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Abstract

Making samples with certain marginal distributions and dependence structures is an essential
but difficult step to perform sampling-based SA for traffic simulation models with dependent
parameters. In this paper, we present a general approach for generating samples for dependent
parameters. It utilizes the Gaussian copula in the sampling process, which makes it attractive for
sampling parameters from any arbitrary marginal distribution. Furthermore, the Spearman’s
rank correlation coefficient is employed instead of the traditional linear correlation coefficient,
so that the dependence structure of the empirical data can be retained throughout the non-linear
transform of the Gaussian copula.

A case study that generates samples for the kinematic parameters of Wiedemann-74 car-following
model is included to demonstrate the application of this approach. It has shown that the marginal
distributions and correlation coefficients of the generated samples are comparable with that of
the empirical data. Specifically, the 1,024 samples, which are generated by employing the Sobol
sequence in the sampling process, also present consistent marginal distributions and correlation
coefficients as the empirical data. This has demonstrated that the proposed sampling approach is
also useful for making proper samples of computationally expensive models, for which a big
number of model runs are not always affordable.

Keywords
Data Sampling, Dependent Parameters, Gaussian Copula, Traffic Model





          

1 Introduction

Traffic simulation has become a major resource in the field of traffic engineering. Along
with the development of computational techniques, microscopic traffic simulation models are
more advanced and realistic nowadays. On the other hand, the complexity of the model also
significantly increases, especially due to the fact that there are more and more parameters
contained in the model. To help model users to better understand the model, and manage the
uncertainties in the simulation result, it is necessary to investigate the relationship between
the model inputs (i.e., the parameters of the model) and outputs (i.e., the simulation results),
especially when the model itself behaves like a blackbox. One important and widely used tool
for such task is Sensitivity Analysis (SA).

SA studies the relationship between the inputs and outputs of a model. Many SA applications in
traffic simulation models have shown that it is capable to provide both qualitative and quantitative
sensitivity information in an efficient way. For instance, in (Ge et al., 2014c) and (Ge and
Menendez, 2014), SA was used to rank the parameters of simulators VISSIM and Aimsun based
on their impacts on the variation of the simulation results. However, to the authors’ knowledge,
most SA methods applied for microscopic traffic simulations found from literature are only
suitable for models with independent parameters. When performing SA for a complex and/or
computationally expensive model, practitioner tend to assume that all parameters are independent
beforehand, or simply group the dependent parameters as one independent parameter (Ge et al.,
2014b).

Applying the SA approaches which are dedicated to independent parameters to the model with
dependent parameters may actually provide wrong sensitivity information. For instance, with
the same SA approach, some of the model inputs, which are considered as unimportant if they
are independent inputs, can also be considered as important if they are highly correlated with
the most important inputs (a simple example is given in Section 2). In addition, given the fact
that there are usually many dependent parameters contained in a microscopic traffic model (e.g.,
the speed and the acceleration rate of a vehicle), the research of an efficient and accurate SA
approach dedicated to complex models with dependent parameters is very important.

In (Kucherenko et al., 2012), the authors extended the Sobol’s formula (Sobol, 1993) for the
model with independent parameters to the model with dependent parameters. These formulas are
very helpful as they allow to quantify the model sensitivity by the first-order and total sensitivity
indexes. However, these sensitivity indexes can not be analytically derived when the model is a
blackbox (this is especially true for most commercial simulators such as VISSIM and Aimsun).
As an alternative, we propose to utilize the sampling-based SA to approximate these sensitivity





          

indexes. Furthermore, to correctly generate the samples based on the distribution and correlation
as the measured data, the Gaussian copula and the Spearman’s rank correlation coefficient andare
employed in this study (Iman and Conover, 1982; Mara and Tarantola, 2012). A case study is
included to demonstrate the proposed sampling approach by making samples of the kinematic
parameters of the Wiedemann-74 car-following model.

The paper is organized as follows: a brief introduction of the sampling-based SA is given in
Section 2; the proposed sampling method for dependent parameters is described in Section 3;
the application of the proposed sampling algorithm for dependent parameters is illustrated with
a case study in Section 4; the conclusions and suggestions for future work are included in
Section 5.





