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Marija Nikolić, Michel Bierlaire
Transport and Mobility Laboratory
School of Architecture, Civil and
Environmental Engineering
École Polytechnique Fédérale de Lausanne
phone: +41 21 693 24 08
fax: +41 21 693 80 60
{marija.nikolic,michel.bierlaire}@epfl.ch

Bilal Farooq
Géologique et des Mines
Département des génies civil
Polytechnique Montréal, Canada
phone: +1 514 340-4711 ext. 4802
fax: +1 514 340-3981
bilal.farooq@polymtl.ca

April 2014

Abstract

This paper proposes a mathematical framework that provides the detailed characterization
of the pedestrian flow. It is specifically designed to address the heterogeneity of pedestrian
population which is to be reflected through the pedestrian flow indicators. The key components
of the presented work are: (i) data driven space discretization framework based on the Voronoi
tessellations that allow pedestrian-oriented definition of density indicator; (ii) statistical and data
driven approach to time aggregation, allowing for the pedestrian oriented definition of speed
indicator; (iii) probabilistic model for speed-density relationship, so as to capture the empirically
observed heterogeneity among pedestrians. The estimation and validation of the proposed model
are performed on the basis of a pedestrian tracking input. Data is collected in a Lausanne railway
station where a large-scale network of cameras has been installed to automatically locate and
track thousands of pedestrians. Additionally, the performance provided by this methodology is
compared with the well-accepted models published in the literature against empirical data with
the aim at improving research on the pedestrian flow characterization.

Keywords
pedestrian flow indicators, fundamental diagram, time aggregation, space discretization, Voronoi
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1 Introduction

Understanding the pedestrian flow is essential to many areas ranging from urban planning,
traffic forecasting, designing public spaces (airports, stadiums, train stations, etc.), the optimiza-
tion of the processes within public facilities to the evacuation studies. To answer the questions
with respect to pedestrian flow, there are mainly two different approaches that exist in the
literature: (i) empirical pedestrian data analysis and (ii) mathematical modeling approaches
aiming at a realistic representation of the phenomena typical for pedestrian flow and movement
behavior. Originally, data on pedestrian behavior and movement were based on surveys and
counting whereas in recent years modern technology has allowed pedestrian tracking (GPS,
Wi-Fi, Bluetooth, video-based tracking) that makes possible for comprehensive pedestrian
studies to be conducted (Bauer et al., 2009). Empirical data amassed through the means of
pedestrian tracking describe the essential parts of pedestrian dynamics, and are therefore crucial
to the process of model formulation, calibration and validation.

The investigation of pedestrian movement behavior based on empirical observations has
revealed a large variety of interesting collective effects and self-organization phenomena, such
as lane formation (Daamen and Hoogendoorn, 2003, Hoogendoorn and Daamen, 2005, Navin
and Wheeler, 1969), group formation (Shi et al., 2007), density waves similar to the stop-and-go
phenomenon from vehicular traffic (Helbing and Molnar, 1995), short-lived roundabouts at
intersections and oscillations at bottlenecks (Schadschneider et al., 2009). The understanding of
these emergent patterns is a prerequisite to predicting how the flow will behave under different
circumstances. On the other hand, several studies have been performed so as to obtain the
quantitative analyses of pedestrian flow characteristics based on the empirical data. In that
manner, commonly used observables are flow (q), density (k) and speed (v). Many researchers
have proposed the relationship between these characteristics known as fundamental diagram.
The fundamental diagram plays an important role in the field of pedestrian flows. It is used
in the planning and design of pedestrian facilities. Also, it is a required input or calibration
criterion for models of pedestrian dynamics (Hughes, 2002, Blue and Adler, 2001, Helbing
and Molnar, 1995). Nevertheless, large differences are found in the literature regarding the
fundamental relationship. In particular, the reported maximal value of flow goes from 1.2 ped/ms
to 1.8 ped/ms, jam-density goes from 3.8 ped/m2 to 10 ped/m2 and the reported maximum flow
density range is from 1.7ped/m2 to 7 ped/m2 (Seyfried et al., 2010). The researchers have
suggested several explanations for these deviations some of which can be attributed to the
cultural differences and the complex nature of pedestrian interactions (Helbing et al., 2007),
the differences between pedestrian facilities and the effects of the environment (Rastogi et al.,

2013), psychological factors, and measurement methods (Schadschneider et al., 2009).





