using the elements of vectors θ, x (nonlinear
activation functions or neurons).

2. The values of the weights ϑ(ko) are obtained by the solution of the following optimization
problem

ϑ(ko) = arg min
ϑ(ko)

1
2

ko∑
`=1

(
J` − ϑ(ko)ᵀφ(ko)

`

)2
(9)

3. Many randomly chosen candidate perturbations ∆θ(p)(ko), p ∈ {1, 2, . . . ,K} are generated.
The effect of all candidate new vectors θ(p)(ko + 1) = θ∗(ko) + ∆θ(p)(ko) (where θ∗(ko) is
the “best” set of tunable parameters until the ko-th experiment, i.e. the one with the best
performance so far), as well as θ(−p)(ko + 1) = θ∗(ko)−∆θ(p)(ko) to the system performance
is estimated by using the approximator mentioned above, i.e.

Ĵ
(
θ(±p)(ko + 1), x̂(ko + 1)

)
= ϑ(ko)ᵀφ(ko)

(
θ(±p)(ko + 1), x̂(ko + 1)

)
(10)

where x̂(ko + 1) is an estimate of the external disturbances x for the next experiment ko + 1.
4. The vector θ(ko + 1) that corresponds to the best estimate, i.e.

θ(ko + 1) = arg min
θ(±p)(ko+1)

Ĵ
(
θ(±p)(ko + 1), x̂(ko + 1)

)
(11)

is selected to determine the new values for the tunable parameters θ(ko + 1) to be applied
at the next period ko + 1 (e.g. the next day).

By the application of steps 1–4 described above AFT changes the parameters of the PI regulator
at each iteration. Although feedback regulators are found to be quite robust to moderate
parameter value changes, it should be noted that these changes should be within certain limits in
order to avoid stability issues. To this end, some user-defined permissible bounds are introduced
in AFT for all parameters θ, i.e.

θmin ≤ θ(ko) ≤ θmax (12)

This means that all the candidate vectors θ(ko + 1) generated in step 2 above are first projected
to the permissible domain Θ = [θmin, θmax] and then applied to the approximator for evaluation.
The domain Θ is crucial for the safe and efficient performance of the algorithm and can be in
some cases defined by applying stability conditions to the system under control.





         

5 Network description and simulation set-up

The efficiency of the adaptive system described in the previous sections is tested in microsim-
ulation experiments. The urban network of Barcelona, Spain is used as the test site, which is
modeled and calibrated via the AIMSUN microscopic environment (Figure 3(a)). The network
covers an area of 15 square kilometers with about 600 intersections and 1500 links of various
lengths. The number of lanes for through traffic varies from 2 to 5 and the free flow speed is
45 kilometers per hour. Traffic lights at signalized intersections are operating on multi-phase
fixed-time plans with constant (but not equal) cycle lengths. For the simulation experiments,
typical loop-detectors have been installed around the middle of each network link. The OD-
based demand used for the simulations provides a good replication of real life conditions as it
generates realistic traffic congestion patterns in the network. The duration of the simulation is 2
hours including a 15 minutes warm-up period. In the no control case (where the real fixed-time
plans are applied to the intersections) the network faces some serious congestion problems,
with queues spilling back to upstream intersections. Note, that the Dynamic Traffic Assignment
(DTA) module of the simulator (C-Logit route choice model) is activated every 3 minutes,
therefore the drivers adapt to the traffic conditions.