          

2 Sampling-based SA

The sampling-based SA usesMonte Carlo simulation or other approaches such as Latin Hypecube
Sampling (LHS, see Saltelli et al. (2007)), quasi-random sampling (e.g., Sobol sequence, see
Sobol (1976) ) to generate random samples. Suppose a model M has n parameters, i.e., Z1, Z2,
· · · , Zn, and m random samples (i.e., each sample is a combination of certain values of all inputs
based on their distributions) are generated. These samples can be described in the following
matrix:

Z̃ =



z(1)
1 z(1)

2 · · · z(1)
n

z(2)
1 z(2)

2 · · · z(2)
n

...
...

. . .
...

z(m)
1 z(m)

2 · · · z(m)
n



, (1)

where z(d)
i (i ∈ [1, n], d ∈ [1,m]) is the d-th sample of input parameter Zi.

The model is then executed consecutively by taking values from each row of Z̃ as the model
inputs (Helton et al., 2006). The model output Y = [y(1), y(2), · · · , y(m)]T with respect to Z̃ is
obtained accordingly:

Y =

*.......
,

y(1)

y(2)

...

y(m)

+///////
-

=

*.......
,

M
(
z(1)
1 , z(1)

2 , · · · , z(1)
n

)
M

(
z(2)
1 , z(2)

2 , · · · , z(2)
n

)
...

M
(
z(m)
1 , z(m)

2 , · · · , z(m)
n

)
+///////
-

. (2)

For each parameter Zi, we can plot m points at coordinates (z( j)
i , y( j), j ∈ [1,m]) in a scatter plot.

The shape of the points cloud in the scatter plot represents the sensitivity of the output with
respect to Zi, and it can be visually analyzed. For example, considering a simple linear model
with two independent parameters (i.e., Z1, Z2) that are normally distributed:

Y = Z1 + Z2, (3)

in which Z1 ∼ N (0, 1), Z2 ∼ N (0, 5).





          

By generating a size of 1000 random samples (i.e., m = 1000) for Z1 and Z2 each using the
normal distribution, we can plot the corresponding input-output (i.e., Z1 − Y and Z2 − Y ) in the
scatter plots (Figure 1). In Fig. 1(a), the cloud of Z1 is more or less uniformly distributed across
different values of Z1 (i.e., it looks like a circle). On the contrary, in Fig. 1(b) the cloud of Z2

has a much wider dispersion along with different values of Z2, and a clear linearly relationship
between Z2 and Y can be determined. It obviously shows that input Z2 has much higher impacts
on the variation of model output than input Z1.

Figure 1: Scatter plot for a linear model with two independent inputs Y = Z1 + Z2

(a) Scatter plot of input Z1 and the output Y
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−20

−10

0

10

20

−20 −10 0 10 20
Z2

Y

Furthermore, if enough samples are generated from the input space, the sampling-based SA
can also be used to derive the quantitative sensitivity measures such as the first order and
the total sensitivity indexes (Saltelli et al., 2007; Kucherenko et al., 2012) 1. Therefore, the
sampling-based SA is one of the simplest ways for performing global SA. This method is also
very useful for the SA of "blackbox" models, in which the global sensitivity indexes can not be
analytically derived. On the other hand, as the sampling-based SA typically requires to run the
model with certain amount of random samples generated, when the SA is performed for models
that have many inputs and/or are computationally expensive, it would be less attractive due to its
low efficiency. In those cases, the computational cost required by the sampling-based SA is just
too high, and the SA can be even infeasible.

Another issue for the sampling-based SA comes from sampling of dependent parameters. As

1The details about how to derive the quantitative sensitivity measures using sampling-based SA will be included
in our next paper. In this paper we focus on the sampling approach.





          

mentioned in Section 1, many SA practices found in the literature were performed based on the
assumption that the parameters of the model are independent. However, this assumption will
very likely lead bias or wrong SA results when the input parameters are actually dependent. To
make a simple example, let us recall the above linear model (Eq. (3)). The inputs Z1 and Z2 have
the same marginal distribution as before, but their correlation coefficient ρZ1,Z2 (Eq. (4)) is 0.8
this time.

