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1 Introduction

Zurich, the biggest city in Switzerland, will in the next decade face, as many other big cities around

the world, substantial changes in transport, housing infrastructure and zoning regulation as well

as changes in population and employment. These changes will not only have their impact on the

locational decisions of households and firms, but also on wages, housing prices and the environment.

These changes are usually studied with the tools of urban economics. Most of these tools are partial

models that look at certain aspects of these changes. However, as all these factors are depending on

each other, a more comprehensive tool is needed.

A tool that can analyze all the linkages is a computable general equilibrium (CGE) model. CGE

models have been used extensively over the past 30 years. They can be used to analyze policies

in many economic fields. Trade, environmental, energy and social policy are just a few to name.

With CGE models the researcher can look at the effects of policy alternatives compared with the

benchmark equilibrium. industrial sector-wise and aggregated prices, outputs, GDP and many other

indicators. Most of these models are, however, used for countries or several regions (see for example

Fujita et al., 2001) and not at the urban level. Another drawback is the fact that CGE models treat

transportation as a normal production sector.

There is a variety of transport models developed by transport engineers that explicitly look at

the structure of the public and private transport in a city or region (See for example Ortúzar and

Willumsen, 2010).
∗Corresponding E-mail address: Renger van Nieuwkoop, renger@vannieuwkoop.ch

1



There not many urban computable general equilibrium models that link the transportation struc-

ture of a city with the economic part of the model. Examples are Anas and Kim (1996) and Anas and

Xu (1999). The most obvious reasons for this lacking of integrated urban CGE models are twofold.

First, the researcher has to find solutions for two problems: a traffic assignment problem (TAP) and

a cge problem. Developing a CGE model might be a tedious task, but this is also true for a TAP.

The second problem when developing an urban general equilibrium model are the lack of model

formulations that can be solved by off-the-shelf optimization software.Transportation models are

usually solved with heuristic algorithms.1 In a first step, traffic is assigned to all the arcs, and new

travel times over the arcs are calculated. In a next step the traffic assignment is adjusted. This

process is repeated until a solution is found.

Ferris et al. (1998) showed in their paper that the Wardropian traffic equilibrium model can be

solved efficiently as a mixed complementarity programming problem using off-the-shelf software. In

contrast to pure transportation network models, in this formulation this model formulation does not

require enumeration of all paths between origin-destination pairs. This paper seemed to never have

found its way to the transport engineers.

CGE models can be formulated and solved in different ways (See for example Ginsburgh and

Keyzer, 1997). The researcher can write his own algorithm or use off-the-shelf software. This kind

of software allows the modeler to concentrate on the model formulation without having to write his

own algorithm.2

In this paper we present a formulation of an urban general equilibrium model that embeds a closed

spatially disaggregate Alonso-Muth-Mills economic model of housing and labor markets3 within a

model of individually-rational route choice on the (congested) traffic network (Wardrop, 1952). The

central assumption of the Alonso-Muth-Mills (AMM) model is that households choose residence

and employment locations which arbitrage differences various locations within the urban area. This

implies that consumers trade locations to work and live on the basis of housing prices, wages, and

commuting time (e.g. Anas and Xu, 1999). The transport costs in the AMM Model depend on the

distance between the location where the household lives and where he works. In our model there are

several ways to travel from one node to another. The distance depends on the route chosen.

In contrast to pure transport models prices and demand for transport, employment and housing
1See for example Sheffi (1985), van Vliet (1978),LeBlanc and Mustafa (1979), LeBlanc et al. (1975), Ouorou et

al. (2000).
2We use GAMS. GAMS is an acronym for General Algebraic Modeling System. It is a high-level modeling system

for mathematical programming and optimization and consists of a language compiler and a stable of integrated high-

performance solvers. GAMS is tailored for complex, large scale modeling applications, and allows you to build large

maintainable models that can be adapted quickly to new situations.
3For a description of the AMM model see for example Glaeser (2008, Chapter 2) or Brueckner (1987).
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are endogenized. The model has two interacting components: a model which describes the different

transport modes, routes and traffic flows given where people live and work, and a sorting model

which describes where people choose to live and work. Households can choose between the different

transport modes based on a logit demand formulation.

