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Abstract 

Queues at signalized intersections are one of the main causes of traffic delays and urban traffic 

state variability. Hence, a method to estimate characteristics of queues provides a better 

understanding of urban traffic dynamics and also a performance measurement of signalized 

arterials. In order to capture the evolution of queues, we aim at leveraging the collective effect 

of spatially and temporally dispersed GPS data to identify the queue profile in the time-space 

plane that designates the manner of formation and dissipation of queues. The queue profile 

characterizes the time evolution of both queue front and back, which consequently can be 

separated in a two-step estimation process resulting to the queue profile polygon. The evolution 

of queue front, in the time-space diagram, based on the kinematic traffic shockwave theory is 

modeled as a line with the known slope of queue-discharging shockwave. The evolution of back 

of queue is more challenging and modeled as a piecewise linear function where slope of 

segments is between the queue-discharging shockwave and zero. In the proposed method, the 

input data consists of position and velocity of GPS-equipped probe vehicles. In addition, the 

queue profile estimation method does not require any explicit information of signal settings and 

arrival distribution. The proposed method is tested with various penetration rates and sampling 

intervals of GPS data, which reveals promising results once compared to a uniform arrival 

queue profile estimation procedure. The proposed method could be beneficial for spillback 

identification, vehicle trajectory construction, and fuel consumption and emission estimation. 
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1. Introduction 

Presence of vehicle queues at intersections is the crucial cause of variability of drivers’ 

experienced delay in urban networks, which is the principal performance measure of level of 

service at signalized intersections. Most of the existing models of travel times ignore 

spatiotemporal correlations among adjacent roads and traditional models estimate average 

quantities, which cannot capture travel time reliability. Hence, a reliable and practical queue 

estimation method is of great importance for intelligent transportation systems (ITS) to 

provide a better understanding of the intersection dynamics, facilitate the estimation of travel 

time distributions and later solve the traffic signal control problem. Nevertheless, capturing 

the temporal-spatial characteristics of queue formation and dissipation in urban arterials is 

still a challenging task. Considering that queue arrivals at intersections are influenced by 

departures from upstream signals, an assumption of uniform or Poisson arrivals is not valid, 

especially for short intersections. Therefore, we aim at modeling the evolution of queues by 

introducing the concept of queue profile that defines the manner of formation and dissipation 

of queues in the time-space (x-t) plane. Queue profile is a polygon in the x-t plane that its 

every edge designates a traffic shockwave based on kinematic LWR theory (Lighthill and 

Whitham, 1955; Richards, 1956). By estimating the queue profile for each cycle, we can 

derive various performance measures including, number of vehicles in the queue, position of 

back and front of the queue, and total and average delay per vehicle. In addition, given the 

queue profile the vehicle trajectories can be reconstructed, which is fundamental for fuel 

consumption and emission estimation and travel time decomposition problem (Hellinga et al., 

2008).  

 Literature of queue estimation can be theoretically grouped into two modeling classes: i) 

models based on the cumulative traffic input-output (Webster, 1958; Akcelik, 1998; Viti and 

van Zuylen, 2010), with the limitation that these models are insufficient to provide the spatial 

distribution of queue dynamics (Michalopoulos et al., 1981), and ii) models based on LWR 

shockwave theory (Skabardonis and Geroliminis, 2008; Ban et al., 2011; Wu and Liu, 2011), 

which provide temporal-spatial dynamics of queuing process requiring perfect input data. 

Further, many pivotal studies of queue and delay estimation in transportation research 

(Newell, 1960; Darroch et al. 1964; Newell, 1965; McNeill, 1968) are based (fully or 

partially) on rather limiting assumptions in order to result in closed-form theoretical solutions. 

These assumptions can be summarized as: i) known signal setting, ii) known initial queue size 

at the start of the cycle, iii) known arrival pattern (e.g. uniform, Poisson), and iv) condition 

that expected value of arrivals do not (constantly) exceed the signal capacity (Dion et al., 

2004).  

