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Fig. 1: (a) Generated pairs of bi-modal tra�c; nc is based on real origin-destination data; nb is determined by the number

of public lines in the network and their operational frequency; (b) The approximated 3D-MFD relating accumulation of

cars and buses with output (circulating flow); (c) The approximated 3D-MFD relating accumulation of cars and buses

with space-mean speed. Source of images from [11].

decrease monotonically by increasing the number of buses serving in the network, (ii) the space-mean speed decreases

monotonically as the number of cars and buses increases, and (iii) the passenger throughput is maximised at a non-zero

accumulation of buses.

In this work we deal with the perimeter flow control problem in bi-modal urban networks by use of the 3D-MFD. We

assume that the impact of each mode on the tra�c flow in the network is di↵erent, i.e. each bus can not be considered

as equivalent to some number of passenger cars. In particular, cars are usually faster than buses (because of the bus

stops) but if the percentage of buses in the overall accumulation is high, then the average speed of vehicles certainly

di↵ers from the one sustainable without the interference of buses. Thus the maximum throughput (capacity) varies with

the composition of tra�c in the network. For this reason, we introduce the composition of tra�c in the network as a

parameter that a↵ects the shape of the 3D-MFD. The 3D-MFD is used to describe the aggregated tra�c dynamics

in the bi-modal urban network. A linear parameter varying model with uncertain parameter the composition of tra�c

in the network is used as a basis for designing a proportional robust perimeter flow controller. The control gain of the

proposed scheme is calculated o↵-line using convex optimisation and semi-definite programming. In order to evaluate the

proposed scheme, a preliminary simulation-based comparison of the robust perimeter flow controller with a pre-timed

control plan for an area of the Downtown San Francisco is carried out.

II. Three-dimensional Macroscopic Fundamental Diagram for Bi-modal Urban Tra�c

Consider a bi-modal urban road network, where the tra�c flow comprises two vehicle classes, i.e., passenger cars and

buses. Let n be the total accumulation in the bi-modal network and P , V = P/n and O = P/l be the production (vehicle

kilometres travelled per unit time), average space-mean speed and output (circulating flow) at a specific time, where

l is the average trip length in the network. The space-mean speed definition was introduced by Edie [12] and the last

equality is the famous Little’s formula for steady-state queueing systems [13]. Length l is assumed to be independent of

time and destination, internal or external in the network. Let nc be the accumulation of cars and nb the accumulation

of buses, where n = nc + nb, and O be the total network circulating flow (in vehicle per time unit), which is the sum

of car and bus circulating flows. The circulating flow (P divided by average trip length) is not only a function of the

accumulation, but also of the composition of tra�c, i.e., O = O(n, �), where � is the ratio of bus accumulation over

the total accumulation of the network at a given time.

The shape of O and V from a 2.5 square mile area of Downtown San Francisco (see Figure 3(a)), including 100

junctions and 400 links, are summarised in Figure 1 (see [11] for details). To obtain the shape of O we performed

a number of simulations in the test network with time-dependent asymmetric origin-destination tables, starting from

di↵erent initial compositions of bi-modal tra�c. The initial profile for cars is based on real origin-destination demand

data while the profile for buses is determined by the number of public lines in the network and their operational frequency.

Bus routes and frequencies for lines in the network have been obtained from the San Francisco Municipal Transportation

Agency (SFMTA). Higher demand scenarios are also analysed to generate various mode compositions. The simulation

horizon of each scenario is 5.5 h and pairs of data (nc , nb) are gathered every 5 min from the simulator.

