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Abstract 

In the last few decades microscopic traffic simulation has grown into a major resource for the 

researchers and practitioners in the field of traffic engineering. The use of commercial traffic 

simulators (i.e., software) has become widespread, and these programs have indeed become 

necessary tools for planning and designing transportation networks. In order for a traffic 

simulator to accurately describe reality, it must be supported by a valid traffic model, and it 

must be properly calibrated.  

VISSIM is one of the most widely used microscopic traffic simulators with many applications 

and high potential. However, like other commercial microscopic traffic simulators, VISSIM 

has a very large number of input parameters which makes the model calibration rather difficult. 

In addition, if the spatial scope of the modeled network is quite large, the calibration will 

usually be very time consuming. In order to overcome these difficulties, a Sensitivity Analysis 

(SA) is essentially required as a preliminary step for the model calibration. Through SA the 

modeler can obtain a better knowledge about the relationship between the model inputs and 

outputs, and hence focus on the most important parameters for further calibration. 

This paper is based on a research project to calibrate the VISSIM network model for the inner 

city of Zurich. The complex network of the inner city makes the computational cost of running 

the simulation very expensive. Therefore it does not allow using a brute force approach to do 

the SA. An improved SA method, which is based on the Elementary Effects method, was 

proposed and applied in this project. This method reduced the computation time required for 

the SA from 77 days to 2 days for this specific case. The results are presented in this paper. 

They show that the proposed method is accurate and efficient, especially for dealing with the 

SA of complex VISSIM networks. 

Keywords 

Sensitivity Analysis, Elementary Effects Method, Microscopic Traffic Simulation, Network Model 

Calibration 
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1. Introduction 

In the last few decades traffic simulation has grown into a major resource for the researchers 

and practitioners in the field of traffic engineering. The use of commercial traffic simulators 

(i.e., software) has become widespread, and these programs have indeed become necessary 

tools for planning and designing transportation networks. This, of course, assumes that the 

model can accurately and efficiently represent the interaction that occurs between drivers, 

vehicles and the environment, which is essential for both traffic planning and operation 

applications. 

In order for a traffic simulator to accurately describe reality, it must be supported by a valid 

traffic model, and it must be properly calibrated. A traffic model is considered valid if it 

reflects the real world operations in a reasonable way (e.g., how vehicles move in a road, how 

they change lanes, etc.). In other words, the rules within the model must be coherent, and for 

most of the cases, make physical sense. Calibration, on the other hand, implies that the input 

parameters (e.g., driving behavior, desired speed, etc.) allow the model to recreate the specific 

network under certain circumstances (i.e., replicate observations, field measurements, and 

other empirical data). This step is vital, but can be rather complex. Such complexity is driven 

by the fact that not two networks are ever the same, and typical traffic simulators usually have 

many parameters to cover all those differences. Moreover, a large number of these parameters 

are often unobservable in the field and/or really hard to measure. 

VISSIM (Verkehr In Städten – SIMulationsmodell in German) is one of the most widely used 

traffic simulators with many applications and high potential. It is a microscopic, time step and 

behavior-based simulation model developed by PTV AG from Germany (PTV, 2011). It is 

mostly used for modeling and analyzing urban and inter-unban traffic, although it is also 

capable of modeling other transport modes (e.g., public transportation, pedestrians, etc.). The 

widespread use of VISSIM has driven huge advances in the development of the software, and 

the complexity of the program has been simultaneously increased greatly. One drawback of 

such increase in complexity is, among others, the multiplicity of parameters contained within 

VISSIM. The huge number of parameters has made the model calibration rather difficult. In 

addition, when the spatial scope of the modeled network is quite large, the calibration will 

usually be very time consuming. Furthermore, the lack of standard calibration procedures and 

guidance for traffic models in general (MULTITUDE, 2011a) makes the calibration a very 

tedious process. As a matter of fact, a recent survey carried out within the European COST 

Action TU0903 (Punzo, 2011) indicates that many VISSIM users are not able to use 

guidelines or scientific publications (see Figure 1) when calibrating their models. Survey 

results also show that a great potion of VISSIM users have to adopt “manual trial and error” 
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as the standard method for model calibration (see Figure 2) instead of an automatic 

optimization by computers, a far more efficient and accurate method. 