           

Most of the studies have focused only on unidirectional flows and the relationships between
the indicators are usually developed on the grounds of drawing the parallels between pedestrian
and vehicular traffic. Although the field of vehicular flow modeling is quite well established
(Hoogendoorn and Bovy, 2001) this comparison is considered useful to some extent given large
differences that exist between the two types of traffic flow. In comparison to roadways where
vehicular flow is separated by directions, pedestrian flow is such that pedestrian facilities permit
them to move in a multidirectional fashion. Vehicular traffic is regulated while pedestrians can
choose their direction and speed depending on different factors (personal characteristics, trip
purpose, etc.). The lack of strict rules for pedestrians to follow allows them to occupy any
part of the walkway so they are able to change their speed and direction faster than vehicles.
Nonetheless, the empirical studies that focus on bidirectional and multidirectional flow are very
scarce. Navin and Wheeler (1969) stated that the directional imbalance causes the reduction of
flow, in contrast to Fruin (1971) who has neglected the differences between the unidirectional
and multidirectional flow. Zhang and Seyfried (2013) have analyzed the effect of bidirectional
flow on the fundamental diagram. It was observed that for the higher density levels (> 1ped/m2)
speed values are larger in the case of the unidirectional flow, compared to the bidirectional one.
Kretz et al. (2006) has reported that counter flows are more efficient then unidirectional. This has
resulted from the observation that in a counter flow the sum of fluxes is larger than the flux in any
of the counter flow streams. Lam et al. (2003) have investigated the effects of the bidirectional
flow from free-flow to congested regimes. The reduction in the walkway capacity and speed
of minor streams were observed. Wong et al. (2010) has developed a model of bidirectional
pedestrian streams, modeling the effect of intersecting angle on fundamental diagram. It was
reported that the speed of a stream is more negatively affected by the intersection angle under
greater total densities with the head-on conflict being the worst case.

The presented studies have provided better understanding of the effect that different types
of pedestrian flows have on the fundamental relationship. However, the highly heterogeneous
nature of pedestrian flows has been neglected and the empirical data have usually been used so
as to fit certain deterministic curves. Therefore, the improved methodologies for the pedestrian
flow characterization need to be developed, and it should be done on the basis of the detailed
pedestrian flow data. In this paper, we propose a framework designed to address the question
of heterogeneity among pedestrians which is to be reflected through pedestrian flow indicators.
The study provides the specific methodological concepts and results have been obtained through
the utilization of the great potential of the pedestrian tracking input.





           

2 Data

The data set employed in this study contains individual pedestrian trajectories collected in
a pedestrian underpass West (PIW) of the Lausanne train station in Switzerland. Fig. 1 shows
the layout of the studied area, which covers approximately 685 m2. The underpass is frequently
used especially during the morning and afternoon peak hours since it connects the exterior of
the train station to the five main platforms. During the morning peak hour between 100 and
400 pedestrians can be observed every minute (Hänseler et al., 2013). A large-scale network of
thermal and range sensors has been employed to automatically locate pedestrians in PIW and to
track them across time (Alahi et al., 2011). The outcome of the complete vision processing is
the set of the detailed trajectories of pedestrians:

p(t) = (x(t), y(t), t, pedestrianid) (1)

so that a given pedestrian is at position (x, y) at time t. The spatial and temporal resolution of
less than a meter and a few hundred milliseconds, respectively, enables the detailed study of the
different types of pedestrian flows in public spaces.

In this study it has been exploited in order to achieve the following goals: (i) the derivation
of the definitions of the pedestrian traffic fundamental indicators, (ii) the modeling of the
relationships between them and (iii) model estimation and validation. Pedestrian tracking data
collected in the time period between 07:00 and 08:00 on February 12, 13, 14, 15 and 18, 2013 is
used for estimation purposes (Section 4.2). Additional data set that is collected on February 06,
2013 is used for validation (Section 4.3).

Figure 1: Pedestrian underpass West - layout





           

3 Fundamental flow indicators

The existing approaches to measuring and specifying pedestrian flow indicators consider
pedestrian population as being completely homogenous usually constraining their flow patterns
to the unidirectional case. Here we propose the methodological framework that is specifically
designed so as to cope with the first drawback - the heterogeneity of pedestrian population which
is to be reflected through the pedestrian flow indicators. The disaggregated and data-driven
discretization framework is specifically designed to provide the comprehensive pedestrian-
oriented definitions of density and speed indicators in the first place.

