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Abstract

Pedestrian flows occurring in train stations are multi-directional and highly non-stationary. In
this work, we develop a cell-based pedestrian flow model capable of describing flow patterns
arising when a multitude of trains arrive and depart in close succession. We assume that pedes-
trian demand, i.e., OD flows and corresponding route fractions, are known a priori. Based
on first-order pedestrian flow theory and a cell-transmission model, propagation of individual
groups of pedestrians is described depending on route, departure time and group size. Further-
more, traffic-dependent path choice is considered using route-specific potentials assigned to each
cell. A detailed derivation of the mathematical framework and a literature review is provided,
underlining the novel aspects of the proposed model.
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1 Introduction

In peak hours, many railway stations are used at the limits of their capacity. While railway
networks have been systematically extended in the past, pedestrian facilities in train stations have,
at least in Switzerland, largely been neglected. Today, walkable areas are regularly congested
during peak periods.

To better understand this phenomenon, we are developing a methodology for dynamically
estimating pedestrian demand in train stations. Of importance in this framework is a pedestrian
flow model, predicting walking times of pedestrian routes depending on prevailing traffic
conditions.

In this study, we aim at developing a mesoscopic first-order traffic flow model. Such an approach
allows to consider individual groups of pedestrians without the need of modeling the behavior of
single agents. This is computationally cheap and desirable in the mentioned context. Individual
characterization of travelers would be very complex, as the picture on the title page of this article
might indicate.

The proposed traffic model combines a set of equations representing flow conservation, hydro-
dynamic theory and a characteristic fundamental diagram with a cell-based space representation.
Governing equations are solved numerically in discrete time using finite differences. This
approach is inspired by Daganzo’s cell transmission model, initially developed for single-lane
car traffic on highways (Daganzo, 1994).

2 Pedestrian propagation modeling

Before presenting an adapted version of Daganzo’s cell transmission model for uni-directional
pedestrian flow, this section gives a brief overview of relevant literature.

2.1 Network-based pedestrian propagation models

For estimating pedestrian walking times of aggregated groups of pedestrians, mainly three
approaches have been considered: (i) models based on continuum theory for pedestrian flows
(Hughes, 2002, Xia et al., 2008), (ii) cell transmission models (Daganzo, 1994, Asano et al.,

2006), and (iii) queueing network based models (Løvås, 1994, Cheah and Smith, 1994).

Continuum theory for pedestrians is formulated as a partial differential equation, in which flow
direction is defined by one or several potential fields. It is mostly used for evacuation simulations,





           

where only a small number of origin-destination flows need to be considered.

Both cell transmission model (CTM) and queueing network based model (QNM) use a graph-
based representation of space. CTM is a deterministic finite difference approximation of
first-order flow theory, consisting of a flow conservation and a density-speed relation. QNM
is based on random queueing processes and can be either approximated analytically in static
problems (Cheah and Smith, 1994), or by simulation (Løvås, 1994, Daamen, 2004).

In CTM, pedestrians are considered as aggregated groups. Each group is characterized by
its departure time and route. As it is deterministic, CTM is computationally less expensive
than most simulators. It can incorporate empirical, statistically obtained relations between
characteristic flow parameters. Such relations are usually referred to as fundamental diagram
and are discussed in the next section. A challenge associated with applying CTM to pedestrian
flows consists in finding an adequate software architecture that tracks propagation of people
along their chosen trajectory.

QNM is disaggregate, i.e., propagation of agents along their route is described individually.
Due to the microscopic nature of QNM, it is straight forward to consider agent-specific routes.
Stochasticity introduced by random queueing processes makes a simulator necessary, which
is costly. Çetın (2005) reports that accurate modeling of backward traveling jam waves using
QNM can hardly be achieved. Guaranteeing a ‘fair’ behavior in pedestrian intersections seems
possible, but is far from trivial (Charypar, 2008).

In this work, we pursue primarily a CTM-based approach, combining it with the concept of
cell potentials for path choice. In future work, QNM components might be useful for modeling
boarding and disembarkation processes. An example of QNM describing interactions between
public transportation vehicles and pedestrians can be found in Daamen and Hoogendoorn
(2007).