Figure 1 Survey results: use of guidelines or scientific publications to guide the 

calibration of VISSIM (Source: Punzo, 2011) 

 
 

 

 
 

Figure 2 Survey results: methods applied for calibrating of VISSIM (Source: Punzo, 

2011) 
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Fortunately, and due to the problems described above, the calibration of traffic simulation 

models such as VISSIM has been a topic of growing attention over the last few years. Many 

ideas from other fields where simulations are also common have been borrowed, and 

innovative calibrating methods are being tested nowadays (Ciuffo et al., 2011). One area of 

traffic model calibration in which meaningful contributions are still needed is the Sensitivity 

Analysis (SA) of the input parameters for the calibration itself.  

The sensitivity analysis explores the relationship between the analysis outcome and the 

parameter assumptions (Cascetta, 2009). Due to the limitation of time and other resources, 

most calibration procedures cannot afford to calibrate all the parameters in the model. Thus, 

calibration is carried out only for a limited number of input parameters. However, there is 

usually no formal procedure for selecting these parameters, other than choosing the ones that 

appear to the model user as most likely to have a significant effect on the result (such criteria 

is often dictated by their former experiences). As one could imagine, the selection of an 

incomplete set of parameters for calibration may lead to multiple issues, including but not 

limited to, model imprecisions or unrealistic values for the calibrated parameters. These 

problems should not be a surprise, as in traffic models like VISSIM, there are usually many 

interactions between different parameters (e.g., many of the car-following parameters also 

impact the lane-changing model). Hence, focusing on the incorrect set might have a cascading 

effect.  

Therefore, a proper sensitivity analysis, including the initial screening of the parameters, can 

be very valuable for the subsequent calibration process. Moreover, it may actually reduce the 

total efforts needed during the model calibration. A good sensitivity analysis could provide 

both quantitative and qualitative information regarding the effects of the different model 

parameters (and their variations) on the simulation results.  

Unfortunately, to the authors’ knowledge, there are very few examples on the application of 

SA in VISSIM calibration: Lownes and Machemehl (2006) used the One-At-a-Time (OAT) 

method in the calibration of the VISSIM model to find the parameters influencing capacity in 

congested situations. Mathew and Radhakrishnan (2010), in a research involving the 

simulation of intersections using VISSIM, changed each parameter value by a fixed amount 

(e.g., 10%) while keeping the default value for other parameters, and evaluated the sensitivity 

of the output to each individual change. Kesting and Treiber (2008) employed the same OAT 

approach when calibrating the Intelligent Driver Model (IDM) and Velocity Difference Model 

(VDM). Cunto and Saccomanno (2008) applied a variance-based SA approach to screen the 

parameters during the calibration and validation of VISSIM in a safety performance study. 

However, there appears to be no previous research suggesting a standard sensitivity analysis 

method to be applied in the calibration of VISSIM. Thus, some critical questions still remain 

for the VISSIM users: Which sensitivity analysis method would be the best option in the 
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model calibration, especially when the modeled network is rather complex? How does it 

compare to the other methods regarding both performance (e.g., accuracy) and computational 

requirements (e.g., complexity, time and man power required)? Our research is therefore 

motivated by these issues. It aims at answering the questions posted above as well as 

disseminating the best practices of applying SA for VISSIM calibration.  

This paper represents our preliminary attempt to develop an efficient SA in a recent VISSIM 

calibration project for the City of Zurich. It is organized as follows: Section 2 describes the 

detailed information about this calibration project; Section 3 introduces the SA approach we 

developed for this project; Section 4 presents the results of the SA analysis; and Section 5 

induces our conclusions and some recommendations for future research. 