3.1 Data-driven space discretization

The space discretization is an important aspect that affects the pedestrian flow analysis. The
physical space, within which the pedestrians perform their movement and interactions with each
other and with the surrounding environment, could be represented in different ways (continuous,
grid, network). When measuring pedestrian flow characteristics, one usual approach is based on
the cell-based space representation. The cell-based method transforms the space into regions
where each cell is seen as being entirely homogenous. In this case, the discretization that results
in units that are too small might leave many intervals empty. On the other hand, discretization
units which are too large might lead to the loss of heterogeneity. This phenomenon is known
as Modifiable Areal Unit Problem (Openshaw, 1984), meaning that each size and boundary
change affects the proportion of the number of pedestrians related to a specific space unit. These
effects can be alleviated by the decomposition of the space at an individual pedestrian level
through the use of Voronoi tessellations (Okabe et al., 2009). The Voronoi-based structures have
been investigated in the pedestrian flow theory (Nakamura et al., 2011, Steffen and Seyfried,

2010), but in this paper they are employed for the sake of enabling flow characterization through
the pedestrian-oriented approach. We consider space-time representation, where pi = (xi, yi, ti)
refers to physical location (xi, yi) of a given pedestrian i at a specific time (ti). Voronoi space
decomposition assigns the personal region (V(pi)) to each pedestrian (pi), in such a way that
all space locations (p), are associated with the closest pedestrian in respect of the Euclidean
distance:

Vi = V (pi) =
{
p
∣∣∣‖p − pi‖ ≤ ‖p − p j‖, i , j

}
(2)

The ordinary Voronoi diagram is defined in an unbounded plane. In our approach however we
deal with a bounded region where pedestrians are located. Therefore, we consider bounded





           

Voronoi diagram:

V = {V (p1) ∩ RoI,V (p2) ∩ RoI, . . . ,V (pn) ∩ RoI} (3)

where RoI refers to Region of Interest.

3.1.1 Merging cells

When it comes to Voronoi space decomposition, certain issues can arise due to the finite
arithmetics of computers and noisy observations in data. These issues lead to the degeneration of
Voronoi cells, reflected through unrealistically small pedestrian-allocated polygons. Therefore, it
is necessary to define a threshold distance between neighboring pedestrians when more polygons,
which are critical in terms of the area, merge together. This is necessary in order to guarantee
numerical stability of results. For this purpose, Delaunay triangulation(Okabe et al., 2009) is
used so as to pinpoint a threshold distance (ξ) between neighboring pedestrians (pi, p j) which
will trigger the clustering event:

d
(
pi, p j

)
< ξ,∀i, j. (4)

In order to identify the appropriate threshold distance, the merging of cells is performed by
utilizing the different values of distances. The corresponding density values are analyzed through
the means of sensitivity analyses. The value (ξ = 0.4m) that guarantees the numerical stability of
the results is selected according to Fig. 2 which shows that the range of density values stabilizes
for ξ >= 0.4m. The merged cells are considered as one polygon associated with a weight (ωi),
representing the group of pedestrians occupying the corresponding space.

3.1.2 Dealing with obstacles

The underlying assumption for the proposed space tessellation is that it is possible to connect
two generator points by a straight line. This is not the case where the plane is not obstacle-free.
As for this particular case we combine the ideas of Voronoi diagram for the set of points and
Voronoi diagram for the set of areas (Okabe et al., 2009), in order to create personal regions
which do not overlap with obstacles. In this case points refer to pedestrian positions in the space,
whereas the areas determine the space occupied by obstacles. To obtain the bisector between a
pedestrian (pi) and an obstacle (O), the distance is defined as the shortest Euclidean distance





           

Figure 2: Treshold distance determination

from pi to O :

d (pi,O) = mino j

{
‖pi − o j‖

∣∣∣o j ∈ O
}

(5)

The outcome is such a spatial tessellation where each of the aforementioned has its own ’personal’
polygon while pedestrians′ polygons remain convex (Fig. 3). The advantage of having convex
polygons lies in the simple calculation of their areas and natural looking personal regions.

Figure 3: Obstacles: (up-left) Obstacle-free space; (up-right) Pedestrian polygons that overlap
with an obstacle; (down-left) Bisectors between obstacle and pedestrians; (down-right)
Updated Voronoi diagram





           

3.1.3 Density

Given the space discretization specified above, the density of the cell Vi around pedestrian i
positioned at pi = (xi, yi, ti) is defined as the inverse of the area of the personal space:

ki =
ωi

|Vi|
. (6)

|Vi| refers to the area of the space assigned to the group of wi pedestrians, in the case of the
merging of cells. The unit is the number of pedestrians per square meter. This way a good
resolution in space is obtained (Fig. 4) by shedding light to a phenomenon not observable with
the other methods (Fig. 5 shows the density maps obtained by utilizing the cell-based method
for the same data set as considered in Fig. 4).