Evidently, signal settings (i.e. cycle length and splits) are not readily available, specifically 

in case of actuated signals. In addition, a known arrival distribution might be considered valid 

in case of an isolated intersection, whereas in arterials, this assumption neglects the impact of 

upstream intersections which alter the arrival pattern at downstream intersections. In this 

study, the proposed queue profile estimation method attempts to relax the aforementioned 

assumptions. 

Prevailing queue estimation methods employ several monitoring technologies, e.g. loop 

detectors (Skabardonis and Geroliminis, 2008; Geroliminis and Skabardonis, 2011; Wu et al., 

2011), and event-based signal and vehicle data [Wu et al., 2010]. Recently, the emergence and 

a steadily increase of public deployment of user-based data collection systems, e.g. GPS-

equipped vehicles (Herrera et al., 2010) and vehicle re-identification using cellphones or 
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wireless magnetic sensors (Kwong et al., 2009), provides a great potential for probe vehicles 

in ITS applications. Kwong et al. (2009) is one of the few efforts to estimate performance 

measures without the need for signal settings information, but it requires wide deployment of 

sensors. Ramezani and Geroliminis (2012) develop a methodology based on the link travel 

times of probe vehicles to estimate the arterial travel time distribution by considering spatial-

temporal nonlinear correlations. In (Hofleitner et al., 2012), a probabilistic framework for 

estimation of arterial traffic state using sparse probe vehicle data is proposed. Comert and 

Cetin (2011) provide an analytical model for queue length estimation of an isolated 

intersection with the assumption of Poisson arrival distribution and examined the effect of 

probe vehicles penetration rate. In addition, in (Izadpanah et al., 2009) a queue estimation 

method based on the identification of shockwaves from probe vehicle trajectories is studied. 

Although queue estimation is straightforward given trajectory of probe vehicles with large 

penetration rates, for practical purposes with low penetration rate of probe vehicles, advanced 

techniques that combine optimization and physical properties of the traffic flow seems 

essential. However, mobile traffic sensors cannot provide occupancy and flow information 

similar to loop detectors, because their data are samples of true traffic information. This raises 

challenges since mobile traffic data cannot be readily applied to common queue estimation 

methods. 

This paper is organized as follows. Section 2 presents the preliminaries of the traffic flow 

modeling that we utilize for the queue profile estimation. In Section 3, we introduce the 

proposed method and elaborate on its details. In Section 4, the results are presented and 

compared with a uniform arrival queue estimation procedure, and finally, the paper concludes 

in Section 5. 
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2. Background 

This paper aims at estimating the queue profile that is a polygon in the x-t plane modeling 

the formation and dissipation of the queue during signal cycles such that every edge of the 

queue profile polygon designates a traffic shockwave. Based on LWR theory, shockwaves are 

boundaries determining flow-density discontinuities in the traffic stream, i.e. points on the 

border between two different traffic states. Thus, crossing traffic shockwaves, the slope of 

vehicle trajectory in the x-t plane (i.e. speed of the vehicle) changes abruptly. In this study, for 

each link of the urban network we assume a triangular fundamental diagram (FD) 

characterized by, the maximum flow (capacity,   ), the free flow speed,      and the jam 

density,     see Fig. 1a.  

Fig. 1b depicts a queue profile at a signalized intersection comprising the queue 

discharging shockwave as the representation of front of queue and a 3-segment piecewise 

linear shockwave as the back of queue. As it is apparent, the queue discharging shockwave 

separates the traffic state at capacity (denoted by m) from the jammed state (denoted by j). 

Likewise, the 3-segment shockwave of the back of queue separates the jammed state from 3 

different traffic states (denoted by a, b, and c). The slope of shockwave between traffic states 

  and    and specifically the slope of queue discharging shockwave are, respectively: 

      
    

  

      
   

  
  
   

   
  (1) 

Note that, the proposed queue profile estimation does not require any arrival pattern 

information. Therefore, the extent and slope of shockwaves cannot be estimated based on 

LWR theory. Nevertheless, by estimation of queue profile, the reverse modeling is possible 

such that the attributes of shockwaves and consequently the characteristics of arrival traffic 

state can be determined.  