 

2. Sensitivity analysis in the CSV project 

Since July 2011 we have been involved in a cooperative project named Calibration Study for 

VISSIM (CSV) with the Modeling and Simulation group within the Traffic Division of 

Transport for the City of Zurich. As part of this project, the City of Zurich is using VISSIM to 

effectively model the traffic, first within the inner city, and later in the future throughout the 

whole city.  

However, as mentioned in the last section, VISSIM has a very large number of input 

parameters: in the most recent version 5.40 it has around 192 parameters (PTV, 2011), and 

this figure will most likely continue to increase as PTV launches new updated versions. In 

addition, the non-open source nature of this commercial simulator makes the model a black-

box to the model users. The users may know the physical meaning of every single parameter 

in VISSIM, but they will not be able to understand how the simulator calculates the results 

according to their inputs. Hence it is rather difficult to perform a proper calibration. 

Furthermore, the spatial scope of the network being modeled is rather large (see Figure 3), as 

even the initial network encompasses the inner city of Zurich (a complex urban layout with 

narrow streets, hills, mixed transportation modes, a large amount of pedestrians, etc.).  

All these characteristics have dramatically increased the complexity of calibration when 

compared to other VISSIM calibration studies (Park and Schneeberger, 2003; Gomes et al., 

2004; Ahmed, 2005; Wu et al., 2005; Park and Qi, 2005; Yu et al., 2006; Miller, 2009) which 

focus only on single links, single intersections or at most, a few intersections along a single 

road. As a result, the computational cost for the CSV project is very expensive (about 20 

minutes for a 1-hour simulation), therefore, it is not feasible to use a brute-force approach for 

the calibration work. 
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Figure 3 Study area (light blue area in the left figure) of the CSV project and the modeled 

network of Zurich inner city in VISSIM (right figure) 

 
 

      

 
 

In order to find the most efficient calibration strategy to fit the specific needs and 

characteristics of this project, a preliminary SA was carried out. By reducing the number of 

calibration parameters and investigating their effects in a quantitative manner, the calibration 

process could then be optimized. Figure 4 shows a schematic representation of the approach 

used in this project in order to effectively reduce the number of parameters to a manageable 

level. 

The first cut (from 192 parameters in the original model down to 148) was based on the study 

of Zurich inner city’s traffic patterns and characteristics. Among those 148 parameters, 14 

parameters from the car-following model, lane changing model and lane properties were 

regarded as the most important ones. Such selection was made based on previous calibration 

research, studies, common sense, and our own experience. 

Unfortunately, given the time demands of running the model, calibrating all these 14 

parameters with traditional methods (e.g. the brute-force approach) could take some months. 

This has forced us to carry out a more efficient SA to further reduce the number of parameters. 

The quasi-Optimized Trajectory approach based Elementary Effects (quasi-OTEE) method 

was developed for such task, and it will be introduced in the next section. 
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Figure 4 Set up process for calibrating VISSIM for the City of Zurich 
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3. Quasi-OTEE method for sensitivity analysis 

3.1 Elementary Effects method 

The Elementary Effects (EE) method was developed by Morris in 1991 (Morris, 1991). It is a 

qualitative and stochastic approach for screening the most important parameters from a 

complex model (Saltelli et al., 2008). It is especially useful in computationally costly 

mathematical models or in models with a large number of inputs, where the cost of applying 

other sensitivity measures is not affordable (or sometimes even feasible). This approach has 

been successfully applied for the sensitivity analysis of some complex models, e.g. in 

chemistry (Campolongo et al., 2007) and environmental engineering (Campolongo and 

Saltelli, 1997). However to the authors’ knowledge, it has never been used in traffic 

engineering. 