ρZ1,Z2 =
E[(Z1 − µZ1 )(Z2 − µZ2 )]

σZ1σZ2

, (4)

where E[·] stands for the expectation.

We also generate 1000 samples for both Z1 and Z2 using the bivariate normal distribution with
the joint Probability Density Function (PDF) shown in Eq. (5). Then we plot the scatter plots for
both Z1 − Y and Z2 − Y in Figure 2.

f (Z1, Z2) =
1

2πσZ1σZ2

√
1 − ρ2Z1,Z2

e
− 1

2(1−ρ2
Z1,Z2

)



(Z1−µZ1 )2

σ2
Z1

+
(Z2−µZ2 )2

σ2
Z2

−
2ρZ1,Z2 (Z1−µZ1 )(Z2−µZ2 )

σZ1σZ2

 . (5)

Figure 2: Scatter plot for a linear model with two dependent inputs Y = Z1 + Z2, ρZ1,Z2 = 0.8

(a) Scatter plot of input Z1 and the output Y
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(b) Scatter plot of input Z2 and the output Y
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Comparing the shape of the clouds of the corresponding parameters in Fig. 1 and Fig. 2, it is





          

clear that the shape of the cloud of Z1 in Fig. 2(a) is quite different with that in Fig. 1(a), while
the difference between Fig. 2(b) and Fig. 1(b) is not very significant. This is because Z1 now
has a strong positive correlation with Z2, and since Z2 is a very influential parameter, Z1 also
becomes an important parameter in this case.

Therefore,to avoid wrong conclusions by the sampling-based SA, the interdependency among the
parameters should not be ignored when generating samples. If all inputs have distributions that
are from a known standard multivariate distribution, it is straightforward to use the corresponding
joint PDF such as Eq. (5) for generating the samples. However, this can be very challenging
for many microscopic traffic models, as the inputs are actually not following any standard
distribution, and/or they are from different distributions. Therefore, a general sampling approach
that can cope with any arbitrary distribution and correctly represent different the dependence
structure is very important. For this purpose, we propose to use the idea of Gaussian copula to
generate dependent samples, and the details are given in the next section.





          

3 Methodology

To draw a sample (i.e., z) of a random parameter Z with a given Cumulative Distribution Function
(CDF) FZ (z) based on Monte Carlo simulation, we can first draw a sample u from the standard
uniform distributionU [0, 1], and apply the inverse CDF to u as z = F−1Z (u), in which F−1Z (·) is
the inverse CDF of Z . Similarly, for the model M with n independent parameters {Z1, · · · , Zn}

and corresponding marginal CDFs
{
FZ1 (z1), · · · , FZn (zn)

}
, the model output Y with respect to

the sample matrix Z̃ (see Eq. (2)) can be derived as:

Y =

*.......
,

y(1)

y(2)

...

y(m)

+///////
-

=

*.......
,

M
(
z(1)
1 , z(1)

2 , · · · , z(1)
n

)
M

(
z(2)
1 , z(2)

2 , · · · , z(2)
n

)
...

M
(
z(m)
1 , z(m)

2 , · · · , z(m)
n

)
+///////
-

=

*.......
,

M
(
F−1Z1

(
u(1)
1

)
, · · · , F−1Zn

(
u(1)

n
))

M
(
F−1Z1

(
u(2)
1

)
, · · · , F−1Zn

(
u(2)

n
))

...

M
(
F−1Z1

(
u(m)
1

)
, · · · , F−1Zn

(
u(m)

n
))
+///////
-

. (6)

where u(d)
i (i ∈ [1, n], d ∈ [1,m]) is the d-th sample drawn from the uniform distributionU [0, 1]

for parameter Zi, and F−1Zi
(·) stands for the inverse CDF of parameter Zi.

In the above case, since Z1, · · · , Zn are independent parameters, the joint CDF of {Z1, · · · , Zn}

is just the product function of the marginal CDFs of all parameters:

FZ1,··· ,Zn (z1, · · · , zn) = P
(
{Z1 ≤ z1} ∩ · · · ∩ {Zn ≤ zn}

)
= P(Z1 ≤ z1) × · · · × P(Zn ≤ zn)

=

n∏
i=1

FZi (zi)

, (7)

where P(·) stands for the probability.