The economic aspects of the model follow the Walrasian-Arrow-Debreu paradigm. Consumers

earn money by working, and they allocate their income to housing and consumption. The model

has a medium-term perspective by modeling equilibrium sorting of households on a metropolitan

road network. The model includes both traffic congestion and colocational externalities among

ïňĄrms. Taxes can be applied to both residential and employer locations such that private decisions

of households and ïňĄrms produce an optimal pattern of location. Transport costs for commuting

are capitalized in housing values (Glazer and Van Dender, 2002) and can lead to wage differentials

depending on zone of employment (Darren and Wheaton, 2001, as estimated by).

We will show that this kind of models can be cast in the framework of a mixed complementarity

problem and can be solved by off-the-shelve software. We will use the multi commodity formulation

of the traffic assignment problem by Ferris et al. (1998) and extend their model by adding the general

equilibrium model.

2 Model Description

2.1 Mixed Complementarity Problems

The model for Zurich consists of two sub models: a spatially disaggregate Alonso-Muth-Mills eco-

nomic model of housing and labor markets and a model of individually-rational route choice on the

(congested) traffic network(Wardrop, 1952). Both models are embedded in a single mixed comple-

mentarity problem (MCP).

MCPs can be used for expressing a variety of economic models for both markets and games.

The word “mixed” in the expression MCP reflects the fact that there may be equations as well as

inequalities. Computational evidence suggests that algorithms for solving MCPs are relatively reliable

and efficient, particularly for models which are not natural optimization problems. The development

of these modeling format was motivated by theoretical and practical developments in algorithms for

nonlinear complementarity problems and variational inequalities. The most recent techniques are

based on ideas from interior-point algorithms for linear programming (Kojima et al., 1991). A survey

of developments in the theory and applications of these methods is provided by Harker and Pang

(1990).

A MCP is specified by the lower bounds l, the upper bounds u and the function F (taken from
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Ferris and Munson, 2010, p.7):

Given lower bounds l ∈ {R ∪ −∞}n, upper bounds u ∈ {R ∪∞}n and a function F : Rn → Rn

find z ∈ Rn such that precisely one of the following holds for each i ∈ {1, . . . , n}:

Fi(z) = 0 and li ≤ zi ≤ ui

Fi(z) > 0 and zi = li

Fi(z) < 0 and zi = ui.

A number of special cases can be formulated as a MCP, including a (non)linear system of equations,

a nonlinear (complementarity) problem, and a finite-dimensional system of variational equations.

Often the complementarity problem is just given by the optimality conditions of the original

problem. However, and this is the advantage of the MCP formulation, there is no optimization problem

corresponding to the complementarity conditions. Examples are the famous transport problem by

Dantzig, the Walras equilibrium and the von-Thunen land model. A model formulation of these

examples can be found in Ferris and Munson (2010).

Our models can be written as a nonlinear complementarity problem (Ferris and Munson, 2010,

p.5): Given a function F : Rn → Rn,find z ∈ Rn such that 0 ≤ z ⊥ F (z) ≥ 0. The ⊥ sign

signifies that one of the inequalities is satisfied as an equality. This means that either zi = 0 or

Fi(zi) = 0 for every i.

2.2 The Transport Sub model

2.2.1 The Transport Problem

The traffic model consists of a public and private transport network. A transport network can be

defined as an abstraction of the transport infrastructure system with a number of constraints. It

consist of nodes and links with certain characteristics.

The network constraints state that the flows on the arcs never can be negative and should be

conservative in every node with the exception of the origin and destination nodes (Steenbrink, 1974,

p.22).

Within the transport network one can distinguish between the transport supply and demand side.

The transport problem can now be defined as finding the optimal way to assign the demand to

the network. In the transport problem we calculate the fastest times to travel from one node to

another for all users of the network either by minimizing the travel time of the individual user (user

equilibrium) or the average travel time for all users of the network (social optimum).

The transport problem can be formulated as a multi-commodity flow problem (Steenbrink, 1974,

p.22).
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The MCP formulation of our network consists of only six complementarity equation groups (Ferris

et al., 1998).

In the following i, j, k are indices which will be used to describe the nodes in the network. The

indices are also used to describe arcs. Each node has associated with it household groups h (for

example high and low skilled). The two different transportation modes are public(with index pb) and

private(with index pr).