The idea of EE method is based on the One-At-a-Time (OAT) approach: in each step of the 

analysis, only one input parameter of the model is increased or decreased with a certain value, 

while all the other parameters remain fixed for that step. Suppose there is a model Y with k 

independent parameters [X1, X2, …, Xk], then the output of the model should be Y(X1, X2, …, 
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Xk). If the i-th parameter Xi is changed by a certain value Δ while the other k-1 parameters 

remain the same, the output of the model is consequently changed to Y(X1, X2, …, Xi-1, Xi +Δ, 

Xi+1,…, Xk). The Elementary Effect of the parameter Xi, which is written as EEi, is then 

defined as: 

1 1 1 1 1 1( ,..., , , ,..., ) ( ,..., , , ,..., )    




i i i k i i i k
i

Y X X X X X Y X X X X X
EE  

Through randomly generating a certain number (i.e., m) of combinations of X1 to Xk from the 

input space, and each time only varying Xi with Δ, consequently m EEs of Xi will be derived 

according to the equation above. The mean μ, the standard deviation σ, as well as the absolute 

mean μ
*
 of those m EEs for Xi can be calculated respectively. These three indicators are 

regarded as the sensitivity indexes of the parameters. They can be used afterwards to rank the 

parameters according to their influences to the model output. For instance, low values of both 

μ and σ indicate a non-influential parameter. 

According to the definition of EE, two runs of the model are required in order to calculate one 

EE for one parameter: the first time with the initial inputs [X1, X2, …, Xi-1, Xi, Xi+1,…, Xk], and 

the second time with varied inputs [X1, X2, …, Xi-1, Xi +Δ, Xi+1,…, Xk]. For any single 

parameter of a k-parameter model, suppose that m EEs are required for calculating the 

sensitivity indexes of this parameter, obviously the total runs of the model should be 2mk. 

This is the computational cost of the basic EE method.  

When considering the fact that in this CSV project there are 14 different parameters for the 

SA, and normally m should be as large as possible (e.g. m = 200) in order to make unbiased 

sampling in the input space, the total number of simulations needed would be at least 5600 

runs. As mentioned in the last section, it takes around 20 minutes to run each simulation, 

therefore the total computation time for the SA would be almost 77 days. Due to the high 

computational cost, the basic EE method is not feasible for this project as a stand-alone 

approach. 

3.2 Sampling with trajectories 

In order to improve the efficiency of the basic EE method, we can sample the parameter input 

space by using trajectories (Morris, 1991). Figure 5 gives an example of how to generate one 

trajectory for a model with 2 parameters (named X1 and X2). In Figure 5, the first point P0 is 

randomly generated in the input space with the coordinates [X1
0
, X2

0
]. The second point P1 is 
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generated by changing
1
 one parameter (e.g. the first parameter) with a certain value Δ based 

on P0, and hence the coordinates of P1 in this case, for example, are [X1
0
 + Δ, X2

0
]. The third 

point P2 is generated in the same way but by changing the other parameter based on P1. As a 

result, the coordinates of P2 are [X1
0
 + Δ, X2

0
 + Δ]. According to the definition of EE, two 

elementary effects can be derived based the sampling points along this trajectory: EE(X1) = 

[Y(P1) - Y(P0)] / Δ and EE(X2) = [Y(P2) - Y(P1)] / Δ.  

Figure 5 Illustration of one trajectory of two input parameters 
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The example above indicates that for a k-parameter model, a trajectory with k + 1 points can 

provide k EEs (one per parameter). Therefore, by randomly sampling m trajectories in the 

input space, each parameter can get m EEs. The same sensitivity indexes can be calculated but 

only m(k + 1) runs of the model are required. Accordingly, the total computation time for the 

SA of the 14 parameters in VISSIM would be decreased to around 41 days. Although the 

efficiency of the EE method has been greatly increased by sampling with trajectories, the 

computation time is still too long, and thus a more efficient sampling approach must be 

applied to further reduce the computation time.  

                                                 

1
 Changing means randomly increasing or decreasing the value with equal probability. For illustration purposes, 

the example trajectory in Figure 5 only increases the value for each point along the trajectory. 
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3.3 Sampling with Optimized Trajectories 

An improved sampling approach was proposed by Campolongo et al. in 2007. Instead of 

taking all m randomly generated trajectories as mentioned in the last section for deriving the 

elementary effects, they only consider a limited number (i.e., n being n << m) of trajectories. 