Figure 1 The fundamental diagram and a queue profile at a signalized intersection. 
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In this paper, we try to estimate the queue profile polygon from probe vehicles. Probe 

vehicles provide samples of their individual traffic state and we aim at leveraging the 

collective information of temporally and spatially dispersed probe data. As we stated earlier, 

the speed of vehicles changes when their trajectories cross shockwaves. In urban networks 

and particularly at signalized intersections, this associates with how probe vehicles join and 

leave the queue. Hence, it is necessary to investigate the time and position that a probe vehicle 

joins and leaves the queue. So, the proposed method utilizes the formula of kinematics to 

approximate the time and the position that a probe vehicle joins and leaves the queue (joining 

and leaving points) from its reported data by assuming constant acceleration (    ) and 

deceleration (    ) of vehicles. This assumption is not expected to influence the accuracy of 

the model (Geroliminis and Skabardonis, 2005). 
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3. Method 

In this section, we introduce and elaborate on the principal steps of the proposed queue 

profile estimation method. Let us assume that probe vehicle   reports its position (the distance 

from the beginning of the link,   
 ) and velocity (  

 ) along with the time stamp (  
 ) at time 

step   periodically, with sampling interval   (s).The errors in measurements or map matching 

are not addressed in this work. Note that the queue profile estimation can be done for each 

link independently from other links as long as there are no spillbacks. In case spillbacks might 

occur, the queue profile estimation should be done from downstream to upstream links to 

capture the spillback blockage development. An example of the queue profile estimation with 

         and penetration rate (φ) of 40% is depicted in Fig. 2, where ground truth and 

estimated queue profiles are respectively denoted by black and red polygons. Note that probe 

report data points are the input to the method and trajectories are illustrated for better 

understanding of queue dynamics. Even if this penetration rate is not realistic, it is chosen for 

illustration purposes. Later, smaller values of φ are scrutinized.  

An overview of the queue profile estimation method is as follows. Since we do not assume 

any information of signal settings, we need to identify the stopped data points and assign them 

to various groups that each group represents a cycle. Therefore in Section 3.1, we classify all 

of the GPS input data to two groups, stopped and moving, based on the velocity attribute of 

data. In Fig. 2, red squares denote the stopped data points while black diamonds denote the 

moving data points. Afterwards in Section 3.2, we introduce a clustering algorithm based on 

the projection profile algorithm to cluster the stopped data points into different signal cycles. 

Subsequently, in Section 3.3 the moving data are assigned to different cycles. Fig. 2 depicts 

the cycle number of each stopped and moving data. It is a well-known fact that the queued 

vehicles discharge at the capacity flow, which based on LWR theory results to the queue 

discharging shockwave designated by a line with slope   in the x-t diagram. In addition, the 

leaving points of vehicles from the queue (filled blue points in Fig. 2) are on the queue 

discharging shockwave. Hence, the estimation of front of queue for each cycle can be 

formulated as a constrained least square problem, which is presented in Section 3.4. The 

proposed method does not require the distribution of arrival pattern to estimate queue profiles, 

thus, we model the back of queue as a piecewise linear function shockwave, that fits to the 

joining points of vehicles to the queue (filled green, cyan, and yellow points in Fig. 2). In 

Section 3.5, a curve-fitting nonlinear optimization method is introduced to identify the 

number and characteristics of the piecewise linear function (Groot et al., 2012). In the sequel, 

the link index is omitted for simplicity. 

3.1 Classification of probe data to moving and stopped groups 

The first step of the procedure is to classify the probe data into two classes of moving and 

stopped       to be able to apply the LWR approach. This can be done with a threshold-

based classifier: 

   
  {

             
     

              
      

 (2) 

where     (m/s) is a threshold parameter to designates the vehicles with velocity close to zero 

as stopped. 
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Though the correct classification rate of the proposed classifier is 100% in case of exact 

data, errors in velocity measurements degrade the classifier performance, but do not 

significantly affect the whole methodology. Therefore, an approximate velocity measurement, 

e.g. utilizing differential GPS or fusion of GPS speed information with vehicle speedometer 

seems essential, given also that signal settings are considered unknown. The classification of 

probe data points to stopped (red square) and moving (black diamond) is depicted in Fig. 2.  