In the case of dependent parameters, the joint CDF of {Z1, · · · , Zn} can also be written as
a function (obviously, it is not a simple product function here due to the correlation of the
parameters) of the marginal CDFs:

FZ1,··· ,Zn (z1, · · · , zn) = C
(
FZ1 (z1), · · · , FZn (zn)

)
= C(u1, · · · , un),

(8)

where ui = FZi (zi), ui ∼ U[0, 1] for ∀i ∈ [1, n].





          

The function C(·) is known as the copula (for details see Nelsen (1999)). It is defined as the joint
CDF of random variables {U1, · · · ,Un} that have uniform marginal distributions inU [0, 1]:

C(u1, u2, . . . , un) = P
(
{U1 ≤ u1} ∩ · · · ∩ {Un ≤ un}

)
. (9)

Copula has been quite popular in the fields such as risk management, quantitative finance, civil
engineering recently. It can be used to generate multivariate distributions for modelling the
dependence structure of correlated multivariate data. There are many different types of copulas,
and one commonly used copula for sampling dependent parameters is the Gaussian copula:

CGauss
n (u1, . . . , un) = Φn

(
Φ
−1(u1), . . . ,Φ−1(un)

)
= Φn(x1, . . . , xn), (10)

where Φ−1(·) is the inverse CDF of the univariate standard normal distribution, Φn(·) is the joint
CDF of the multivariate standard normal distribution for random variables {X1, · · · , Xn}:

Φn(x1, . . . , xn) = P
(
{X1 ≤ x1} ∩ · · · ∩ {Xn ≤ xn}

)
=

∫ xn

−∞

· · ·

∫ x2

−∞

∫ x1

−∞

1
√

(2π)n |Σ |
e−

1
2xTΣ−1xdx1dx2 · · · dxn,

x = (x1, . . . , xn).

(11)

Σ is the covariance matrix for {X1, · · · , Xn}, i.e., xi ∼ N (0,Σ) for ∀i ∈ [1, n]:

Σ =



1 ρX1,X2 · · · ρX1,Xn

ρX2,X1 1 · · · ρX2,Xn

...
...

. . .
...

ρXn,X1 ρXn,X2 · · · 1



, (12)

and |Σ | is the determinant of matrix Σ. The correlation coefficient ρXi,X j for i , j can be
calculated using Eq. (4).

If combining Eq. (8) and Eq. (10), we can get:





          

FZ1,··· ,Zn (z1, · · · , zn) = CGauss
n

(
FZ1 (z1), · · · , FZn (zn)

)
= Φn

(
Φ
−1 (FZ1 (z1)

)
, . . . ,Φ−1

(
FZn (zn)

))
= Φn(x1, . . . , xn).

(13)

Accordingly, xi = Φ
−1(ui) = Φ−1(FZi (zi)) for ∀i ∈ [1, n]. Then by applying the inverse

transform, the following equation can be obtained:

zi = F−1Zi
(Φ(xi)) . (14)

Hence, the model parameters {Z1, · · · , Zn} with arbitrary marginal CDFs {FZ1 (z1), · · · , FZn (zn)}
can be represented by {X1, · · · , Xn} with n-variate standard normal distribution Nn(0,Σ).
However, it should be noted that in most cases, the transform from Xi to Zi is not linear, hence the
linear correlation coefficient ρ (Eq. (4)) will tend to be different for Xi and Zi, i.e., ρXi,X j , ρZi,Z j .
To solve this problem, the rank correlation coefficient is considered. In this study, we use the
Spearman’s correlation coefficient:

ρs
Zi,Z j
= 1 −

6
∑m

d=1

(
rz(d)

i
− rz(d)

j

)2
m(m2 − 1)

, (15)

where rz(d)
i

stands for the rank (in the ascending order) of the d-th (d ∈ [1,m]) sample of input

parameter Zi. For instance, if Z1 has three samples [z(1)
1 , z(2)

1 , z(3)
1 ]T = [3.5, 2.1, 4.8]T, then the

corresponding rank vectors are [rz(1)
1
, rz(2)

1
, rz(3)

1
]T = [2, 1, 3]T.