The selected n trajectories would have the maximum “spread” in the input space, hence they 

should be representative of all other random trajectories. The concept “spread” is defined 

based on the Euclidean distance dij between any two trajectories Ti and Tj : 

21 1 ( ) ( )

1 1 1
( ) ( )     

0                                                              otherwise

 

  


     


  
k k k i j

p qp q r
ij

X r X r i j
d  

where k is the number of parameters in the model, 
( ) ( )i

pX r  is the r-th coordinate of the p-th 

point in Ti. Then for any specific set (i.e., S) of n trajectories T1, T2, …, TN, the total distance 

DS of set S is defined as DS = 
2

1 1
0.5*( )

n n

iji j
d

   . By enumerating all possible sets which 

contains n trajectories from the initially generated m random trajectories, the set with the 

largest DS can be picked out, and the trajectories within this set are regarded as the Optimized 

Trajectories (OT). 

The advantage of using OT for sampling is that they have the maximum dispersion in the 

input space: the OT set can cover more sampling points than any other non-optimized 

trajectory set. Figure 6 gives a simple example of the non-optimized and optimized 

trajectories: with the same number of trajectories, the OTs can cover 12 sampling points while 

the non-OTs only cover 10 points.  

Figure 6 Example of non-optimized and optimized trajectories 
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Sampling with OT can facilitate a better scanning of the input space without increasing the 

number of model runs needed (Saltelli et al., 2008). Based on the OT sampling, almost the 

same sensitivity indexes can be derived but the total computation time will be greatly reduced. 

In the CSV projects if 10 OTs are used for the sampling, there would be only 2 days needed 

for running the model. 

However, a new problem arises with this methodology: suppose initially 200 trajectories are 

randomly generated in the input space, and only 10 trajectories are finally taken out for 

deriving the sensitivity indexes, there would be around 2.2× 10
16

 possible sets of 10 

trajectories. In this case although running the model only takes 2 days, it could take the 

computer another 50 days to check all possible sets for finding the OTs. Therefore a more 

efficient approach is required to solve this combination optimisation problem and generate the 

optimal set of trajectories. This new approach is introduced in the next section. 

3.4 Sampling with quasi-Optimized Trajectories (quasi-OT) 

As mentioned in the last section, the OT sampling approach relies on finding the set of n 

trajectories out of the initial m trajectories with the longest Euclidean distance. The total 

number of possible combinations in such case is m! / [n!*(m - n)!]. However, under some 

circumstances this combination number could be huge (e.g. when n = 10, m = 300, there are 

over 1.3×10
18

 combinations). As a result it will take the computer quite long time to 

enumerate all combinations. 

In order to solve this problem, we developed a so called quasi-Optimized Trajectories (quasi-

OT) approach: instead of picking the n OTs directly from the original set (named S0) of m 

trajectories, we first pick the set (named S1) of m – 1 trajectories that have the longest 

Euclidean distance within S0, and eliminate the remaining one trajectory; in the second step, 

we pick the set (named S2) of m – 2 trajectories which have the maximum dispersion based on 

S1; in the third step we do the same but based on S2, etc. The size of the chosen trajectory set 

is decreased by one in each step, and finally there will be a set (named Sm-n) with only n 

trajectories. These n trajectories are defined as the quasi-Optimized Trajectories
2
.  

With the quasi-OT approach, there are only m – 1 possible combinations when picking S1 out 

of S0, and m – 2 possible combinations when picking S2 out of S1, etc. The total combinations 

                                                 

2
 These n trajectories are not necessary the same ones founded by the OT approach in Section 3.3, hence we call 

them the quasi-Optimized Trajectories.   
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considered in this approach in order to find the optimized set Sm-n will be (m – n+1)*(m + n)/2. 

This number is much smaller than the number of combinations enumerated by the OT 

approach (e.g. when n = 10, m = 300 there are only 45105 combinations).  