Figure 1(a) confirms the existence of a 3D-MFD like-shape for bi-modal networks, which shape is seen to depend on

the accumulation of both cars and buses. To enable a better understanding of this figure, Figure 1(b) displays a best-fit
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Abstract

In this work we deal with the perimeter flow control problem of bi-modal urban networks by use
of a three-dimensional Macroscopic Fundamental Diagram (3D-MFD). The 3D-MFD relates
the accumulation of cars and buses and the outflow (or circulating flow) in a bi-modal traffic
network. We assume that the impact of each mode on the traffic flow in the network is different,
i.e. each bus can not be considered as equivalent to some number of passenger cars. In particular,
cars are usually faster than buses (because of the bus stops) but if the percentage of buses in
the overall accumulation is high, then the average speed of vehicles certainly differs from the
one sustainable without the interference of buses. Thus the maximum throughput (capacity
flow) varies with the composition of traffic in the network. For this reason, we introduce the
composition of traffic in the network as a parameter that affects the shape of the 3D-MFD. The
3D-MFD is used to describe the aggregated traffic dynamics in the bi-modal urban network.
A linear parameter varying model with uncertain parameter the composition of traffic in the
network is used as a basis for designing a proportional robust perimeter flow controller. The
control gain of the proposed scheme is calculated off-line using convex optimisation and semi-
definite programming. To evaluate the proposed scheme, a simulation-based comparison of the
robust perimeter flow controller with a pre-timed control plan for an area of the Downtown San
Francisco is carried out.

Keywords
Three-dimensional macroscopic fundamental diagram; Bi-modal urban networks; Perimeter
flow control; Robust feedback control





         

1 Introduction

Urban transportation systems consist of multiple modes sharing and competing for the same
road space including pedestrians, non-motorised vehicles, cars, taxis, delivery trucks and more
productive modes, such as buses or trams. Realistic modelling and efficient control of multimodal
transportation systems remain an important challenge, due to limited understanding about the
dynamic interactions of the modes at the network level. In this paper, we focus on bi-modal
urban networks consisting of private cars and public transport. It is intuitive that the effect of
the public transport stops to pick up and alight passengers during light demand conditions in
the network capacity is almost negligible, but for severe congestion and high frequency in time
and space of these stops the performance of the system is influenced and interactions should
be considered. An aggregated modelling for multimodal systems following the concept of
a Macroscopic Fundamental Diagram (MFD) can be a strong alternative if it unveils similar
properties as in the single-mode case of vehicular traffic (see Geroliminis and Daganzo (2008),
Daganzo and Geroliminis (2008)). Perimeter control strategies based on the concept of MFD
for single-mode (car only) networks have been analysed in Haddad and Geroliminis (2012),
Keyvan-Ekbatani et al. (2012), Geroliminis et al. (2013), Haddad et al. (2013), Aboudolas and
Geroliminis (2013).

Recently, Geroliminis et al. (2014) have reported promising modelling results for bi-modal
networks that can allow simple perimeter flow control policies to be developed. More specifically,
they identified that traffic movements in mixed bi-modal urban networks can be modelled on an
aggregate level by use of a generic tool like the MFD. Based on simulation data, the authors
have introduced a three-dimensional MFD (3D-MFD) relating the accumulation of cars and
buses with the total circulating flow in the network (and the corresponding transformation with
the space-mean speed in the network). Moreover, the authors have unveiled the importance of
considering passengers rather than vehicles flows by proposed an elegant model to estimate a
passenger 3D-MFD. The authors showed that: (i) the network’s vehicle throughput decrease
monotonically by increasing the number of buses serving in the network, (ii) the space-mean
speed decreases monotonically as the number of cars and buses increases, and (iii) the passenger
throughput is maximised at a non-zero accumulation of buses.

In this work we put some effort to deal with the perimeter flow control problem in bi-modal
urban networks by use of the 3D-MFD. We assume that the impact of each mode on the traffic
flow in the network is different, i.e. each bus can not be considered as equivalent to some number
of passenger cars. In particular, cars are usually faster than buses (because of the bus stops) but
if the percentage of buses in the overall accumulation is high, then the average speed of vehicles
certainly differs from the one sustainable without the interference of buses. Thus the maximum





         