The benefit of the rank correlation coefficient is its invariance through the monotonic transform,
regardless of the linearity of the transform. In the above Gaussian copula, as F−1Zi

(·) and Φ(·)
are both monotonic functions, the rank vector of Xi should be the same as the rank vector of Zi.
Therefore, the rank correlation coefficients are also the same, i.e., ρs

Xi,X j
= ρs

Zi,Z j
. Specifically,

with the Gaussian copula, the linear correlation coefficient and Spearman’s rank correlation
coefficient have the following relationship (Hotelling and Pabst, 1936):

ρXi,X j = 2 sin
(
π

6
ρs

Xi,X j

)
. (16)





          

The proposed algorithm for generating samples of dependent parameters {Z1, · · · , Zn} with
arbitrary marginal CDFs {FZ1 (z1), · · · , FZn (zn)} is developed based on the approach in (Iman
and Conover, 1982). The details are described below.

Step 1 Generate m samples for each of the n random parameters (i.e., V1, · · · ,Vn) from the
uniform distribution U (0, 1). The samples are presented as Ṽ . The samples of Vi, i.e., the
i-th column vector Ṽi, can be produced by using pseudo-random number generators or low
discrepancy series (e.g., Sobol’ sequence (Sobol, 1976)). As a results, Ṽ1, · · · , Ṽn will be
independent with each other.

Ṽ =



v (1)
1 v (1)

2 · · · v (1)
n

v (2)
1 v (2)

2 · · · v (2)
n

...
...

. . .
...

v (m)
1 v (m)

2 · · · v (m)
n



(17)

Step 2 Apply the inverse CDF of the standard normal distribution, i.e., Φ−1(·), to every element
in Ṽ . The resulting matrix is X̃ . Obviously, any column vector X̃i has a standard normal
distribution, and it is independent with the other column vectors.

X̃ =



Φ−1
(
v (1)
1

)
Φ−1

(
v (1)
2

)
· · · Φ−1

(
v (1)

n
)

Φ−1
(
v (2)
1

)
Φ−1

(
v (2)
2

)
· · · Φ−1

(
v (2)

n
)

...
...

. . .
...

Φ−1
(
v (m)
1

)
Φ−1

(
v (m)
2

)
· · · Φ−1

(
v (m)

n
)


=



x (1)
1 x (1)

2 · · · x (1)
n

x (2)
1 x (2)

2 · · · x (2)
n

...
...

. . .
...

x (m)
1 x (m)

2 · · · x (m)
n



(18)

Step 3 Compute the Spearman’s rank correlation coefficient ρs
Zi,Z j

for all pairs of {Zi, Z j } from
the empirical data using Eq. (15). Due to the symmetry of the covariance matrix, we only need
to compute the correlation coefficients for the cases when 1 ≤ i < j ≤ n. Since ρs

Xi,X j
= ρs

Zi,Z j
,

we can compute the covariance matrix, i.e., Σ (see Eq. (12)), based on Eq. (16):

Σ =



1 2 sin
(
π
6 ρ

s
Z1,Z2

)
· · · 2 sin

(
π
6 ρ

s
Z1,Zn

)
2 sin

(
π
6 ρ

s
Z1,Z2

)
1 · · · 2 sin

(
π
6 ρ

s
Z2,Zn

)
...

...
. . .

...

2 sin
(
π
6 ρ

s
Z1,Zn

)
2 sin

(
π
6 ρ

s
Z2,Zn

)
· · · 1



. (19)





          

Step 4 Since Σ is a symmetric positive definite matrix, it can be decomposed as the product of a
lower triangular matrix L and the corresponding transpose matrix LT by using the Cholesky
decomposition:

Σ = L · LT =



l1,1 0 · · · 0
l1,2 l2,2 · · · 0
...

...
. . .