Figure 2 An illustrative example of the queue profile estimation method. The table is the 

accumulator projection vector corresponding to Section 3.2. 
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3.2 Clustering the stopped data to cycles 

Existing queue estimation methods are applicable for signal cycles and with no 

information of signal settings, the number and duration of cycles are unknown. Hence, in the 

second step of the procedure a clustering technique is needed to cluster the stopped data into 

various groups that each group represents a cycle. By scrutinizing the temporal and spatial 

distribution of stopped data in the x-t plane, we notice that the stopped data of two 

consecutive cycles can be linearly separated with a straight line with slope   that lies properly 

between the two groups. Therefore, a clustering technique based on the projection profile 

method (Jelaca et al., 2012) is proposed to cluster the stopped data into cycles. The purpose of 

projection profile method is to extract a scalar feature from the dispersed data of stopped 

vehicles in the x-t plane. Thus, we introduce a projection function   such that projects every 

stopped vehicle data (2-D) along some parallel lines into an accumulator projection vector 

over the line     (the entrance of link), where at this location, time is divided to equal 
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intervals (bins) such that each bin is associated with the number of projected points lying 

inside the bin. Parallel lines are a set of straight lines all with slope   (as vehicles depart from 

the queue at capacity flows) in x-t plane, which covers the time interval of analysis, 

      
     (  

    
 )    

  (
  
 

 
)  (3) 

One expects that the projection profile method should create i) clusters of adjacent bins 

with positive values, representing the red interval of a cycle, and ii) clusters of adjacent bins 

with zero value, representing the green duration of a cycle. Consequently, the stopped data 

associate with every cluster of stopped bins (adjacent bins with positive value) corresponds to 

a common cycle. This procedure with values of the accumulator projection vector is 

illustrated in Fig. 2. The accuracy of projection profile algorithm depends on the bin size (s). 

To determine the size of each bin, one should consider that large values cannot discriminate 

between cycles and small values may decrease the chance that stopped data points belonging 

to the same cycle being projected into adjacent bins. (In case of small size bins, the number of 

bins with zero value during the red interval increases. This might create group of zero bins 

during the red interval.) We test the sensitivity of the projection profile algorithm to various 

bin sizes and values between 4 and 10 (s) show acceptable outcomes. In this study, we set the 

bin size equal to 10 (s). Result of this stage is apparent in Fig. 2, where the cycle number of 

each stopped data is stated. Note that this method is still valid in case of spillbacks that block 

departures during green times of upstream intersections. Even if the estimated durations might 

be different than the exact values of each signal phase (e.g. in case of spillbacks or no 

arrivals), they will produce an accurate queue profile in the next methodological steps.  

3.3 Associating the moving vehicles to cycles 

Previous step identifies the number of cycles and assigns stopped data to their 

corresponding red duration. Likewise, the proposed queue profile estimation method needs 

the moving data to be associated to cycles, to formulate the estimation problem of front and 

back of queue. Let us assume    denotes the set of stopped data assigned to cycle  . One can 

fit a line with slope   to every data point that belongs to   . The line with the largest intercept 

can be regarded as a lower envelope of the “true” discharging line, see magenta lines in Fig. 

2. This line can be regarded as a linear boundary to distinguish between moving data of every 

cycle, e.g. the moving data on the left side of this line for cycle  , and right side of the 

corresponding line of the cycle     are considered as the moving data of cycle  . We denote 

the set of moving data associate with cycle   as   . Fig. 2 depicts the number of the cycle that 

each moving data is assigned to. 

3.4 Estimation of the front of queue 

Fundamentally, queuing process can be divided to two distinct processes, formation and 

dissipation of the queue, which in urban networks is associated with the traffic signal 

alteration. The fourth step of the queue profile procedure is to determine the queue dissipation 

phase for every cycle ( ). It is a well-known fact that the queued vehicles discharge at the 

capacity flow, which based on LWR theory results to a shockwave designated by a line with 

slope   in the x-t diagram. Hence, to estimate the front of the queue (discharging line) there is 

only one parameter, i.e. the line intercept, to be determined. This line will separate stopped 
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from moving vehicles. To achieve such goal, initially, we need to estimate the leaving point 

of probe vehicles, i.e. where and when probe vehicles leave the queue. The estimation of 

leaving point of probe vehicles is important since the leaving points are ideally supposed to be 

on the discharging shockwave line. From the formulas of kinematics on one dimension and 

based on two consecutive data points of a same probe vehicle, which the first one is stopped 

and the other one is moving (i.e.   
      