The first group of equations defines the aggregate flow Fmi,j for mode m on the arc between node

i and node j as the sum of the traffic of all households going from i to j. Xm
h,i,j,k is the flow of

people from household h using arc

Fmi,j =
∑
h,k

Xm
h,i,j,k ⊥ Fmi,j (1)

where Fmi,j ≥ 0 and Xm
h,i,j,k ≥ 0.

The next group of equations define the travel time or costs on an arc. The effect of road capacity

on travel times is specified by means of volume-delay functions expressing the travel time (or cost)

on a link as a function of the traffic volume. The most popular volume-delay function is the one from

the Bureau of Public Roads (1964) and defines the travel time on an arc τpri,j by:

τpri,j = αpri,j +Bi,j

(
F pri,j
κi,j

)4

⊥ τpri,j , (2)

where α is the free-flow time on the arc, the congestion scale factor (Bi,j) and the reference capacity

(κi,j). The time costs will increase as the arc gets more congested.4

Figure 1 – Volume-delay function private transport (left) and capacity constraint pubic transport (right)

F pri,j

τpri,j

αpri,j +Bi,j

(
F

pr
i,j

κi,j

)4

αpri,j
F pri,j

τpri,j

αpbi,j + µi,j

F ij

αpbi,j

In the case of public transport we assume that the there is a capacity constraint and no congestion.

The time for traveling on an arc is given by the third group of equations and is defined as the free
4We do not assume that traffic on other links will influence the travel time on a specific arc.
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flow time on the arc plus, in case of reaching the capacity constraint, a shadow price µi,j :

τpbi,j = αpbi,j + µi,j ⊥ τpbi,j (3)

The capacity constraint on the public transport arc is given by the next group of equations:

F i,j ≥ F pbi,j ⊥ µi,j . (4)

If the capacity is reached, the shadow price of the constraint µ will go to infinity and people will

choose another link or mode for traveling.

The fifth group of equations define the flow conservation at node j for the number of people

traveling from this node to destination k:∑
i

Xm
h,i,j,k −

∑
i

Xm
h,j,i,k = Nm

h,j,k ⊥ Tmh,j,k (5)

where Nm
h,j,k is the total flow of people traveling with transport mode m from node j to node k. This

number is taken from the origin-destination matrix and equal to 25 in figure 3. This number should

be equal to the sum over all passengers traveling with destination k from incoming arcs (in the figure

10 passengers coming from i1 and i2; the black arrows) minus the passengers with destination k on

the outgoing arcs (these are the dotted arrows pointing to destination node k). Notice that in the

example the number of people living at node j and traveling to node k is 5. It is irrelevant how many

nodes the traveler passes through when he departs for k from j. The associated complementarity

variable is the minimum time from node j to node k.

Figure 2 – Flow balance for node j

i2

i1

j i3

i4

∑
iXi,j,k −

∑
iXj,i,k = Nj,k

k10

10

10

15

The last equation group reflects the second Wardropian principle. In its original form it states

that “the journey times on all the routes actually used are equal, and less than those which would

be experienced by a single vehicle on any unused route” (Wardrop, 1952, p. 345). On the left hand

side we have the minimal travel time T for household h traveling with mode m from node i to k.

This travel time should be less than or equal to the travel time τ on an arc starting from node i to

any of the adjacent nodes j, plus the minimal time T from traveling from the adjacent node to the

destination node k. In figure 3 we are looking at the minimal time for traveling from node i to node
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k. The time for traveling to the adjacent nodes j1 to j3 are 6, 3 and 5 minutes. From every adjacent

node j the minimal times for traveling to node k are 7, 8 and 7 minutes. This information is coming

from the Wardropian equations for these nodes and calculated simultaneously. For our traveler the

fastest route is equal to 11 minutes. He travels from node i to node j2 and then to k.

Tmh,i,k ≤ τmi,j + Tmh,j,k and Th,k,k = 0 ⊥ Xm
h,i,j . (6)

Figure 3 – The second Wardropian principle for node j
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Note that a complete enumeration of all possible routes from node i to node k is not necessary.