Figure 1: (a) Pairs of bi-modal traffic (composition rate δ); nc is based on real origin-destination
data; nb is determined by the number of public lines in the network and their op-
erational frequency; (b) The approximated 3D-MFD relating accumulation of cars
and buses with output (circulating flow); (c) The approximated 3D-MFD relating
accumulation of cars and buses with space-mean speed.
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throughput (capacity) varies with the composition of traffic in the network. For this reason,
we introduce the composition of traffic in the network as a parameter that affects the shape of
the 3D-MFD. We consider a city with an extensive network of public bus lines with a (slow)
varying range of service frequencies. The number of public lines and the service frequency can
determine the composition of traffic rate in the network, which is assumed slowly time-varying.
Two different functions (quadratic and exponential according to Ampountolas et al. (2014a))
are used to capture the shape of the 3D-MFD. The 3D-MFD is used to describe the aggregated
traffic dynamics in the bi-modal urban network. A Linear Parameter Varying (LPV) model with
uncertain parameter the composition of traffic in the network is used as a basis for designing
a proportional robust perimeter flow controller. The control gain of the proposed scheme is
calculated off-line using convex optimisation and Semi-definite Programming (SDP). In order
to evaluate the proposed scheme, a simulation-based comparison of the robust perimeter flow
controller with a pre-timed control plan for an area of the Downtown of San Francisco, is carried
out.

2 Aggregated dynamics of bi-modal traffic

Consider now a city with an extensive network of public bus lines with a (slow) varying range
of service frequencies. The number of public lines and the service frequency can determine the
composition of traffic rate δ in the network, which is assumed slowly time-varying. We assume
that there exist a 3D-MFD, O (n(t), δ(t)), between total accumulation n, composition rate δ
and output O (the total circulating outflow in the network), which describes the behaviour of





         

the system when it evolves slowly with time t (see Figure 1 and Geroliminis et al. (2014) for
details). Furthermore, we assume that the composition rate δ belongs to a polytopic compact
set Ω = {δ(t) | δmin ≤ δ(t) ≤ δmax, t ≥ 0} that is state independent, where δmin and δmax are
the minimum and maximum composition of traffic in the network. The set Ω can be easily
specified for a given network from the number of public transport lines in the network and their
operational frequency or it can be directly observed with real-time data.

The dynamics of the bi-modal traffic system can be described by the following ordinary differen-
tial equation

dn(t)

dt
= β(t) −O(n(t), δ(t)) + d(t), t ≥ 0 (1)

where β(t), d(t) are the (controlled) input flow and (uncontrolled) traffic demand to the network
at time t, respectively. Both accumulation n and composition of traffic δ can be observed in
real-time since vehicle accumulation can be directly obtained with different types of sensors
while bus transit operations are equipped with GPS trackers capable of providing locational data
at any given time.

Given the existence of a 3D-MFD O(n(t), δ) with an optimum (critical) accumulation n̂ at
which maximum flow is reached for different δ (see Figure 1 and Geroliminis et al. (2014)), the
nonlinear model (1) may be linearised around some set point (n̂, β̂, d̂). The set point n̂ may
be analytically determined according to Ampountolas et al. (2014a) while set point β̂ can be
derived from the inverse image of the 3D-MFD for given n̂. Finally, the set-point d̂ is usually
determined via historical traffic data of a network. Denoting ∆x = x − x̂ analogously for all
variables and assuming first-order Taylor approximation, the linearisation yields

d∆ṅ(t)

dt
= ∆β(t) −O′(n̂, δ)∆n(t) + ∆d(t). (2)

The linear system (2) with uncertain parameter δ ∈ Ω approximates the original nonlinear
system (1) when we are near the equilibrium point about which the system was linearised. This
Linear Parameter Varying (LPV) model will be used as a basis for robust control design in next
section.