     , and    
    

     ), the time that probe 

vehicle   leaves the queue can be calculated as  

                            
  

{
 

   
    

  
   

     
 

  
      

 

  
              

                                             

  
    

 (  
      

 )

  
                       

                                             

  

Equation (4a) corresponds to a vehicle that reaches to its desired speed, which is in a 

vicinity of the free flow speed, specified by        . Likewise, (4b) corresponds to a vehicle 

that its instantaneous speed at time step     is not its desired speed, since the vehicle is still 

in the beginning of its trip and accelerating. Note that, there is another possibility that the 

vehicle has a speed below its desired speed (  
         ) and be in the deceleration stage. 

In this case, (4b) gives a value less than   
  which is incorrect since,   

  (  
    

   )  
Therefore, we need to modify (4b) in order to correctly estimate the leaving time of probe 

vehicle   that has a speed below the desired speed and is in the deceleration stage. So, if 

  
          and the   

  computed by (4b) is smaller than   
 , the time that probe vehicle   

leaves the queue is 

   
    

    
 (  

      
 )

  
    

   

     
 

  
      

 

   
 

(  
       )

 

        
  (4c) 

Equation (4c) implies that the vehicle accelerates with acceleration       reaches to its desired 

speed which is equal to    , and then decelerates with deceleration      to its speed at time 

step       
   . Ultimately, the leaving point is estimated as   ̂   ̂      

    
  . In Fig. 2, 

filled blue points represent leaving points. 

The discharging line has slope   such that all the moving data of next cycle,      and 

stopped data points of the corresponding cycle,    are on its left and right side, respectively. 

Hence, the estimation of front of queue is formulated as a constrained least square problem: 

      
    ∑ ( ̂    ̂    )

   
    (5) 

       {
                               

                            
  (6) 

where    denotes the total number of estimated leaving points and    is the intercept of 

discharging line shockwave of cycle    Note that, given    the start time of green interval of 

the current cycle denoted by   
 
 can be calculated as: 

   
 
 

       

 
  (7) 

where      is the position of intersection stop line from the entrance of the link. 
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The objective of above problem is to minimize the sum of squared error between the 

leaving points and the estimated discharging line. Regarding the constraints (6), introduction 

of    provides a tuning parameter to regulate the extent of hardness of the constraints, e.g. 

     represents hard-constraints that obliges the solution of (5) to fully separate data point 

of    and     , whereas a positive value of    relaxes the constraints, which is necessary in 

case of noisy input data, since there might be no line with slope   that separates noisy data of 

   and     . It is worth to mention that, there is no restriction that two consecutive stopped 

and moving data points    
          

       to be on the same link. Nevertheless, the 

chance of finding two such data points in the most downstream link is less comparing to the 

other links. Thus, in case there is no estimated leaving point (see the first cycle in Fig. 2), the 

best estimated discharging line in terms of best generalization concept should have the 

maximum margin from the both stopped (  ) and moving vehicles (    ). In other words, the 

discharging line should have the equal distance from the nearest data points of both    

and     . This concept is widely utilized in the support vector machine literature in computer 

science (Cortes and Vapnik, 1995). 

3.5 Estimation of the back of queue 

The goal of this step is to estimate the manner of queue formation for each cycle ( ). 
According to Section II, the back of queue in the x-t diagram can be modeled by a piecewise 

linear function comprising several segments that each segment represents a shockwave. 