The information on the fastest routes from the adjacent nodes j to the destination k is given in the

corresponding minimum time equations for traveling from j to k. The time minimization equations

are associated with the flow on the adjacent arcs Xm
h,i,j as complementary variables. This variable is

only positive for those adjacent arcs where the traveling time from i to k is minimal. If this is not

the case, the flow on that arc will be zero.

2.3 The Economic Sub model

The economic model is formulated as an Arrow-Debreu model with households and firms who max-

imize their utility and profits respectively. Many of the assumptions on the structure of the model

and the share parameters can be easily replaced by more realistic assumptions.

Households are characterized by the place they live (i), the place they work (j), their skill (h)

and the transport mode (m) they choose for traveling to work. They maximize their utility level with

respect to their income. The utility is given by a nested Constant-Elasticity-of-Substitution function

(see equations (7) and figure 4). At the lowest level the household decides on how much it wants

to consume (Ch,i) and on the size of the house it wants to rent (Hh,i). The substitution elasticity

between these two goods is σhh and the value share of house rent is given by θh. At the next level

it decides between demand for leisure time Lh,m,i,j and the aggregate of consumption and housing

with substitution elasticity 1 and the share leisure of total consumption (θls).
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Figure 4 – Production and utility function

Y

Capital Labor

1

Utility

Leisure

Housing Consumption

1

σhh

Uh,m,i,j = LS
θlsh
h,m,i,j

([
θhH

1−σhh
h,i + (1− θh)C1−σhh

h,i

] 1

1−σh
h

)1−θlsh
(7)

The income of a household working in j with skill h is given by the wage income at j plus the capital

income out of the capital (K) and housing stock (H). We assume that every household holds the

same share of capital with local share share θd:

INCh,j = PLh,j +

∑
i(Kh,i +Hh,i)∑

m n
tot
h,m

[
θdhPK + (1− θdh)

]
⊥ INCh,j (8)

PCh,i =
(
hvshPH

1−σhh
h,i + (1− hvsh)PC1−σhh

) 1

1−σh
h ⊥ PCh,i (9)

On the production side we have at every node identical firms who use either high- or low-skilled

labor and capital as inputs to produce a single output Y (see the left part of figure 4). We assume

for simplicity a Cobb-Douglas production function.5

Zero profit for production at node j can be formulated as follows:(
PLs,j

PLs

)1−θks (RKs,j

RKs,k

)θks
> PYs ⊥ Ys,j (10)

where PLs,j is the wage for labor of skill s and RKj the rental price at node j. thetak is the value

share of capital. PYs and Ys,j are the price and the output level of the production sector:

Labor demand at node j is given by:∑
m,i

Nl,m,i,j = (1− θkl )
PYhYl,j
PLl,j

⊥ PLs,j , (11)

where Nl,m,i,j is the labor supply from a household with skill s living at node i and working in j who

uses m as transport mode.

Capital demand at node j is given by the following equation:

Ks,j = θks
PYsYs,j
RKs,j

⊥ RKs,j (12)

5The number of different firms at a node can be easily enlarged and the production technology replaced by another

functional form and a more complex nesting structure.
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The housing market clearing node i is given by:

Hh,i = H
x
h,i + θh

∑
m,j

Nh,m,i,j −N
x
h,m,i,j

 INCh,i
PC

σhh−1

h,i

PH
σhh
h,i

⊥ PHh,i, (13)

where Hh,i is the given housing stock and PHh,i is the rent paid by household h at node i. We

assume that a certain number of people at i (Nx will not move and rent Hx
h,i.

As the capital and housing stock is fixed the capital price index can be written as follows:

PK =

∑
h,i PHh,iHh,i +

∑
s,j RKs,jKs,j∑

h,iHh,i +
∑

s,jKs,j

⊥ PK (14)

Leisure supply is calibrated to unity when commute time equals t:

LSh,m,i,j =
tmaxh,m − Th,m,i,j
tmaxh,m − th,m

PCh,i ⊥ LSh,m,i,j (15)

The share of people using a specific transport mode θh,m is given by a logit formulation. Note

that θh,m depends on the the common utility level Uh,m of the household group with skill m and

using transport mode m and therefore not only on the time costs for traveling.