In the CSV project, the total number of combinations needed for selecting the 10 quasi-OTs 

from 200 random trajectories is 20055. The total computation time is accordingly reduced to 

15 minutes. Although the trajectories generated by the quasi-OT approach might not always 

be identical to those obtained by the OT approach, if considering that the total computation 

time has been reduced from 50 days to 15 minutes, it is quite obvious that this approach is still 

more feasible due to the higher efficiency. Our study indicated that with the quasi-OTEE 

method, it just took the computer around 2 days to finish the whole SA for all 14 VISSIM 

parameters. The program and the SA results of this study are described in the next section. 

4. Application and result 

4.1 Sensitivity analysis program 

In the CSV project, a sensitivity analysis program was developed in order to find the most 

important parameters based on the quasi-OTEE method introduced in Section 3. This program 

has three sequential function modules (see Figure 7). 

Figure 7 Function modules of the SA program 
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1) Trajectory Generator 

The first function module of the program is the trajectory generator. This module is used to 

randomly generate a certain number of trajectories in the input space. The input data for this 

module is the range (i.e., minimum possible value and maximum possible value) of each 

parameter. Table 1 shows the possible data ranges of the 14 parameters which are taken out 

from the total 192 VISSIM parameters. Based on the quasi-OT approach mentioned in 

Section 3.4, the program automatically generates the quasi-OTs according to the range of each 

parameter. 

Table 1 The 14 parameters for the sensitivity analysis 

 
 # Parameters Data Range 

1 Average Standstill Distance (m) [1,3] 

2 Additive Part of Desired Safety Distance [0, 4] 

3 Multiplicative Part of Desired Safety Distance [1, 5] 

4 Max Deceleration (Own) (m/s
2
) [-6, -2] 

5 Accepted Deceleration (Own) (m/s
2
) [-1.5, -0.5] 

6 -1 m/s
2
 per Distance (Own) (m) [50, 150] 

7 Max Deceleration (Trailing) (m/s
2
) [-5, -1] 

8 Accepted Deceleration (Trailing) (m/s
2
) [-1.5, -0.5] 

9 -1 m/s
2
 per Distance (Trailing) (m) [50, 150] 

10 Minimum Headway (m) [0.3, 1] 

11 Safety Distance Reduction Factor [0, 1] 

12 Max. Deceleration for Cooperative Braking (m/s
2
) [-5, -1] 

13 Lane Change Distance (m) [150, 250] 

14 Emergency Stop Distance (m) [3, 7] 

 

 
 
 

2) Automatic VISSIM Simulator 

The second module is called Automatic VISSIM Simulator. The inputs of this module are the 

trajectories generated from the last function module. The program reads the data of every 

sampling point from the quasi-OTs first and changes the value of corresponding parameters in 

the VISSIM input file. Then it runs the simulations with different parameters value sets. 

Finally it stores results (e.g., travel time, average speed, etc.) from each simulation in separate 

data files. 



12
th
 Swiss Transport Research Conference 

 ________________________________________________________________________________ May 02-04, 2012 

14 

3) Results Analyzer 

The last function module of the sensitivity analysis program is the Results Analyzer. This 

program reads the simulation results from the last module first and calculates the elementary 

effects for each parameter. Then it calculates the sensitivity indexes (i.e., mean, absolute 

mean and standard deviation) based on the EEs. Finally it gives the sensitivity ranking of the 

parameters according to their sensitivity indexes. 

4.2 Design of the simulation 

In order to get adequate data from the simulation for the sensitivity analysis, 8 road sections in 

the inner city of Zurich (see the road sections marked in orange in Figure 8) were chosen as 

the travel time measurement sections. During the simulation, the vehicles’ travel time for 

passing through each road section was recorded for a period of one hour. The recorded values 

were then stored in different data files when the simulation was finished. 

Figure 8 Travel time measurement sections in the VISSIM network 
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Additionally, we designed four different scenarios (see Table 2) in order to check the 

robustness of the SA results. The goal was to account for different values for the number of 

sampling trajectories, the random seed for generating the trajectories
3
, and the resolution of 

the simulation (i.e., the number of times the vehicle’s position is calculated within one 

simulated second).  