2.2 Fundamental diagrams for pedestrian flows

In this work, we employ empiric density-velocity relations, which represent the most prevalent
type of fundamental diagrams for pedestrian flows.

Fundamental diagrams for unidirectional pedestrian flow are well established (Hankin and
Wright, 1958, Mōri and Tsukaguchi, 1987, Weidmann, 1993, Seyfried et al., 2005, Helbing
et al., 2007). For bi-directional counter flow, besides theoretical results with limited use in
practice, only empiric point-to-point comparisons exist (Oeding, 1963, Older, 1968, Navin and
Wheeler, 1969). A reason is that for bidirectional flow, speed not only depends on density, but





           

also on flow composition.

For cross-flows as well as other multidirectional flows, studies are very scarce for the same
reason as above (Tregenza, 1976, Daamen and Hoogendoorn, 2007). Fruin (1971) notes that the
decrease in speed from unidirectional to multidirectional flow patterns is small, especially at low
density. Obviously, this decrease not only depends on joint density, but also on flow ratio, which
leads to a complexity that makes such laws largely impractical.

According to Weidmann (1993), average pedestrian speed in public spaces depends on density
as follows

v(k) = vm

{
1 − exp

[
−γ

(
1
k
−

1
kM

)]}
, 0 ≤ k ≤ kM (1)

where vm denotes free flow speed (typically 1.34 m/s), γ is a shape parameter (1.913 #/m2),
and kM represents jam density (5.4 #/m2). Buchmüller and Weidmann (2008) provide a set of
parameter values calibrated for pedestrian flows on stairs, ramps, as well as for corridors and
other facility elements.

Tregenza (1976) proposed an alternative density-flow relation

v(k) = vm exp
[
−(k/β)ζ

]
, k ≥ 0 (1’)

where free flow speed in a multi-directional flow field is estimated at vm = 1.68 m/s, with
β = 1.87 #/m2 and ζ = 1.11 (parameters estimated from Cheah and Smith, 1994, Fig. 3). In this
relation, there is no hard capacity constraint, and velocity decreases exponentially with density.
Different curves for uni-, counter- and multi-directional flows are reported, which differ for
densities above k ≥ 1 #/m2. Figure 1 shows the fundamental diagrams according to Weidmann
and Tregenza for a large density range.

2.3 First-order pedestrian flow theory

First-order traffic theory is a continuum theory developed for one-dimensional flow. It combines
the use of a conservation principle with a fundamental diagram.

In uni-directional flow, conservation is expressed by means of a one-dimensional continuity
equation

∂q(x, t)
∂x

= −
∂k(x, t)
∂t

(2)
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Figure 1: Average pedestrian speed (blue) and specific flow (red) as function of density according
to Weidmann (1993, solid) and Tregenza (1976, dashed).

where x denotes space, t time, q flow and k line density. From hydrodynamic theory, it holds
that

q(x, t) = kv(k) (3)

where a density-velocity relation of the form v(k) has been assumed. Two relations of this kind
have been presented in the form of equations 1 and 1’.

2.4 Uni-directional pedestrian cell transmission model

The cell transmission model (Daganzo, 1994, CTM) numerically solves the set of equations
comprised by first-order flow theory by applying finite differences on equation 2 and neglecting
higher order terms O(∆L2), O(∆T )

q(x + ∆L/2) − q(x − ∆L/2)
∆L

= −

(
k(x, t + ∆T ) − k(x, t)

∆T

)
(4a)

Space and time is discretized into uniform cells of length ∆L, denoted by ξi = [(i − 1/2)∆L, (i + 1/2)∆L]
and uniform intervals of length ∆T , τ j = [( j − 1/2)∆T, ( j + 1/2)∆T ], respectively. The time
step is set to the free-flow travel time required for a pedestrian to traverse a cell,

∆T =
∆L
vm
. (4b)





           