3 Model uncertainty and robust control

Our basic assumption is that the city has an extensive network of public bus lines with a (slow)
varying range of service frequencies. Given any composition of traffic with rate δ ∈ Ω vary





         

slowly with the time, the 3D-MFD in Figure 1 and the LPV system (2), we aim at designing
a perimeter control strategy for the bi-modal network, which minimises an upper bound of a
worst-case cost criterion L(n,β) given the uncertainty of the composition rate δ and an initial
condition. In addressing this problem, there are several possibilities for generating the perimeter
flow control input β(t). A simplest robust feedback law, which is employed in the sequel, is that
of constant state-feedback proportional control, i.e., ∆β(t) = K∆n(t), where K is a control gain.
In this case, the state of the system n is measurable in real-time while the uncertain parameter
δ ∈ Ω is assumed known at design time and the control gain K is indirectly dependent on the
uncertainty.

A suitable cost criterion for deriving state-feedback control is given by the infinite horizon
quadratic cost

L(n,β) =

∫∞
0

(
||∆n(t)||2Q + ||∆β(t)||2R

)
dt (3)

where Q and R are positive weighting factors that can influence the magnitude of the state and
control actions, respectively. This cost criterion aims at maintaining the LPV system (2) to
operate around the desired steady-state (n̂, β̂) for given δ ∈ Ω, while the system’s throughput
is maximised. The LPV system (2) with a parameter-varying state transition coefficient and a
constant control coefficient that describes the evolution of the system in time can be written in
standard form (assuming ∆d constant or slowly time-varying, i.e. ∆d(t) = 0)

d∆ṅ(t)

dt
= A(δ)∆n(t) + B∆β(t), t ≥ 0 (4)

where A(δ) = −O′(n̂, δ) and B = 1.

A robust linear state feedback controller that expresses the aforementioned objective is given by

β(t) = β̂− K [n(t) − n̂] (5)

where K is a control gain, (n̂, β̂) is a set-point, and n is the total accumulation in the bi-modal
network. To calculate the constant gain K the uncertain parameter δ ∈ Ω is assumed known at
design time and A(δ) is parameterised over the polytopic uncertainty region Ω. In this way, the
control gain K is indirectly dependent on the uncertainty. This controller calculates the flow
of vehicles β that are allowed to enter the network if the current state of the network n(t) is
observed in real-time.

The LPV state-feedback control problem can be formulated as parameter dependent Linear
Matrix Inequality (LMI) constraints that can be solved using Semidefinite Programming (SDP)





         

(Boyd et al., 1994) and efficient interior-point optimisation algorithms (Nesterov and Ne-
mirovskii, 1994). More specifically, the calculation of control gain K that minimises an upper
bound of the worst-case infinite horizon quadratic cost (3) subject to the LPV system (4) can be
effectuated via solution of the following SDP problem

max
Y,L

trace(Y) (6)

subject to:
−(A(δ)Y + BL)

τ
− (A(δ)Y + BL) Y Lτ

Y Q−1 0

L 0 R−1

 � 0.
where L = KY and Y = P−1 (P is a positive definite matrix (in the general case of higher
order systems including multi-region and multi-modal heterogeneous networks). This problem
may be readily solved by public available software (e.g., CSDP (Borchers, 1999)) and the
required computational effort is low (polynomial) even for large-scale problems. Moreover, this
computational effort is required only off-line, while on-line (i.e. in real-time) the calculations
are limited to the execution of (5) with a given constant control gain K and state measurements
n(t).

4 Implementation and results

4.1 Design of robust perimeter flow control

The test site is a 2.5 square mile area of Downtown San Francisco that is depicted in Figure 2(a).
The implementation of the proposed perimeter strategy to the test site corresponds to the design
and application of the robust regulator (5). The controller is activated in real-time at a specific
sample interval T (e.g. every 3-5 minutes) and only within specific time windows (e.g. by use of
two thresholds nact and nstop), based on the current total accumulation n, to calculate the flow of
vehicles β to be allowed to enter the network. The obtained β values (arriving flows) are then
used to define the green periods at a number of signalised junctions located at the perimeter of
the network. To this end, the arriving flows are equally distributed to the corresponding junctions
and converted to an entrance link green stage duration with respect to the saturation flow of the
link and the cycle time of the junctions.