...

l1,n l2,n · · · ln,n



·



l1,1 l1,2 · · · l1,n
0 l2,2 · · · l2,n
...

...
. . .

...

0 0 · · · ln,n



. (20)

Step 5 The normally distributed correlated sample matrix is obtained as:

X̃ c = X̃ · LT =



xc(1)
1 xc(1)

2 · · · xc(1)
n

xc(2)
1 xc(2)

2 · · · xc(2)
n

...
...

. . .
...

xc(m)
1 xc(m)

2 · · · xc(m)
n



. (21)

Step 6 Finally, the desired sample matrix Z̃ for parameters {Z1, · · · , Zn} is obtained though
applying the transform of F−1Zi

(Φ(·)) to the corresponding element in X̃ c:

Z̃ =



F−1Z1

(
Φ(xc(1)

1 )
)

F−1Z2

(
Φ(xc(1)

2 )
)
· · · F−1Zn

(
Φ(xc(1)

n )
)

F−1Z1

(
Φ(xc(2)

1 )
)

F−1Z2

(
Φ(xc(2)

2 )
)
· · · F−1Zn

(
Φ(xc(2)

n )
)

...
...

. . .
...

F−1Z1

(
Φ(xc(m)

1 )
)

F−1Z2

(
Φ(xc(m)

2 )
)
· · · F−1Zn

(
Φ(xc(m)

n )
)


. (22)

In the next section, we will use a case study to demonstrate the application of the proposed
sampling approach.





          

4 Case Study

TheWiedemann-74 car-followingmodel (Wiedemann, 1974) is awell-known car-followingmodel
in microscopic traffic simulation. It has been implemented with the commercial microscopic
traffic simulator VISSIM for modeling the car-following behavior in the urban area. This model
contains 31 parameters, including 7 kinematic parameters of the vehicles in the car-following
process, i.e., positions (x f and xl , the subscripts l and f indicate the leading vehicle and the
following vehicle respectively), speeds (v f and vl), acceleration rates (acc f and accl), as well as
the length of the leading vehicle (Ll). Interested reader may refer to Ge et al. (2014b)) for a
more detailed review of the parameters in the Wiedemann-74 car-following model.

A SA study was performed for this model in (Ge et al., 2014b). In this paper, the authors analyzed
the sensitivity of all parameters through sequentially applying the quasi-OTEE approach and the
Kriging-based SA approach (Ge and Menendez, 2014; Ge et al., 2014a,c). Due to the fact that
the 7 kinematic variables are highly correlated, they cannot be sampled independently in the
sequential SA. As a result, they were grouped as one single input Kin in the SA, i.e., any value
assigned to Kin represents a combination of the 7 kinematic parameters. The sequential SA
in (Ge et al., 2014b) shows that Kin is the most influential parameter, which accounts for 50%
of the variations of the resulting acceleration rate. However, as the 7 kinematic parameters are
jointly sampled by groups, it is very hard to tell which parameters among them are the most
important ones. Therefore, to further investigate the impacts of individual kinematic parameter,
it is reasonable to generate samples separately for each parameter, under the condition that the
samples have similar marginal distributions and dependence structure as the empirical data. In
this case study we will use the aforementioned sampling approach for this task.

In this paper, we adopt the same empirical data as those in (Ge et al., 2014b) for generating the
samples. The empirical data came from 6 car-following experiments under different road and
traffic conditions, hence it is expected that they are good representatives of different combinations
of the 7 kinematic parameters. The data collection was carried out on the roads in Naples, Italy,
area under real traffic conditions between October 2002 and July 2003. In the experiments, four
vehicles were driven along urban and interurban roads under various traffic conditions without
any lane changing. All vehicles were equipped with kinematic GPS receivers, and the position
of each vehicle was recorded at an interval of 0.1s. Post data processing included differential
correction of raw GPS coordinates, which utilized data gathered by a fifth stationary receiver (i.e.,
a base station) and an elaborate filtering procedure. Details on the car-following experiments
are provided in (Punzo et al., 2005; Punzo and Simonelli, 2005), and the car-following data
are available on request to public from the MULTITUDE project (MULTITUDE, 2015). In
this paper, a total of 16,425 car-following observations are included, i.e., for each of the 7





          

kinematic parameters there are 16,425 observations which can be used to derive the corresponding
distributions and dependence structure.