θh,m =
θh,me

λhUHh,m∑
m θh,me

λhUHh,m
⊥ θh,m (16)

The sorting of the households is done by forcing the ratio of the individual household level Uh,m,i,j

to the benchmark utility level be equal in the equilibrium to common utility level:

UHh,m =
Uh,m,i,j

Uh,m,i,j
⊥ Uh,m,i,j (17)

If one individual household at, for example node r working at node r would attain a higher utility

level than the common utility level, households would like to move to live at node k and work at

node r using the same transport mode as the household with the higher utility level. This would

drive the wages down, and the rental prices and travel costs up. Finally, the common index level and

the mode share would adjust in such a way that the individual household utility ratio levels would be

equal again.

The number of households with skill h that use transport mode m is given by:

θh,mN
tot
h =

∑
i,j

(
Nh,m,i,j −N

x
h,m,i,j

)
⊥ UHh,m. (18)

We assume that a certain number of households (Nx
h,m,i,j) will not change location and work place.

9



3 Calibration

Ideally we would like to calibrate the model to the observed flows and travel times. As we do not have

(yet) this information, we let the transport model sove for this information and use it to calibrate the

model.

In the first step we solve for the least-cost flow. We begin with a origin-destination matrix

describing where people live and work (assuming that all traffic flows are commuters)6 We minimize

the total travel cost:

OBJ =
∑

h,m,i,j,k

τi,jXh,i,j,k (19)

with the equations (2), (3), (5) and (4).

This gives us values for the variables τmi,j and µi,j . These are fixed in the next step. We then

compute the flow times. For this we set up a dual LP to determine least cost travel times in the

optimal routing assignment:

OBJ =
∑
h,m,i,j

Th,m,i,j (20)

subject to equation (6).

In the third step we solve the model with equilibrium traffic flows (Nash equilibrium). This model

is stated as a MCP consisting of the equations (2), (3), (5), (4) and (6).

Calibrating the reference wage rate to unity, the value of labor demand at node i equals the

number of workers:

LDh,i =
∑
m,j

Nh,m,j,i (21)

where Nh,m,j,i is the solution of the Nash Equilibrium.

We calibrate the rental rate of capital to unity as well. The aggregate value of output is based

on employment, and the capital value share then defines capital supply in efficiency units:

Ks,i =
θksPLsLDs,i

1− θks
(22)

where θks is the capital value share.

The housing stock at node i equals the value of market expenditure times the housing value

share. The value of market expenditure net housing equals the value of labor and capital earnings.

We can infer this income based on labor supply divided by the labor share of output.
6We only had information on where people live and work in Zurich. Therefore, we use a gravity model to find the

origin-destination matrix.
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The imputed value of labor (Lh,i), capital endowment (Kh,i ) and the household stock Hh,i for

every household at node i with skill h is given by:

Lh,i =

∑
m,j PLhNh,m,i,j

1− θkh
Kh,i = δsLh,i

Hh,i =
θhLh,i
1− θh

The total number of households with skill h using transport mode m is given by:

Nh,m =
∑
i,j

Nh,m,i,j (23)

We assume that the maximum possible commute is twice the longest commute observed in the

benchmark traffic flows:

tmaxh,m = maxh,m,i,jTh,m,i,j (24)

The commuter-weighted average commute time is used to anchor the utility function:

t
max
h,m =

∑
i,j

Nh,m,i,jTh,m, i, jNh,m (25)

4 Data

We used data at the quarter level for Zurich, the biggest city in Switzerland. Quarter specific

information can be found in table 1 in the Appendix A.

Zurich has a population of about 370’000 people and almost 350’000 people work in Zurich

(Statistik Stadt Zürich, 2007). Zurich has 34 quarters with an average are of 2.7 square kilometers

and an average population density of 4’000 persons/km2.

We have data on travel times for public and private transport from the Cantonal Transport Model

for the 302 travel assignment zones. We used this information to calculate the a weighted travel time

from the centroids of the quarters to the other quarters. There are 138 arcs (64 bidirectional) and

two transport modes.

For the public transport mode we had to assume values for the volume-delay functions (see

Appendix ).