Figure 4: Voronoi based density map

Figure 5: Cell based density maps





           

3.2 Data-driven time discretization

The choice of the time interval (∆t) for speed computation affects the statistical properties
of the corresponding speed distributuion. In the literature, however, it is usually based on an
arbitrarily chosen value. The data set employed in order to analyze this effect contains pedestrian
trajectories collected on February 13, 2013, in the time period between 07:00 and 08:00 in PIW.
The statistics obtained by utilizing a different time interval shows that the values of the mean,
mode, median and quantiles are rather stable (Table 1). The difference in the maximum values
of the speed obtained by using a different discretization, however, shows the existence of values
that are highly unrealistic. They can be classified as outliers due to the fact that they occur
infrequently. The source of these values lies in the noisy observations induced at the different
levels of the pedestrian tracking pipe.

Table 1: The effect of ∆t on speed values

Statistic ∆t = 0.1s ∆t = 0.2 ∆t = 0.3s ∆t = 0.4s ∆t = 0.5s ∆t = 0.6s ∆t = 0.7s ∆t = 0.8s ∆t = 0.9s ∆t = 1s

min 0.0050 0.0025 0.0017 0.0013 0.0010 0.0008 0.0017 0.0036 0.0039 0.0052
mean 1.1155 1.1154 1.1153 1.1153 1.1152 1.1151 1.1150 1.1149 1.1149 1.1148
max 34.1162 17.7847 12.3805 9.7226 8.1288 7.1808 6.5927 6.2454 5.8898 5.6450

median 1.1173 1.1269 1.1296 1.1298 1.1293 1.1285 1.1273 1.1262 1.1253 1.1245
mode 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000
Q0.9 1.7022 1.6626 1.6478 1.6385 1.6321 1.6276 1.6245 1.6206 1.6175 1.6135
Q0.95 2.0096 1.9470 1.9231 1.9087 1.8992 1.8910 1.8848 1.8785 1.8700 1.8615
Q0.99 3.0419 2.9679 2.9361 2.8915 2.8301 2.7515 2.6874 2.6295 2.5827 2.5395

This poses the question of appropriate time discretization. The criterion to be used is the
one that provides the aggregation which is: (i) not too large because it can lead to the loss of
information; (ii) not too small since it is not resistant to the presence of noise. The choice of
the time discretization in this paper is justified on the grounds of the statistics based approach.
The speed distributions obtained through different time discretization are analyzed on the basis
of the statistical test of moments. The outcome is the range of appropriate time discretization
intervals that do not cause ‘critical loss’ of information (Table 2). The Kruskal-Wallis test (95%
confidence level) on these set of moments revealed that they represent the same population
(H=4.61, df=9, p=0.87).





           

Table 2: Raw moments of the speed distributions

Moment v∆t=0.1s v∆t=0.2 v∆t=0.3s v∆t=0.4s v∆t=0.5s v∆t=0.6s v∆t=0.7s v∆t=0.8s v∆t=0.9s v∆t=1s

1 1.1161 1.1158 1.1156 1.1155 1.1153 1.1152 1.1150 1.1149 1.1148 1.1147
2 0.4175 0.3296 0.2956 0.2747 0.2591 0.2465 0.2358 0.2263 0.2179 0.2104
3 5.7853 2.5957 1.7703 1.4310 1.2544 1.1476 1.0740 1.0188 0.9744 0.9363
4 134.4926 31.2621 15.5319 10.9042 9.0167 8.0657 7.4917 7.0994 6.8045 6.5660

3.2.1 Speed

The speed at p = (x, y, t) is defined as the speed of a pedestrian i (or the group of pedestrians
in the case of the merging of cells) characterizing the Voronoi cell containing p:

v(p) = vp · d (7)

where d refers to direction and vp is given by

vp =
‖pi (t + ∆t) − pi (t − ∆t)‖

2∆t
. (8)

In this study the magnitude of the speed vector (vp) is considered, where ∆t = 1s is chosen from
the range of time interval values (Table 2) so that the information is preserved and the noise is
removed to the greatest possible extent. The unit of v is meters per second.