In addition, since only the position difference and speed difference between the leading and
following vehicles are used to derive the acceleration rate in the Wiedemann-74 model (see
Wiedemann (1974)), in this case study we introduce two new parameters ∆x (∆x = xl − x f − Ll )
and ∆v (∆v = vl − v f ) in the sampling. The 5 kinematic parameters in the original model, i.e.,
xl , x f , Ll , vl , and v f , are not included in the following analysis. The marginal distributions of
parameters ∆x, ∆v, acc f , and accl , as well as the linear correlation coefficients and the scatter
plots of any two parameters are illustrated in Figure 3. Moreover, the corresponding linear
correlation coefficients and the Spearman’s rank correlation coefficients are reported in Table 1.
It is found in Table 1 that there are certain correlations for three parameter pairs ∆v-acc f ,
∆v-accl , and acc f -accl , while the correlations for the rest parameter pairs are not significant.

Table 1: Correlation coefficients from the empirical data

Parameters Linear correlation coefficient ρ Spearman’s rank correlation coefficient ρs

∆x and ∆v 0.0067 0.0176
∆x and acc f 0.0654 0.0711
∆x and accl -0.0719 -0.0298
∆v and acc f 0.4884 0.4203
∆v and accl 0.6022 0.5417
acc f and accl 0.5333 0.4877

To generate the desired samples using the approach proposed in Section 3, the first step is to
generate four independent samples that are uniformly distributed in the open intervalU (0, 1),
i.e., Ṽ∆x , Ṽ∆v, Ṽaccf , and Ṽaccl . Then the inverse CDF of the standard normal distribution is
applied to Ṽ∆x , Ṽ∆v , Ṽaccf , and Ṽaccl in order to transform them into samples with standard normal
distribution, i.e., X̃∆x , X̃∆v , X̃accf , and X̃accl . Note that they are still independent with each other
at this step. In the next step, we transform the Spearman’s rank correlation coefficient ρs into the
linear correlation coefficient ρ for the Gaussian copula. This is done by applying Eq. (19). The
covariance matrix Σ required for the Gaussian copula is shown below:

Σ =



1 0.0185 0.0745 −0.0312
0.0185 1 0.4366 0.5597
0.0745 0.4366 1 0.5052
−0.0312 0.5597 0.5052 1



.






























Figure 3: Marginal distribution, scatter plot and the linear correlation coefficient of the empirical data. Plots in the diagonal: marginal distribution
of the corresponding parameter. Plots below the diagonal: scatter plots of the two parameters from the corresponding row and column.
Plots above the diagonal: linear correlation coefficients of the two parameters from the corresponding row and column.
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The covariance matrix can be further decomposed as the product of a lower triangular matrix and
its transpose matrix by Cholesky decomposition. The transpose matrix LT is shown below:

LT =



1.0000 0.0185 0.0745 −0.0312
0 0.9998 0.4353 0.5604
0 0 0.8972 0.2938
0 0 0 0.7737



.

By multiplying X̃∆x , X̃∆v, X̃accf , and X̃accl with LT (Eq. (21)), the independent samples are
transformed into correlated samples, i.e., X̃ c

∆x , X̃ c
∆v
, X̃ c

accf , and X̃ c
accl . The final transform will

be performed by applying the CDF of the standard normal distribution to the correlated samples
to derive Φ(X̃ c

∆x), Φ(X̃ c
∆v

), Φ(X̃ c
accf ), and Φ(X̃ c

accl ). Then the inverse CDF of each parameter
(see Fig. 4) is applied to obtain the final samples. For example, if Φ(X̃ c

∆v
) is 0.5, then the

corresponding sample for ∆v is 0 according to the inverse CDF in Fig. 4(b).