For designing the controller the 3D-MFD in Figure 1(b) is used. Figure 2(b) depicts the cross-
section (cutting plane) of the 3D surface for a constant accumulation of busesnb corresponding to





         

Figure 2: (a) Snapshot of Downtown San Francisco, numbers indicate major public transport
lines in the network; (b) The 3D-MFD of Downtown San Francisco relating accumula-
tion of cars and buses with circulating flow; The cross-section of the 3D surface for a
constant accumulation of buses nb = 200 demonstrating the typical dependence of
flow with the composition of traffic in the network.
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a specific number of public transport lines and service frequency in the network (property of the
infrastructure), and thus to a slowly time-varying composition of traffic δ. This demonstrates the
typical dependence of the flow with the composition of traffic in the network where the maximum
flow (optimal operational point) results from analytical formulas according to Ampountolas et al.

(2014a). In fact, the projection of the 3D surface on the cutting plane nb = 200 in Figure 2(b)
provides a typical two-dimensional MFD relating the total accumulation n (where nb is constant)
with the outflow in the network. The shape and characteristics of this two-dimensional MFD
for the Downtown San Francisco is similar to that found in previous works (Aboudolas and
Geroliminis, 2013). Thus, for different composition of traffic values δ different controllers might
be designed. Alternatively, the controller (5) can be designed by solving problem (6) to achieve
robust regulation for all δ ∈ Ω.

To determine the compact setΩ, simulations have been performed for different demand scenarios
to generate various mode compositions with respect to SFMTA real data for the bus frequencies
in the public transport lines. The composition of traffic varies from 2% to 15%, i.e. Ω =





         

{δ | 0.02 ≤ δ ≤ 0.15} according to Ampountolas et al. (2014a). For the design of the robust
controller, the desired accumulation n̂ is selected within the optimal range of the 3D-MFD for
maximum output with respect to Ω. More specifically, the value n̂ = 2500 (corresponding
nominal arriving flow β̂ = 93, 540 veh/h) is selected and the state coefficient A(δ) in the LPV
system (4) is parametrised over Ω. The minimum and maximum permissible entrance flow
of mixed traffic are given by βmin = 20, 000 veh/h and βmax = 120, 000 veh/h, respectively.
The arriving flows (and operational constrained flows) are equally distributed to 13 signalised
junctions located at the perimeter of the network. Finally, the weighting factors Q and R in
the cost criterion are set equal to 1/nmax (nmax = 10, 000 veh) and 0.0001, respectively. These
values of the parameters above, were found to lead via the solution of problem (6) to control
gain K = 0.0667 1/h.

4.2 Results

Figure 3(a) and Figure 3(b) depict the resulting MFD of five scenarios under pre-timed control
and perimeter control cases. When perimeter control is applied, the network operates under free
flow traffic conditions; under pre-timed control, the network becomes severely congested with
states in the congested regime (for almost all scenarios) of the MFD. Moreover, the outflow is
maintained to high values around the set point β̂. We can also observe that the hysteresis formed
in the offset period of congestion is reduced significantly, especially for the traffic congested
scenarios 2 and 4. The histogram in Figure 3(c) depicts the resulting space-mean speed of each
mode in different scenarios. Clearly the proposed perimeter control increases the speed of both
modes. In the severe congested scenarios 4 and 5, the speed of cars and buses is improved in
average by 60% and 50%, respectively. Additionally, it can be seen that there is a considerable
increase in the speed of buses in the less congested scenarios where the space for improvement
in the speed of cars is relatively small.