In discrete space, the number of agents contained by cell ξ during time interval τ is given by

nξ(τ) =
1

∆T

"
ξ,τ

k(x, t)dxdt ≈ ∆Lk(x, t), t ∈ τ, x ∈ ξ (4c)

Number of agents exchanged between cell i and cell i + 1 during time interval τ is given by

Qi(τ) =

∫
τ

q ((i + 1/2)∆L, t) dt ≈
∆L
vm

q ((i + 1/2)∆L, t) , t ∈ τ (4d)

It is assumed that density at the interface between any two consecutive cells i and i + 1 is
determined by the preceding cell, i.e., k((i + 1/2)∆L, t) ≈ ni(τ)/∆L, t ∈ τ. In discrete space, the
continuity equation reads as

vm

∆L
Qi(τ) − Qi−1(τ)

∆L
= −

1
∆L

ni(τ + 1) − ni(τ)
∆T

(5a)

where equations 4a, 4c, 4d have been used. A rearrangement of terms yields

ni(τ + 1) = ni(τ) + Qi(τ) − Qi+1(τ) (5b)

Hydrodynamic cell flow depends on the choice of the fundamental diagram. Following the
Weidmann-relation, it reads as

Qi(τ) = ni(τ)
{

1 − exp
[
−γA

(
1

ni(τ)
−

1
N

)]}
(5c)

where equations 3 and 4d have been used, N = kMA denotes cell capacity, and A is the cell area.
Adopting the fundamental diagram suggested by Tregenza, hydrodynamic cell flow is given by

Qi(τ) = ni(τ) exp
− (

ni(τ)
Aβ

)ζ (5c’)

Recursion of CTM for Weidmann’s fundamental diagram reads as

ni(τ + 1) = ni(τ) + yi(τ) − yi+1(τ) (6a)

where actual cell flow is given by

yi(τ) = min {ni−1(τ),Qi(τ), δ(N − ni(τ))} (6b)

The three terms in brackets represent a non-negativity, a hydrodynamic, and a cell capacity
constraint. Parameter δ determines the speed at which empty slots for agents travel backwards,
i.e., the speed at which occupied space is released in a cell. Using Tregenza’s relation, actual





           

cell flow reduces to

yi(τ) = min {ni−1(τ),Qi(τ)} (6b’)

as the capacity constraint is not required by the corresponding fundamental diagram.

3 Multi-directional pedestrian propagation model

In a railway station, pedestrian flows are to a large extent multi-directional. A uni-directional
CTM can therefore not be applied. Based on recent achievements in literature, we propose below
two cell-based pedestrian propagation models which are more appropriate for extended walking
areas. First, a model is discussed which describes flow patterns arising when the path of each
pedestrian is known a priori. Subsequently, a second model is presented which allows for local
path choice, i.e., pedestrians are able to make small detours to avoid regions of high traffic.

3.1 Review of cell-based pedestrian flow models

There are only a handful of cell-based models available that consider pedestrian flows at the
aggregate level, i.e., with groups of pedestrians as modeling objects.

Two early papers from the same group are due to Hanisch et al. (2003) and Tolujew and Alcalá
(2004). Flows in large public buildings are modeled in the framework of an online control system.
Pedestrians are assumed to move from one cell to the next at a constant speed, irrespective of
traffic conditions. Cells are subdivided into three categories, namely sources, sinks and storages.
Storage cells represent areas where pedestrians can wait, such as for example a check-in facility
in a railway station. Propagation of people along their paths is tracked across time. Overall, the
suggested concept is similar to CTM, but it lacks any demand-supply interaction.

Asano et al. (2006) adapted a CTM to consider multi-directional pedestrian movement. Like in
hydrodynamic theory of car traffic, a trapezoidal fundamental diagram is used (Lighthill and
Whitham, 1955, Richards, 1956). It might therefore be argued that resulting model dynamics
resemble rather those of vehicular traffic than of pedestrian flows. Among the main contributions
of this study are the development of an appropriate merging and diverging behavior in cells for
multi-directional flows.