Figure 4: Inverse cumulative distribution functions of ∆x, ∆v, acc f , and accl obtained from the
empirical data. Horizontal axle represents the probability, vertical axle represents the
value of the corresponding parameter.
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For the demonstration purpose, we have conducted two experiments with two different sample
sizes. The first experiment employs a sample size of 1,024 based on the Sobol sequence. This





          

one simulates the sampling process for the computationally expensive models without a big
number of model runs. The other experiment has a sample size of 10,000 using random sampling,
which simulates the sampling process for the computationally cheap models. The marginal
distributions, scatter plots and the linear correlation coefficients of the final samples in these two
experiments are shown in Fig. 5 and Fig. 6 respectively. The corresponding linear correlation
coefficients and the Spearman’s rank correlation coefficients are reported in Table 2.

Table 2: Correlation coefficients from the two experiments with sample size 1024 and 10000.

Sample size = 1024 Sample size = 10000
Parameters ρ ρs ρ ρs

∆x and ∆v 0.0055 0.0149 0.0116 0.0190
∆x and acc f 0.0631 0.0663 0.0756 0.0679
∆x and accl -0.0475 -0.0339 -0.0292 -0.0298
∆v and acc f 0.3907 0.4161 0.4073 0.4155
∆v and accl 0.5209 0.5367 0.5312 0.5365
acc f and accl 0.4659 0.4916 0.4791 0.4913

Comparing Figs. 5 and 6 with Fig. 3, it is obvious that the marginal distributions in the second
experiment (Fig. 6) are more similar to that of the empirical data. The main reason for such
difference in the two experiments is because it has much more samples, which cannot always be
achieved for computationally expensive models. On the other hand, the marginal distributions in
the first experiment with 1,024 pseudo-random samples (Fig. 5) also show satisfactory similarities
with that of the empirical data, especially for parameters ∆v, acc f , and accl .

We further make pair-wise comparison of the empirical data and the two experiments in terms of
the linear correlation coefficients and the Spearman’s rank correlation coefficients in Table 2 and
Table 1. It is found that the dependence structures of the samples in the two experiments are
also quite similar to that of the empirical data. Specifically, the orders of both linear and rank
correlation coefficients for all parameter pairs in the two experiments are exactly the same with
the that of the empirical data. For example, ∆v-accl has the strongest correlation, followed by
acc f -accl and ∆v-acc f . Therefore, the accuracy of both experiments are acceptable, and the
samples can be used for the sampling-based SA in the next step.






























Figure 5: Marginal distribution, scatter plot and the linear correlation coefficient of the experiment with a sample size of 1024. Plots in the diagonal:
marginal distribution of the corresponding parameter. Plots below the diagonal: scatter plots of the two parameters from the corresponding
row and column. Plots above the diagonal: linear correlation coefficients of the two parameters from the corresponding row and column.
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Figure 6: Marginal distribution, scatter plot and the linear correlation coefficient of the experiment with a sample size of 10000. Plots in the
diagonal: marginal distribution of the corresponding parameter. Plots below the diagonal: scatter plots of the two parameters from the
corresponding row and column. Plots above the diagonal: linear correlation coefficients of the two parameters from the corresponding
row and column.
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5 Conclusion

In this paper, we present a general approach for generating samples for dependent parameters.
It utilizes the Gaussian copula in the sampling process, which makes it attractive for making
samples of parameter from any arbitrary marginal distribution. Furthermore, the Spearman’s
rank correlation coefficient is employed instead of the traditional linear correlation coefficient,
so that the dependence structure of the empirical data can be retained throughout the non-linear
transform of the Gaussian copula.

A case study that generates samples for the kinematic parameters of Wiedemann-74 car-following
model is included to demonstrate the application of this approach. It has shown that the marginal
distributions and correlation coefficients of the generated samples are comparable with that of
the empirical data. Specifically, the 1,024 samples, which are generated by employing the Sobol
sequence in the sampling process, also present consistent marginal distributions and correlation
coefficients as the empirical data. This has demonstrated that the proposed sampling approach is
also useful for making samples of computationally expensive models, for which a big number of
model runs are not always affordable.

The sampling approach illustrated here represents our first attempt for performing the SA of
complex microscopic models with dependent parameters. In the next step, the research will
continue with using the correlated samples to derive the global sensitivity indexes for dependent
parameters.
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