A further analysis of the spatial dimension of traffic congestion in the central avenue (Market
ave.) of the network and its upstream links (southeast) can shed more light in the perimeter
control actions within the transport public lines. The considered path includes the entire route
for public lines 15 and 19 and six other bus lines that overlap part of the path such public lines 5,
11, and 13 (see Figure 2(a)), to investigate the interaction among conflicting public transport
lines. To gather the bus trajectories that traverse this path, we simulate buses equipped with
GPS-based mobile sensors that reporting their location every 3 seconds. Figure 4 displays
the gathered bus trajectories for eight public transport lines (each with different color) during
the heart of the rush (11:00 am to 13:00 am), when pre-timed control and perimeter control
are applied. In these time-space diagrams, the x-axis reflects the simulation time, while the





         

Figure 3: Results for five scenarios: (a) and (b) MFDs under pre-timed control and perimeter
control cases, respectively. Accumulation at x-axis indicates mixed bi-modal traffic.
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y-axis reflects the one-dimensional distance travelled. Given that the studied network is a
grid, the two-dimensional road distance is transformed into one-dimensional by calculating the
Manhattan distance (`1-norm) between the GPS-reported location of a bus and the starting point
of the path. The horizontal time distance between consecutive bus trajectories with the same
color indicates the headway between two buses servicing the same public transport line. The
location of junctions and bus stops are also reported (see caption for details) to allow a better
understanding of the stop-and-go phenomena within the public transport lines.

Figure 4 underlines the superiority of perimeter flow control over pre-timed control to maintain
public transport lines normal time schedule. Traffic conditions are almost identical for both
control cases from 11:00 am to 11:20 am, as time goes on, in the pre-timed control case, buses
entering their transport lines (upstream traffic) suffer increasing delays waiting other buses and
cars in the centre of the network between 700 m and 1200 m (downstream traffic) to be served.
Then traffic condition becomes deteriorated in the center of the network, link queues start spilling
back and blocking upstream junctions, thus the entering traffic approximately matches the speed
of the downstream traffic. This creates multiple backward moving shockwaves with negative
speed that are illustrated with arrows in Figure 4. Clearly when perimeter control is applied the
network operates under free-flow traffic conditions and buses are able follow their normal time
schedule (with slight travel delays). More specifically, it can be seen that buses only experience
delays between 11h50 and 12h30 at the same spatial distance. To further investigate what caused
these delays, the traffic conditions in bus line 11 (among others) were carefully analysed. The
inspection of different replications eventually shown that the delays are mainly caused by a
sudden increase of left turn demand of cars and buses at a specific junction close to the protected
network. Note that the existence of such cases can be possible under the perimeter control





         

Figure 4: Time-space diagram for bus trajectories in several public transport lines in the network
during the heart of rush, under pre-timed control and perimeter control cases. Horizon-
tal dotted lines indicate the location of junctions; horizontal dashed lines indicate the
location of bus stops.
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scheme, since we only control junctions at the perimeter of the network. Extended results for
the robust feedback regulators (5) and its comparison with a pre-timed signal plan can be found
in Ampountolas et al. (2014a,b).

5 Conclusions

In this paper, we addressed the problem of perimeter flow control for bi-modal urban road
networks by use of a three-dimensional MFD. We described the dynamics of cars and buses
by a Linear Parameter Varying model with uncertain parameter the composition of traffic in
the network. We then designed a proportional controller that guarantees robust regulation and
stability around a desired set point at the 3D-MFD while the system’s throughput is maximised.
A key advantage of our approach is that it does not require high computational effort if the
current state of the bi-modal network can be observed with loop detector data in real-time. We
implemented the proposed controller in a simulation study in Downtown San Francisco. Results
showed that the designed robust controller was able to significantly: (i) reduce the overall
congestion in the network, (ii) improve the traffic performance of buses, and (iii) avoid queues
and gridlock on critical paths of the network.

On-going work considers strategies for controlling two sub-regions of the network where the
corresponding composition of bi-modal traffic has different values. This strategy will be able
to deal with heterogeneity in congestion levels or bus operation levels. Dynamic lane usage
and active Transit Signal Priority (TSP) strategies is another future direction. It is expected that
a correct implementation combined with other traffic management strategies (re-distribution
of road space, perimeter control and traffic signal optimisation) can significantly improve the
mobility of travellers and make public transport more attractive.
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