4 Empirical speed-density relationship

The framework presented in the previous section has been designed in order to serve for
defining and measuring speed and density indicators in a pedestrian-oriented manner. The
empirical speed-density relationship is obtained through the use of pedestrian oriented definitions
of the indicators given by Eq. (6) and Eq. (8). The employed data set consists of individual
trajectories collected in PIW in the time period between 07:00 and 08:00 on February 12, 13, 14,
15 and 18, 2013.

Fig. 6 shows that empirical speed-density profiles exhibit a high scattering phenomenon. It
can be observed that in the case of lower densities pedestrian movement behavior exhibit a
higher level of randomness (based on speed values) compared to the situation where higher
densities are observed. This can be explained by the fact that pedestrians tend to relish more
freedom of movement when they are few in number whereas a crowded flow forces them to





           

Figure 6: Speed-density profiles

act within given circumstance. This can also explain the interesting phenomena related to the
observation that speed values never reach zero for high densities.

According to our knowledge, in the pedestrian flow literature the speed-density relationship is
always specified in a deterministic way, although the probabilistic one would be more appropriate
so as to describe the effects of a large number of factors that involves randomness (personal
characteristics, geometric settings, environmental conditions, etc.). Moreover, one week morning
peak hour analyses established that the relationship on any weekday is essentially the same (the
pedestrian behaviors are stable during the weekdays) suggesting that it can be modeled by using
one single speed-density relationship. In order to explain the observed heterogeneity, theoretical
distributions to be considered are those which are (i) bounded and (ii) have flexible shape. The
first condition is motivated by the fact that the speed range is bounded by definition; the second
one is needed to capture the observed randomness. The outcome of the analyses of a number of
theoretical distributions is the Kumaraswamy specification (Kumaraswamy (1980)) due to the
following reasons:

1. It is defined in the bounded region [`,u], making it suitable for pedestrian speed modeling;
2. The shape of the distribution is controlled by two non-negative shape parameters α and β;
3. The simple closed form of both its probability density function (f(v)) and cumulative

density function (F(v)), making it suitable for the use in simulation studies.





           

f (v) =
α · β · (v − `)α−1

· ((u − `)α − (v − `)α)(β−1)

(u − `)α·β
(9)

F(v) = 1 − (1 − (
v − `
u − `

)
α

)
β

(10)

4.1 Model specification

The speed-density relationship is specified in probabilistic terms, such that the speed (V)
represents a random variable which is Kumaraswamy-distributed:

Ṽ f (α (k) , β (k) , l (k) , u (k)) . (11)

The parameters α and β affect the shape of the distribution, ` and u refer to lower boundary and
upper boundary parameters respectively, while f is given by Eq. (9). Since the main goal is
a unified model that would represent an empirical speed-density relationship, the distribution
parameters (α, β, l and u) are to be specified as functions of density (they change with the density
level).

Fig. 7 indicates relationships between the considered parameters and the explanatory variable
density.According to the pattern they exhibit, the functional forms given in Table 3 have been
considered. In both specifications parameter ` is fixed to zero since it represents the lower bound
on speed values. It is based on the observation that for the whole density range lower speed
values are either zero or very close to it. This way, the number of parameters to be estimated is
also reduced while the rest of the distribution parameters is specified in such a way to capture
the feature of the data using simple models. In the first specification, the exponential function is
used in order to model the relationship between parameters β and u and the density level. The
choice is motivated by the observed decrease in their values with an increase in density. The
relationship between the parameter α and the density level is captured employing the polynomial
function of the degree 3 because of its moderate flexibility of the shape and a simple form which
is computationally easy to use. The second specification differs from the first one only in the
specification of the parameter u in which case the polynomial function of the degree 3 is used.





           

Figure 7: Estimated values of parameters α, β, ` and u per density level

Table 3: Parameters specification

Parameter Specification#1 Specification#2

α(k) aαk3 + bαk2 + cαk + dα aαk3 + bαk2 + cαk + dα
β(k) aβexp(bβk) aβexp(bβk)
u(k) auexp(buk) auk3 + buk2 + cuk + du

l(k) 0 0





           

4.2 Model estimation

For the estimation purposes, a maximum likelihood methodology (MLE) has been employed
with the following log-likelihood function:

logL =

n∑
i=1

log(α(ki)) +

n∑
i=1

log(β(ki)) +

n∑
i=1

(α(ki) − 1)log(vi − l(ki))

+

n∑
i=1

(β(ki) − 1)log((u(ki) − l(ki))α(ki) − (vi − l(ki))α(ki))

−

n∑
i=1

α(ki)β(ki)log(u(ki) − l(ki))

(12)

In the Eq. (12) n is the sample size, ki refers to a density and vi is the corresponding speed value.
The MLEs of the parameters are in this way obtained from the maximization of Eq. (12)) , on
the basis of the iterative optimization method. The estimation results are given in Table 4. The
resulting parameters′ specification is selected based on the log-likelihood value which gives a
higher probability that the observations come from the Kumaraswamy distribution when the
parameters are given by the first specification.