Without any explicit information of arrival pattern distribution, the back of queue estimation 

procedure should determine the number and extent of segments of the piecewise linear 

function. Initially, similar to the previous step, we need to estimate the joining point of probe 

vehicles, i.e. where and when probe vehicles join the queue, because the joining points ideally 

belong to the piecewise linear shockwave. In this step, there are four types of consecutive data 

points that provide us with the joining points,  

(i) two consecutive data points of probe vehicle   that the first one is moving and the other one 

is stopped, i.e.    
      

        and    
    

     ,  

(ii) two consecutive data points of probe vehicle   that both are stopped, i.e.    
      

     

     and    
    

     ,  

(iii) two consecutive data points of probe vehicle   that both are moving, i.e.    
      

     

   and    
    

       ,  

(iv) two consecutive data points of probe vehicle   that the first one is stopped and the second 

one is moving, i.e.    
      

          and    
    

       .  

If the data at time step   belongs to the     , this data point can be converted to a queue 

leaving point according to (4), since the discharging line of the cycle    is already estimated in 

the fourth step. Therefore, data points of type (iii) and (iv) can be readily converted to type (i) 

and (ii), respectively. By using similar equation to (4), the joining point,   ̌   ̌  , can be 

estimated. In Fig. 2, filled green, yellow, and cyan points respectively represent joining points 

of type (i), (ii), and (iii). Note that for data type (ii), the leaving point of probe vehicle   can be 

estimated by utilizing stopped data    
      

     and the discharging line of the previous 

cycle,    . (The discharging line of the previous cycle is already known, because queue 

profile estimation advances cycle by cycle in time.) Remarkably, since the first data point of 

type (ii) is discharging from the queue of the previous cycle, it arrives at capacity state to the 
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queue of the current cycle that based on LWR theory, obligates the slope of the corresponding 

segment of back of queue shockwave to be  .  

Given the estimated joining points, the piecewise linear shockwave,      , should be 

estimated to i) be as close as possible to them, and ii) separate all the moving data associated 

with the cycle   ,   , and stopped data points of cycle   ,     on its left and right side, 

respectively (see (11)). Further, based on LWR theory, the slope of each segment of the 

piecewise linear function should be between zero and    (see (12)). Note that, if a leaving 

point of type (ii) or (iv) is associated with a segment of      , the segment slope should be 

equal to  . To incorporate all the aforementioned physical properties, the estimation of the 

back of queue with   piecewise linear segments is formulated as the following nonlinear 

program: 

             

         

    ∑ ( 〈        ̌   ̌  〉)
 
   

  

    (8) 

           

{
  
 

  
    

      

       
                          

 

   
      

       
                       

 

   
      

  
        

               
           

 (9) 

   
                    (10a) 

     
 

             
  (10b) 

 {
                                 

                                 

  (11) 

 
       

       
 

 

 
          (12) 

where    denotes the total number of estimated joining points,    similarly to   , regulates the 

extent of hardness of the constraints (11), and function   calculates distance of a point from a 

piecewise line. Hence the first term of right hand side of problem (8) is to minimize the sum 

of squared distance between the joining points and the desired piecewise linear function. 

Given that       comprises of   segments; (8) optimizes    parameters defining slope and 

extent of segments, i.e.           that are associated with the x-axis extent of segments and 

          that are associated with the t-axis extent of segments. It is apparent that as   

increases,       becomes more complex and can attain better optimization results in oppose to 

higher chance of overfitting. To prevent overfitting, it is needed to balance the number of 

parameters, as an indicator of complexity, and the value of objective function. This can be 

done by adding a complexity penalty term to the objective function,   , where   is the 

regularization parameter. Finally to find the optimum solution of (8), we restrict   √  .  

Moreover, (12) ensures       to be connected and be in proper intervals, i.e.   
      

     and     
 

     
 . In other words, (10a) ensures the extent of the back of queue 

shockwave in x-axis to be between the position of intersection stop line,     , and the 

http://en.wikipedia.org/wiki/Overfitting
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position of the furthest queued vehicle from the intersection for cycle   (the last position of 

queue of cycle  ),   
   . To approximate   

   , the furthest position of available probe 

information as the most conservative estimator can be utilized. So   
    is the minimum 

between two values: i) the furthest position from intersection among stopped data    (see 

cycles 1 and 3 in Fig. 2), and ii) the furthest position among the estimated joining points (see 

cycles 2 and 4 in Fig. 2). Note that,   
    is the position that the estimated discharging line 

