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Abstract

Different than the conventional queueing systems, in spatial queues, servers travel to the cus-
tomers and provide service on the scene. This property makes them applicable to emergency re-
sponse systems (e.g. ambulances, police, fire brigades) and on-demand transportation systems
(e.g. shuttle bus services, paratransit, taxis). The difference between the spatial queues and
conventional queueing systems is various types of customers and servers and different service
rates for different customer-server pairs. For the Markovian arrival and service characteristics,
one of the methods to find system performance measures is to model and calculate steady state
probability of the Markov chain for the hypercube queueing model (HQM) (Larson, 1974).

One of the obstacles on the way to apply HQMs to real life problems is the size of the problem;
it grows exponentially with the number of servers and a linear system with exponential number
of variables should be solved for each instance. In this research, in order to increase scalability
of the problem, we propose two new models. In addition to that, we modeled the problem
by using Monte Carlo simulation and tested the convergence and stability properties of the
simulation results and compare them with stationary distributions.

Keywords
emergency response, spatial queues, hypercube queueing models, location models
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1 Introduction

Emergency response systems are important for modern societies. They protect public health,
provide assistance and ensure safety. Response areas of ambulances, design of police-beats or
locations of fire brigades are important decisions for these systems. Although the demand rate
is low on average for emergency response systems, the service availability is important when
they are needed. In other words, in addition to adequate coverage, rapid and reliable response
times are also important for emergency response systems.

One of the main issues that emergency response systems should cope with is the level of con-
gestion in the service requests. Although on average the system utilization is not close to one,
the probabilistic nature of the demand and service times can build congestions. The amount
of congestion is directly related to the number of servers and the budget that is dedicated to
these systems. But the smart strategic decisions have great effect on them as well. That is the
reason, why we need scientific approaches consistent but also applicable. Clever allocation of
the resources can improve the level of service without increasing the dedicated budgets.

On-demand transportation (also known as demand responsive transport, dial-a-ride transit) is
an advanced, user-oriented form of public transport with flexible routing and scheduling of
vehicles operating in shared-ride mode between pick-up and drop-off locations according to
passengers needs. These systems provide service in areas with low passenger demand where
regular bus service is not applicable. Shuttle bus services, paratransit, shared taxis and taxicabs
are some types of on-demand transportation systems.

Although intelligent transportation systems technologies (e.g. signal priority, exclusive lanes,
route guidance information) help on-demand transportation systems to work better, there is still
need for efficient scheduling and dispatching strategies for these highly variant and congested
systems. For instance, deciding the borders of sub-regions and number of paratransit vehicles
needed in each region to maximize service rate with limited number of vehicles is an interesting
and important question for these kinds of systems.

2 Literature Survey

The early models dealing with the location of emergency response systems assume determin-
istic demand. They ignored stochastic nature of the problem and dealt on coverage and median
models.

Median problems locate the facilities on discrete candidate location set in such a way that
minimizes average response time or distance. Hakimi (1964) proposed p-median problem in
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which the main aim is to locate p facilities on a finite set of candidate locations in such a
way that minimizes total transportation cost of n customers. Although it is a combinatorial
optimization problem, there are some exact algorithms (Galvão and Raggi, 1989; Körkel, 1989;
Avella and Sassano, 2001) and heuristics (Daskin and Haghani, 1984; Schilling et al., 1993) as
well. There exists a recent survey, Mladenović et al. (2007), which covers most of the literature
on meta-heuristics about this subject.

Coverage models are used to locate limited number of facilities (i.e. emergency response sys-
tems) in such a way to maximize total coverage. Toregas et al. (1971) proposed the location

set covering problem in which the objective is to cover the entire area within a desired distance
by minimum number of facilities. The maximal covering location problem (MCLP) which is
proposed by Church and ReVelle (1974), maximizes coverage within a desired distance S by
locating a fixed number of facilities. The probabilistic version of this problem, namely max-

imum availability location problem (MALP), the maximized value is the regions which are
covered with α-reliability (Marianov and ReVelle, 1996). Daskin and Stern (1981) altered the
MCLP and proposed a model named backup coverage model that maximizes the number of
regions that are covered more than once. Gendreau et al. (1997) modified the backup coverage
model with two time limits.

Although the literature mainly covers static and deterministic location models, in recent models
uncertainty is also taken into account. This uncertainty can be either related to planning future
periods (dynamic models) or input model parameters (probabilistic models). Dynamic models

are suitable for models which, are considering the relocation of vehicles. The first article on
this subject is written by Ballou (1968) in which the main aim is to relocate a warehouse in
such a way that maximizes the profit in a finite horizon. Scott (1971) works with the extension
of this problem with more than one facilities. Schilling (1980) extends MCLP with additional
time constraint.

For urban problems, it is obvious that probabilistic models are the most suitable ones. For
location and allocation of emergency response systems and other service on-demand vehicles
(e.g. taxis), it is more convenient to model both the demands and the duration of the time the
facility serving these demands with probabilistic models. In these models, with some probabil-
ity, it is always possible to have demand which cannot be intervened by any facility, because
of stochasticity in both demand and service times. Manne (1961), Daskin (1983), ReVelle and
Hogan (1989) and, Marianov and ReVelle (1996) are some of the important articles written in
this literature.