Guo et al. (2011) developed a method of predicting pedestrian route choice behavior and physical
congestion during evacuation of indoor areas. An important feature of their model lies in the
use of cell potentials to determine route choice behavior among pedestrians. Specifically, an





           

algorithm is developed which considers both route distance to destination and congestion ahead
to assign pedestrian flows in space. Speed of transmission across cells is assumed to depend only
on ‘internal obstacles’, which are exogenous and therefore traffic-independent. The developed
framework is able to describe propagation of multiple flows of pedestrians targeting different
destinations.

The seminal work by Daganzo regarding CTM, the multi-directional update scheme of Asano
et al. as well as the potential-based route choice framework by Guo et al. constitute the principle
ground on which the aggregated dynamic flow model of this study is built.

3.2 Model with known paths

The purpose of the model outlined below is to dynamically estimate the distribution of pedes-
trians, depending on infrastructure and pedestrian demand. It is assumed that the path of each
pedestrian is known a priori.

Walkable space is discretized into square cells ξ of size ∆L2. The resulting network of cells is
represented by a directed graph G = (V,E), consisting of vertices ξ ∈ V and edges g ∈ E (cell
gates). For each cell ξ, O(ξ) and I(ξ) denote the of outflow gates and inflow gates, respectively.
Time is considered in discrete space T with uniform intervals τ ∈ T of length ∆T = ∆L/vm like
in the original CTM.

Let ` ∈ L be a group of pedestrians, characterized by a path Γ, a departure time interval τ0, and
group size m0. L denotes the ensemble of these groups. A path is defined as a sequence of cells
with no loops. Furthermore, let m`(ξ, τ) be the number of people belonging to group ` in cell ξ
during time interval τ.

Like in the uni-directional model, hydrodynamic flow in cell ξ during interval τ is governed by
a corresponding fundamental diagram. Weidmann’s density-speed-relation yields

Qξ(τ) =
∑
`∈L

m`(ξ, τ)
{

1 − exp
[
−γξAξ

(
1∑

`∈Lm`(ξ, τ)
−

1
Nξ

)]}
(7)

where for cell-specific parameters (denoted by subscript ξ) the same notation is kept as hitherto.
Free-flow speed vm is a global system parameter, i.e., necessarily homogeneous across cells.
Analogously, the hydrodynamic flow corresponding to Tregenza reads as

Qξ(τ) =
∑
`∈L

m`(ξ, τ) exp
− (∑

`∈Lm`(ξ, τ)
Aξβξ

)ζξ (7’)





           

Flow between any two adjacent cells is determined by the sending capacity of the emitting link,
and the receiving capacity of the target cell. This concept was originally developed by Daganzo
(1995), has been modified by Asano et al. (2006) and is extended further below.

The sending capacity of gate g ∈ O(i) corresponding to group ` during interval τ is defined as

S `
g(τ) = min

{
m`(i, τ),

m`(i, τ)∑
`∈Lm`(i, τ)

Qi(τ)
}

(8)

Under free-flow conditions, all agents proceed from one cell to the next, and the non-negativity
constraint (first term) is tight. In presence of ‘link congestion’, a demand-proportional supply
distribution scheme is applied (second term). Similarly, the receiving capacity of cell j during
interval τ is given by

R j(τ) = min

Q̂ j(τ), δ

N j(τ) −
∑
`∈L

m`( j, τ)


 (9a)

where the first restriction represents maximum cellular inflow, and the second a cellular capacity
constraint (obsolete when using Tregenza’s density-velocity relation). Maximum cellular inflow
is a nodal performance characteristic, for which we propose

Q̂ξ(τ) =

Qξ,max if
∑
`∈Lm`(ξ, τ) ≤ nξ,max,

Qξ(τ) otherwise.
(9b)

where Qξ,max denotes maximum hydrodynamic flow and nξ,max the corresponding cell occupation
(i.e., the value at which equation 7 (or 7’) attains its maximum).

The actual flow corresponding to group ` along gate g : i→ j during interval τ is given by

y`g(τ) =

S `
g(τ) if

∑
h∈I( j)

∑
`∈L S `

h(τ) ≤ R j(τ),
S `

g(τ)∑
k∈I( j)

∑
`∈L S `

k(τ)
R j(τ) otherwise.