(Section III-D) and piecewise back of queue shockwave are connected to each other with a 

horizontal line (slope equals to zeros) to close the queue profile polygon (see Fig. 2). Also 

(10b) implies that the estimation of start time of red interval of current cycle     should be 

after the start time of green interval of previous cycle denoted by     
 

. In addition, the back of 

queue piecewise shockwave should be always before the discharging front shockwave in the 

x-t plane, i.e. the utmost time extent of the piecewise shockwave,     , be less than the 

estimated time of queue full clearance, which is denoted by 

   
  

  
      

 
  (13) 
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4. Results 

In this section, the proposed queue profile estimation method is applied to a simulated 

arterial with two signalized intersections and its outcomes are presented and discussed. We 

also investigate effect of sampling interval and penetration rate (φ) on the performance of 

method. Moreover, for further comparison the proposed method is compared with a uniform 

arrival queue estimation procedure, which requires signal settings data and aggregated data of 

an upstream (entrance) loop detector. The uniform arrival assumption leads to a triangular 

queue profile for each cycle (see Fig. 3), where the red interval is one edge, the second edge is 

discharging shockwave starting at the end of red with slope  , and the third edge starts from 

the beginning of red with a slope based on (1), where    is the jammed traffic state and state   

is: 

    
      

   
    

  

    
, (14) 

where    is the duration of cycle   and        is number of vehicles that enter the link and 

with free flow speed would reach to the intersection stop line during cycle  . 

Figure 3 The ground truth (black) and estimated (φ = 20% and T=20 s) queue profiles 

based on the proposed method (red), and based on the uniform arrival assumption (blue). 

Squares and diamonds denote the probe input data. 
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The simulation with time varying demand lasts for 30 minutes and traffic signals are fixed-

time each with different signal settings (that are unknown for the model). In addition, lengths 

of links are respectively 600 and 500 (m). Conditions of spillbacks are not considered in this 

analysis, as this is ongoing work.  The parameters of the proposed method are chosen 

as:      (
 

 
)               (

 

  
)         (

 

  
)                 . The 

estimated queue profiles based on the proposed method (                    and the 

uniform arrival assumption procedure along with the ground truth queue profiles are shown in 

Fig. 3. It is evident that the performance of proposed queue profile estimation method is 

promising and can capture the fundamental characteristics of queue profiles without any 

information of arrival distribution and signal settings. 

It is noteworthy that from the estimated queue profiles, arrival distribution patterns and 

signal settings can be readily estimated. For quantitative comparison, queue lengths are 

derived based on the estimated queue profiles (see Fig. 4) and the mean absolute error (MAE) 

between the ground truth queue size and the estimated queue size is calculated. Fig. 5 

illustrates the effect of various penetration rates (                 ) and sampling 

intervals (               ) on the MAE performance index of the proposed estimation 

method. It is apparent in Fig. 5 that even in case of sparse probe data the proposed method 

yields more accurate results than the uniform arrival estimation. Loop detector data can 

facilitate the developed methodology in case of small penetration rates (e.g. less than 10%) 

and improve the accuracy of the model. 

Figure 4 The estimated (                 and ground truth queue length for link 1.  
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Figure 5 The MAE between the ground truth and estimated queue length with different 

penetration rates and sampling intervals. 
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5. Conclusion 

This paper has presented a method to estimate queue profiles in urban networks, based on 

LWR traffic theory and leveraging the collective effect of dispersed probe data, which consists 

of position and velocity of probe vehicles. The significance of proposed method is estimation of 

shockwaves in signalized intersection without any explicit information of signal settings and 

arrival distribution. The outcome of proposed method seems promising and more accurate once 

compared to a uniform arrival queue profile estimation procedure. The effect of penetration rate 

of probe vehicles and sampling interval on the performance of the method is also studied. The 

proposed method is beneficial for vehicle trajectory reconstruction, fuel consumption and 

emission estimation, and travel time allocation problem. Future research will investigate the 

spillback modeling and further analysis of the method with real traffic data.   
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