As in most cities of the world, traffic congestion in the city of Barcelona is unevenly distributed,
creating multiple pockets of congestion in different areas of the network. As MFD depends
on the distribution of link densities (occupancies, speeds), partitioning heterogeneously loaded
cities with uneven distribution of congestion into homogeneous regions is a possible solution
to take advantage of well-defined MFDs. In fact, the outflow of the network is a function of
both average and variance of link densities. Since traffic conditions are spatially correlated in
adjacent roads and congestion propagates from adjacent links, describing the main pockets of
congestion in a city with a small number of clusters without the need for detailed information in
every link of the network is conceivable. By partitioning, we aim to group spatially-connected
links with close density values within a cluster, which increases the network flow for the same
average density. Spatial connectivity is a necessary condition that makes feasible the application
of perimeter control strategies. The partitioning algorithm used in this study is an optimization
framework called “Snake” which considers heterogeneity index as a main objective function and
contiguity is forced explicitly by imposing constraints (Saeedmanesh and Geroliminis, 2015).
This approach needs desired number of clusters as a predefined input and it obtains optimal
number of clusters by evaluating heterogeneity metric for different number of clusters. By use
of this algorithm, the network of Barcelona is partitioned into 4 homogeneous regions that are
shown in Figure 3(b).

This partitioning derives M = 6 control variables (i.e. u14, u24, u34, u41, u42, u43) and N = 4





         

Figure 3: The test site of Barcelona, Spain: (a) simulation model with four regions; (b) results
of the clustering algorithm and controlled intersections. Blue circles correspond to
intersections belonging to u14, red to u24, green to u34 and black to u4h, h = 1, 2, 3.
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state variables (n1, n2, n3, n4). The PI regulator is applied every Tc = 90sec and the control
decisions (after modified to satisfy the operational constraints) are forwarded for application
to 28 signalized intersections which are all across the boundaries of region 4. As shown in
Figure 3(b), there are 8 intersections for applying u14 (blue circles), 4 for u24 (red circles), 5 for
u34 (green circles), 5 for u41, 3 for u42 and 3 for u43. All the intersections that control the outflow
of region 4 are indicated in Figure 3(b) with black circles although they correspond to different
control variables. Their location at the borders of region 4 in Figure 3(b) indicates the control
variable in which they belong.

6 Simulation results

This section presents the results obtained by the simulation experiments. AFT is run for 100
iterations starting from an initial point where KP = KI = 0M×N . For these values the regulator (7)
operates as a fixed-time policy and this point is equivalent to the no control (NC) case (i.e. the
actual fixed-time plans of the city are applied). The initial values for the set points n̂ are obtained
from the MFDs of the NC case and are equal to n̂ = [1700, 600, 600, 2400]ᵀ. The performance
index of AFT (i.e. the objective function J that tries to minimize) is selected to be the total
delay of the system, which is available after the end of the simulation. In each iteration the
whole simulation of 2 hours is run with the same parameters for the controller. At the end of
the simulation AFT is called to calculate the new values of KP,KI, n̂ to be used in the next
iteration.





         

Figure 4: (a) Evolution of total network delay and (b) total network throughput for the 100
iterations of AFT.
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Figure 4(a) presents the evolution of the total delay (measured in sec/km) over the iterations of
the algorithm. The starting point (NC) as well as the best controller (BC) obtained through the
process are illustrated with red dashed lines. For the first iterations of the algorithm the value
of the total delay is very high, since there are not many samples and the approximator cannot
learn from the previous experiments. As the number of iterations increases the learning process
becomes better and the objective function exhibits a convergent behavior. Figure 4(b) presents
the total throughput of the network (total number of vehicles exiting the network) for the same
simulations. Although it is not taken into account by AFT it provides another index of the tuning
performance. It can be seen that the total throughput of the network has the reverse behavior of
the total delay (i.e. simulations with higher throughput have lower delays); however by carefully
inspecting the simulation results this relation is not always consistent.

Figure 5(a) illustrates the control decisions u = [u14, u24, u34, u41, u42, u43]ᵀ for every kc, for the
simulation with the best results in terms of total delay (BC). The controller is activated at kc = 24
and stays active until the end of the simulation, as the accumulations are continuously increasing.
Figure 5(b) shows the production MFD for the whole network (total production over total
accumulation) for the no control case and the best controller obtained after the 100 iterations.
The production reduces to less than 2000 km.veh/control cycle for the no control case (congested
regime of the MFD), while for the BC case it is always higher than 2500 km.veh/control cycle
(the control cycle Tc is equal to 90 seconds). Figure 6(a) and (b) present the time series of the
network accumulation and production, respectively, for the same cases.