(10)

Under free-flow conditions, all incoming pedestrians can be accommodated (first case), whereas
in presence of ‘cell congestion’ again a demand-proportional supply distribution scheme is
employed. For any group ` crossing consecutive gates f : i→ ξ, g : ξ → j, flow balance in cell
ξ during time interval τ yields

m`(ξ, τ + 1) = m`(ξ, τ) + y`f (τ) − y`g(τ) (11)

Equation 11 represents the main recursion of the multi-directional pedestrian propagation model
with known paths. For source or sink cells, a similar recursion scheme can be derived. These





           

cells have infinite capacity, and their hydrodynamic flow is determined exogenously.

3.2.1 Area-specific fundamental diagrams and virtual lanes

A limitation of the presented multi-directional CTM is its inability to allow for cell-specific
density-velocity relations. In the above framework, free-flow speed is uniform across cells. This
assumption is difficult to justify in pedestrian facilities of a transportation hub. For instance, on
ramps or stairways, fundamental diagrams may not only differ across cells, but they are also
anisotropic.

To relax this constraint, edge-specific update intervals are considered (Asano et al., 2006).
Free-flow travel time of a general edge g is given by

∆Tg =
∆Lg

vm,g

where ∆Lg and vm,g represent length and free-flow travel speed of edge g, respectively. In
a heterogeneous update scheme, links may be considered in individual simulation intervals
depending on their free-flow travel time.

In this approach, however, numerical dispersion is likely to occur at boundaries between
differently clocked links: Let’s assume it takes three simulation time steps to cross a certain link
g : i→ j under free flow conditions. This means that link g is considered every 3rd, 6th, 9th, . . . ,
time step. In this case, people having arrived in i at τ = 1 or τ = 2 are transmitted together, with
different delays. Such an anomaly occurs at intersections between differently clocked sets of
edges (e.g. at the beginning or the end of a ramp), but not within contiguous sets of links with
uniform update cycle. When designing the network graph G, total length of such boundaries
should be kept as short as possible.

Besides cell-specific speed characteristics, parallel ‘virtual lanes’ between cells are conceivable
as well (Tolujew and Alcalá, 2004). Fast walkers might for instance be assigned to priority
lanes, and travelers with luggage to a slower edge. Like this, population heterogeneity can be
considered by introducing characteristic attributes such as e.g. ‘in a hurry’ or ‘handicapped’.

3.3 Model with known routes and local path choice

Previously, the notion of a path has been introduced. A path is as a sequence of cells without
loops. A route, on the other hand, is a collection of different paths sharing the same sequence
of ‘related areas’. Let’s illustrate this concept at the example of a railway station with two





           

equivalent access ways to platforms. An arriving train passenger heading for an exit may choose
between two routes, represented by either of the two access ways. The sequence of related
areas is then either (platform P, access way A, exit E) or (platform P, access way B, exit E). No
matter which route he chooses, he will have a variety of corresponding paths to choose from
(e.g. shortest path, following a zigzag line, etc.). Within the chosen sequence of areas, i.e., the
selected route, he may follow any path he desires.

In the model developed below, pedestrians can choose their path ‘en route’. The choice is made
based on local traffic conditions, conditioned by a potential field. Huang and Guo (2008) have
developed an algorithm to derive such a potential field for pedestrian emergency simulations.
Each cell is assigned several route-specific potentials. The potential increases with distance to
destination, and is lower for cells with a higher degree of connectivity. A sample potential field
illustrating this concept is shown in figure 2.

software SIMULEX !29" to simulate pedestrian evacuation in
rooms with multiple exits, but how to formulate the exit
choice behavior is still an open problem. In this paper, we
apply the logit-based discrete choice principle to formulate
the exit choice behavior with consideration of the uncertainty
of finding the exit. Suppose that the uncertainty is mainly
caused by the variation in perceiving the static floor field.
The probability of selecting exit m for a pedestrian who is
occupying site #i , j$ is given by !30"

Qi,j
m =

exp#!Si,j
m $

%l exp#!Si,j
l $

, #3$

where ! #"0$ is a parameter related to the perception varia-
tions and l the index for a general exit. A larger ! means a
smaller perception variation of the static floor field. Hence,
the parameter ! can be used to reflect the degree of familiar-
ity of pedestrians with the exit location information. Some
pedestrians are unfamiliar with the exit location information
and thus leave the room not by the closest exit.