Table 2 The four simulation scenarios 

 
 Scenario Number of Trajectories Random Seed for EE Simulation Resolution 

1 10 1 1 

2 20 1 1 

3 10 1 5 

4 10 2 1 

 
Scenario 1:  this scenario is the basic scenario. It takes 10 trajectories from the input space. 

Those trajectories are generated from the random seed 1. The simulation resolution is set to 1.  

Scenario 2: this scenario uses 10 more trajectories than Scenario 1 (i.e., including the 10 

trajectories from Scenario 1 and 10 additional trajectories), as a result it takes almost twice the 

computation time. It uses the same random seed to generate the trajectories as Scenario 1, and 

the simulation resolution is also the same. 

Scenario 3: this scenario adopts higher resolution than the first scenario. The other two 

settings are the same. 

Scenario 4: it uses the random seed 2 to generate the EE trajectories. This scenario has the 

same number of trajectories and the simulation resolution as Scenario 1, therefore the 

computation time is almost the same. 

4.3 Sensitivity analysis result 

The simulations were run by the SA program as mentioned in Section 4.1 under different 

scenarios. Then the sensitivity indexes were aggregated across all scenarios and hence the so 

called Total Sensitivity Index (TSI) was derived. The TSI represents the sensitivity of the 

                                                 

3
 Since the computer is not able to provide true random numbers, it is essential to use different random seeds to 

generate the EE trajectories, otherwise the sampling process will not be stochastic. 
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model output to variations in the parameters: the model is considered to be more sensitive to 

one parameter if this parameter has a higher TSI than the others. The parameters were then 

sorted by the program. The results are shown in Figure 9 and Figure 10.  

Figure 9 Sensitivity ranking of parameters with data from all 8 measurement sections 

 
 

 

 
 

Figure 10 Sensitivity ranking of parameters without data from Section 3, 6 and 7 
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In Figures 9 and 10, the parameters were sorted according to their relative TSI from the 

highest to lowest. It is reasonable to use the relative TSI to compare the results under different 

circumstances: the highest TSI is manually set to 1 while the others are assigned with the 

relative values. Figure 9 took the data from all 8 measurement sections, while in Figure 10 the 

data from the sections which had very low traffic volume (i.e., less than 20 veh/h) were 

eliminated from the final result.  

The results from Figure 9 and 10 showed that Parameters 1, 2, 13, 3 and 11 always had higher 

TSI than the other parameters. Moreover, if comparing to Parameters 10 and 14, the sequence 

of those 5 parameters was always the same in these two figures. This indicates that under any 

circumstances, the model was always more sensitive to Parameters 1, 2 and 3 (car-following 

model), Parameter 11 (lane-changing model) and Parameter 13 (lane model). On the contrary, 

the model was not sensitive to the variations from Parameter 5. Based on this analysis, those 

five parameters (see Table 3) were selected for the calibration. 

Table 3 The five parameters for further calibration  

 
 

Parameter number Parameters 

1 Average Standstill Distance (m) 

2 Additive Part of Desired Safety Distance 

3 Multiplicative Part of Desired Safety Distance 

11 Safety Distance Reduction Factor 

13 Lane Change Distance (m) 

 
 

5. Conclusions 

The quasi-OTEE method proposed by us is an improvement to the Elementary Effects method, 

providing higher performance in terms of less computation time. The sensitivity analysis 

performed for calibrating VISSIM, a microscopic traffic model with many parameters, 

highlights the advantage of this method when the modeled network is complex and hence it 

takes a long time for each simulation. By applying this method, the computation time for SA 

in the CSV project has been greatly reduced from 77 days to 2 days. The results from SA also 

show that this method is able to identify the most important parameters of a complex model in 

an accurate way. 

When sampling the trajectories, this method differs from the Optimized Trajectories approach 

proposed by Campolongo et al. (2007), and as a result it only gets the so called quasi-
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Optimized Trajectories. However if considering the great time saving, this method is still 

rather advanced with respect to accuracy and efficiency, especially for dealing with the SA of 

complex VISSIM networks. The future research could be devoted to further optimizing the 

sampling process and validating the quasi-OTEE approach under many different scenarios.  
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