Table 1 displays the evaluation criteria for simulations NC and BC. It can be seen that the





         

Figure 5: (a) Control decisions over simulation time for the BC case; (b) production MFD for
the whole network.
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Figure 6: Time series of network (a) accumulation and (b) production for no control and best
controller.
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controller obtained from AFT improves the no control case for all the metrics. More specifically,
we obtain an improvement of some 14% for the total delay and about 11% for the average speed.
Moreover, BC controller manages to serve more vehicles during the 2 hours as the total input
and total output are higher. There are less virtual queues in the network and at the end of the
simulation there are less vehicles inside the network (as the NC case faces gridlock phenomena)
and less vehicles waiting to enter. The percentage of improvement of BC over NC for all criteria
can be seen in the third column of Table 1.





         

Table 1: Evaluation criteria for NC and BC simulations.

Evaluation criteria BC NC Difference (%) Units

Total Delay 132.29 154.01 -14.10 sec/km

Space-mean Speed 18.26 16.46 10.94 km/h

Total Input 148619 147087 1.04 veh

Max Virtual Queue 6608 8126 -18.68 veh

Mean Queue 3397.36 4729.98 -28.17 veh

Stop Time 93.82 112.85 -16.86 sec/km

Total Travel Time 11704.21 12297.68 -4.83 h

Total Travelled Distance 223222.64 211871.63 5.36 km

Travel Time 197.12 218.75 -9.89 sec/km

Vehicles Inside 10851 15514 -30.06 veh

Vehicles Outside 137768 131573 4.71 veh

Vehicles Waiting to Enter 6595 8126 -18.84 veh

Figure 7(a) and (b) show the production MFDs of all regions for NC and BC respectively. For
the BC case, the conditions in regions 1, 3 and 4 are improved as they only have a few states in
the congested regime, whereas region 2 remains uncongested in both cases. The improvement
for the three regions that face congestion problems at the NC case can be also seen in Figure 8(a)
and (b) that present the time series of productions and accumulations over the simulation time
for all regions. At the last 30 minutes of the simulation the productions of regions 1, 3 and 4
are kept high in the BC case, as opposed to NC that are reduced because of congestion. The
superiority of BC can be also seen at the accumulations of these three regions at the end of the
simulation.

7 Conclusions and future work

The efficiency of an adaptive optimization algorithm applied to a PI feedback regulator was
tested in microsimulation. The simulation results indicate that the integrated control scheme
can improve the network performance compared to fixed-time signal plans. AFT algorithm
tunes the parameters of the multivariable controller (gain matrices and set points) iteration by
iteration, so as to achieve a desirable performance. One disadvantage of the algorithm is that it
has a “spiky” behavior during the first iterations (e.g. days) of application. This is because of the
low number of available measurements (samples) that make the learning process difficult. This
behavior makes the online applicability of the algorithm cumbersome, as it can lead to system





         

Figure 7: Production MFDs for the four regions for (a) NC and (b) BC simulations.
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Figure 8: Time series of (a) accumulations and (b) productions for the four regions (solid lines
represent NC and dashed lines BC).
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performance that is too far from optimal and create undesirable situations. To overcome this
difficulty, future work will deal with application of AFT algorithm to the macroscopic model
presented in Section 2 (equations (1)–(4)) instead of applying it directly to the controlled process.
In this case, a model-based optimization procedure will be employed to the overall scheme and
after the convergence of the algorithm the obtained best controller can be applied to the real
system (plant). The MFD model provides a replication of the plant and AFT can optimize the
performance of the PI controller based on many runs with the model (until it converges) before
applying one iteration to the plant. The whole procedure can be integrated online as the running
time of AFT and the system dynamics is negligible.
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