Table 4: Parameters estimates

Parameter Specification#1 Specification#2

aα -0.007 0.049
bα 0.096 -0.282
cα -0.378 -0.020
dα 2.218 2.008
aβ 44.819 45.362
bβ -0.105 -0.594
au 7 0.000
bu 0 -0.000
cu -0.001
du 8.001

logL -891880 -932990





           

4.3 Model validation

The validation of the model is performed by the application on an additional data set (Fig. 8),
that is not used in the model estimation process. It is performed with respect to the discrete joint

Figure 8: Validation: left - joint distribution of empirical observations; right - joint distribution
of model predictions

distribution of empirical observations and the moments derived. The moments are compared
with the corresponding ones of model predictions using formal statistical test (Kruskal and
Wallis (1952)). The raw moments are shown in Table 5. The Kruskal-Wallis test (H=0.33, df=1,
p=0.5637) on these set of moments revealed that they represent the same population at 95%
confidence level. The analysis results indicate a good performance of the model. Although
the main pattern observed from data is reproduced, few observations are poorly predicted. In
particular, the model does not predict speed values greater than approximately 4.5m/s. Given
that these values rarely occur in the considered data set, it can be concluded that this observation
is not critical with respect to the model performance.

Table 5: Raw moments - estimation data set

Moments Data Model prediction

1 0.9333 0.9856
2 0.1845 0.2376
3 0.0426 0.0648
4 0.1521 0.1769





           

Additionally, the performance of the proposed model is compared with the well-accepted
model (Weidmann 1993, as quoted in (Zhang, 2012)) against the empirical data (Fig. 9).

Figure 9: Comparison to Weidmann model

Weidmann described the fundamental relationship between the speed and density using the
Kladek formula:

v(k) = v f

[
1 − exp

(
−γ

(
1
k
−

1
k j

))]
(13)

where v f refers to the free-flow speed (1.34m/s), k j is the jam density (5.4m−2) and γ is the
shape parameter (1.913m−2). The model is estimated by collecting 25 data sets. The maximum
value of speed observed in our data set reaches 5.719m/s while the Weidmann model predicts
the speed 1.34m/s in the free-flow regime that decreases exponentially with the density level. In
the Weidmann model speed reaches zero at the jam density of 5.4m−2. However, the empirical
speed-density relationship shows that people tend to walk at a speed that is as close as possible
to their desired one even if the traffic conditions deteriorate. In this case, the distribution of
empirical speed values is less spread, which is expected, given the fact that pedestrian movement
is more constrained in times of increased congestion. Finally, let us note that the proposed





           

probabilistic model is able to explain the observed heterogeneity therefore addressing one of the
main drawbacks of the existing deterministic approaches.

5 Conclusion and future research

The methodology for the pedestrian-oriented flow characterization has been proposed. The
speed and density indicators are formulated on the grounds of a data-driven disaggregated space
and time representation. The probabilistic methodology has been employed so as to describe
the observed heterogeneity among pedestrians with respect to the speed-density relationship.
The real case study has been engaged for the purposes of model estimation and validation. The
validation results prove the strength of the proposed methodology when it is performed against
the data. The comparison with the Weidmann model against the empirical data shows the ability
of the probabilistic approach to explain more than the traditional deterministic ones currently do.
The presented work also has the implications on dynamic continuum and discrete models for
pedestrians that combine a conservation principle with a fundamental diagram. Moreover, the
evaluation and optimization of the level of service of pedestrian facilities can largely benefit
from the findings presented in this paper.

The described framework as such is however insufficient to explain the multidirectional nature of
pedestrian flows. As further steps we will explore the possibility of addressing this issue through
a stream-based concept. The final objectives will be the integration of the stream-based concept
with the developed probabilistic framework in order to comply with the observed pedestrian
heterogeneity.
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