Finally, we give an overall outline of the model run as
follows.

Step 1. Calculate di,j
m for all sites using the process pro-

posed in this paper. Compute the static field value Si,j
m for all

lattice site to exit pairs by Eq. #2$.
Step 2. Let each evacuee probabilistically select an exit,

using Eq. #3$.
Step 3. Let each pedestrian probabilistically select a direc-

tion for movement, using Eq. #1$, and move one site in the
direction #or remain unmoved$.

Step 4. Stop if the number of pedestrians in the room is
zero; go to step 3 otherwise.

III. SIMULATION RESULTS

First, we examine the influence of the # value in the most
feasible distance formula on the shapes of crowds near exits.
In this simulation, suppose that 1200 randomly distributed
pedestrians attempt to escape from a room having an 80
$100 lattice. The time step is 0.3 s, which implies a walking
speed of approximately 1.33 m /s. There is no obstacle in the
room. Four exits, each three sites wide, are located at the

centers of the four walls. It is assumed that almost all pedes-
trians leave the room by the closest exit #!=1$. Let the pa-
rameters kS, kD, %, and & be 5, 0.5, 0.5, and 0.5, respectively.
Figures 3#a$–3#f$ display the typical stages of the pedestri-
ans’ evacuation at time step 40 when # takes six different
values. It can be seen that when #=0 the vertical and hori-
zontal sizes of the crowd are relatively small and the diago-
nal size is relatively large. With an increase of the # value,
the vertical and horizontal sizes of the crowd increase, but
the diagonal size decreases. When #=0.4, the shape of the
crowd is approximately a semicircle. An unreasonable shape
occurs when #=1. From the simulation, the # value should
be within the range !0.4, 0.6". It should be stated that, in
addition to #, the parameters kS, kD, %, and & also have in-
fluence on the shape of the crowd. We found that, for specific
combinations of these parameters, # should be set within a
specific range to keep the shape of the crowd approximately
semicircular, a commonly observed scene.

Now suppose that 500 randomly distributed pedestrians
attempt to escape from a room with an 80$100 lattice and
22 inner obstacles. To investigate the effects of door number
and position on evacuation time, we consider three scenarios
shown in Fig. 4. In these three scenarios, the door number
and position are different from each other, but the total width
of all doors is 12 lattice sites for each. The time step is 0.3 s.
The decay probability is %=0.5 and the diffusion probability
&=0.5. Our study is focused on the influences of the param-
eters !, kS, and kD on the pedestrian evacuation time, as other
parameters remain unchanged. We conducted 20 simulations
for each set of parameters and record the mean value and
variance of the average evacuation time. The average evacu-
ation time reported below is the average of all pedestrians’
evacuation times.

Figures 5 and 6 depict the mean values and variances of
evacuation times against different ! values, each with a spe-
cific set of kS and kD. In these figures, M1, M2, and M3 are
the mean values of evacuation times obtained in the three
scenarios defined in Fig. 4, respectively. V1, V2, and V3 are
the corresponding variances of the evacuation times.

Figure 5 shows that in each scenario the mean value of
the evacuation time decreases nonlinearly with increasing !
value. This is certainly reasonable because a larger ! value
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FIG. 2. Most feasible distances from lattices to the exit when # takes different values, #= #a$ 1, #b$ 0, and #c$ 0.5. There are four

pedestrians #denoted by circles$ in a room with two obstacles #denoted by shaded rectangles$ and an exit. The room is discretized into an
8$12 lattice.