5 Preliminary Scenarios and Results

The model described above will be extended for the final version of the paper. We will add the

possibility to take a look at zoning policies in the city and will improve the data base of the model.

In the final version of the paper there will be a more realsitic set of scenarios and in this version

11



Figure 5 – The 34 quarters (left) and the 64 arcs between the quarters of Zurich (right)

Figure 6 – Distribution of population and employment in Zurich

of the paper we will only look at a simple test scenario, where we assume that there is an inflow

of high-skilled people of 2% and a part of the people who originally did not have the possibility to
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change locations for living and working can now change locations. This scenario is only used to show

the possiblities of the model sofar.

The following figure shows the results for the main economic indicators. The first row with

diagrams show the impact on value added prices and output level. An inflow of high-skilled people

will have an effect on the wage of both skill groups in all the quarters of the city (see first diagram

on the left). The wage for the high-skilled households falls by almost 3% due to the increased supply

of labor. The effect on the wage of the low skilled groups is very small. Note however that for

some households it is slightly positive and for others negative. The capital price in the high skilled

production sectors increases (diagram in the center of the first row) because it is relatively scarce

compared to the input of high skilled labor. The output of the high-skilled sectors increases (diagram

on the right). The second row shows the effects on income, price of consumption and household

rents. The rent for the high-skilled households goes up by 6%. Note that there is also an increase in

the rent for the low-skilled groups.

Impact on traffic (congestion, travel time) will be presented at the conference.
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Figure 7 – Effects on economic variables (percentage change)
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6 Preliminary Conclusions and further research

The first part of this paper shows that it is possible to cast a general equilibrium model combined with

a transport model in a complementarity framework that can be solved very efficiently with off-the-shel

solvers. Although we have not tested this formulation with cities with more nodes and modes, we

hope that this formulation will also be very efficient for bigger problems. First results with a dummy

scenario are promising but have shown that there is still much to do. For this paper we will continue

working on the data side by adding more realistic data on households, zoning and transport. On the

model side the transport formulation will have to be calibrated to real-world values.
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A Tables

Table 1 – Quarters of Zurich: Number, Name, Population, Employment and Area (Statistik Stadt Zürich,

2007)

ID Quarter Population Empl.Industry Empl. Services Area (km2)

11 Rathaus 3’097 308 7’500 0.38

12 Hochschulen 711 286 14’731 0.56

13 Lindenhof 955 341 10’913 0.23

14 City 845 199 25’831 0.64

21 Wollishofen 15’587 878 4’595 5.75

23 Leimbach 4’944 85 392 2.92

24 Enge 8’367 1’026 25’523 2.4

31 Alt-Wiedikon 15’231 2’347 15’428 1.85

33 Friesenberg 10’342 66 3’770 5.15

34 Sihlfeld 20’314 1’031 7’356 1.64

41 Werd 3’865 1’357 4’901 0.31

42 Langstrasse 10’332 1’037 16’885 1.13

44 Hard 12’508 1’018 3’975 1.46

51 Gewerbeschule 9’735 1’377 9’979 0.73

52 Escher Wyss 2’987 3’050 16’219 1.27

61 Unterstrass 19’959 826 9’497 2.46

63 Oberstrass 9’698 261 5’305 2.64

71 Fluntern 7’379 180 9’202 2.84

72 Hottingen 10’180 607 8’384 5.05

73 Hirslanden 6’904 307 2’472 2.2

74 Witikon 9’958 130 1’308 4.93

81 Seefeld 4’842 1’410 6’759 2.45

82 Mühlebach 5’549 497 6’630 0.63

83 Weinegg 4’816 240 6’748 1.72

91 Albisrieden 17’275 1’268 5’656 4.6

92 Altstetten 28’868 3’883 21’801 7.47

101 Höngg 21’017 548 5’964 6.98

102 Wipkingen 15’392 642 5’593 2.11

111 Affoltern 18’793 722 1’829 6.04

115 Oerlikon 20’318 3’491 11’533 2.67

119 Seebach 20’757 4’541 13’760 4.72

121 Saatlen 6’695 208 807 1.13

122 Schwamendingen-Mitte 10’637 636 1’851 2.23

123 Hirzenbach 11’205 217 897 2.62

Total 370’062 35’020 293’994 91.91
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