STATIC FLOOR FIELD AND EXIT CHOICE FOR… PHYSICAL REVIEW E 78, 021131 #2008$

021131-3

Figure 2: Example of a potential field for a room with a single destination, the exit, and two
internal obstacles (shaded rectangles). Cell potentials reflect a measure of distance to
the exit (Source: Huang and Guo, 2008, Fig. 2).

In the framework of the CTM with local path choice, a pedestrian group is characterized by a
route R, departure time interval τ0 and group size m0. A route is defined by a directed graph
GR = (VR,ER), GR ⊆ G, and a corresponding potential field, PR

ξ , ∀ξ ∈ VR. If ξ < GR, then
PR
ξ = +∞.

Let’s consider cell ξ ∈ VR, and let ΦR
ξ and ΘR

ξ be the set of links up- and downstream of cell
ξ corresponding to route R, respectively. Then, the proportion of people on cell i on route R

choosing edge g : i→ j can for instance be expressed as (Guo et al., 2011)

DR
g (τ) =


(PR

i −PR
i )[N j(τ)−

∑
`∈L m`( j,τ)]∑

k∈ΘR
i
{(PR

i −PR
k )[Nk(τ)−

∑
`∈L n`k(τ)]} , g ∈ ΘR

i

0, otherwise.
(12)





           

If Tregenza’s fundamental diagram is used, turning proportions can be defined as

DR
g (τ) =


(PR

i −PR
j )v(∑`∈L m`( j,τ)/Ai)∑

k∈ΘiR{(P
R
i −PR

k )v(∑`∈L m`(k,τ)/Ak)} , g ∈ ΘR
i

0, otherwise.
(12’)

For the sending capacity of group ` in cell i along edge g : i→ j, we have

S `
q(τ) = min

DR`
g (τ)m`(i, τ),

DR`
g (τ)m`(i, τ)∑
l∈Lm`(i, τ)

Qi(τ)

 (8*)

The expressions for receiving capacity and actual gate flow remain unchanged. A balance
equation for group ` in cell ξ during time interval τ yields

m`(ξ, τ + 1) = m`(ξ, τ) +
∑
h∈ΦR

ξ

y`h(τ) −
∑
g∈ΘR

ξ

y`g(τ) (11*)

In comparison to recursion 11, inflows and outflows from several adjacent cells need to be taken
into account due to the possibility of path choice.

4 Conclusions

Pedestrian facilities of railway stations are often congested during peak hours. This may
compromise level of service in terms of safety, time table stability or customer satisfaction.
To better understand flow patterns arising in transportation hubs, we develop an aggregated
dynamic pedestrian propagation model based on first-order flow theory. Such an approach is
computationally cheap and can cope with complex and non-stationary situations involving a
large number of pedestrians.

The proposed model considers space as a two-dimensional network of cells with uniform
pedestrian density. Pedestrians are distinguished with respect to their route, departure time,
and any further characteristic attribute such as ‘in a hurry’ or ‘handicapped’. Between any two
adjacent cells, flow propagation is calculated based on the outflow capacity of the emitting cell
and the inflow capacity of the receiving cell. Using this concept, propagation of pedestrians
is estimated dynamically in discrete time. In presence of congestion, a demand-proportional
supply distribution is applied to allocate flows to cells.

The resulting flow propagation scheme allows for i) cell- and direction-specific flow speeds
(important on e.g. inclined areas), ii) separate ‘lanes’ for particular groups of pedestrians, de-
pending on the aforementioned ‘characteristic attribute’, and iii) en route path choice depending
on prevailing traffic conditions.





           

To demonstrate the validity of our model, we are currently investigating a counter- and cross-
wave scenario at the example of a longitudinal corridor and an orthogonal intersection, respec-
tively. This will allow to elucidate the different behavior under free-flow conditions and in
presence of congestion. Subsequently, a real case study will be considered: For a large Swiss rail-
way station, we dispose of comprehensive pedestrian tracking data. Dynamic origin-destination
demand extracted from this data will be used as model input. Model prediction and actual data
can then be directly compared to assess the applicability of the presented framework.
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