Larson (1974) proposed a hypercube queueing model (HQM) which is the first model that
embeds the queueing theory in facility location allocation problems. This model analyzes sys-
tems such as emergency services (e.g. police, fire, ambulance, emergency repair), door-to-door
pickup and delivery services (e.g. mail delivery, solid waste collection), neighborhood service
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centers (e.g. outpatient clinics, libraries, social work agencies) and transportation services (e.g.
bus and subway services, taxicab services, dial-a-ride systems) which has response district de-
sign and service-to-customer mode (Larson and Odoni, 1981). The solution of this model pro-
vides state probabilities and associated system performance measures (e.g. workload, average
service rate, loss rate) for given server locations. “The HQM is not an optimization model; it is
only a descriptive model that permits the analysis of scenarios” (Galvão and Morabito, 2008).
HQM models the current state as a continuous-time Markov process but does not determine
the optimal configuration. Police patrolling (Sacks and Grief, 1994) and ambulance location
(Brandeau and Larson, 1986) are two applications modeled by HQM. Marianov and ReVelle
(1996) extended the MALP and developed queueing maximum availability location problem.

The first model proposed by Larson (1974) assumes that the service time is independent of
the locations of the calls for service and the dispatched unit. This argument was supported
by the idea that time spend on the road is negligible compared to service time. This can be
a fact for fire brigades but not for the ambulances and on-demand vehicles. However even
with this simplification, as number of servers (n) is increased, number of states (2n) grows
exponentially. That’s why Larson (1975) also proposed a heuristic method because of this
exponential behavior. As an extension, Atkinson et al. (2008) assume different service rates
for each server in the system with equal interdistrict or intradistrict responses which increases
number of states (3n) significantly. Recently, Iannoni and Morabito (2007); Iannoni et al.

(2008) embedded hypercube in a genetic algorithm framework to locate emergency vehicles
along a highway. They extend the problem to enable multiple dispatch (e.g. more than one
server can intervene for the same incident).Geroliminis et al. (2009, 2011) integrate the location
and distracting decisions in the same optimization and solve the problem by using steepest
descent (Geroliminis et al., 2009) and genetic algorithms (Geroliminis et al., 2011).

3 Hypercube Queueing Model

The conventional HQM models (Larson, 1974) include hypercube in the name since the tran-
sition graph of the continuous time Markov chain used to model this structure has a hypercube
structure when the number of servers is more than three. State variables contain n binary vari-
ables which shows if server i is available (0) or busy (1). In other words, each state is a number
in base 2 and each digit shows the state of the corresponding server. For each region which are
called atoms (j) there exist a priority list of servers. Incidents in each region are served by the
available server with the highest priority for this atom. If it does not exist any available server,
either the call is lost (i.e. call for ambulance is dispatched by a backup) or joins a queue to be
served (i.e. taxi customers are asked to be waited until there is one available), depending on
the problem assumptions. Service requests arrive from each atom according to an independent
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Figure 1: Larson (1974)’s HQM for three servers

Poisson process with parameter λj . Larson (1974) assumes each server has exponentially dis-
tributed equal service rates µi for any region. The transition graph of HQM with three states
for this model can be seen in Figure 1. Note that, as the system gets full, in other words more
servers get busy, the burden on the free servers increases. For instance in state “110” all the
servers but the first are busy. That’s why the next incident in any region will be served by the
first server. This is also the reason of having high transition rate (λ1+λ2+λ3) from state “110”
to “111”.

For different service rates for inter and intradistrict responses, the size of the model will in-
crease. In this model we have three different possibilities for each server: available (0), busy
with intradistrict response (1) and busy with interdistrict response (2) (Atkinson et al., 2008).
Figure 2 is a transition graph of an example with two servers. As an example “20”, in which
both regions are served by the servers of the other regions, represents the state where the first
server is available and the second server intervenes an incident outside its own region.

It is good to note here that, the intradistrict server has always priority for the incidents inside
its own region. We can see this in the transition diagram. When the system is empty, if there is
an incident in a region, we cannot assign server from another region. This is also the case for
Larson (1974)’s model. However, we should also note here that, this does not prevent having
states such as “22”. Although, practically it is rare for lightly congested systems, it has always
a nonnegative probability in theory.
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Figure 2: HQM for two servers with different inter (µi) and intradistrict (µ′
i) service rates

4 Extended Hypercube Queueing Models

In the models proposed by Larson (1974) and its counterpart with different inter and intradistrict
service rates, there are 2n and 3n states respectively which makes each limiting probability
impossible to calculate, for even very small cases. For instance, if there are 20 servers, number
of states for 2n model has around one million whereas for the 3n case this is more than three
billions. In other words, we need to solve a system of equations with over million unknowns.
One of the ways to get rid of this problem can be looking at the problem in an aggregate level.

In extended HQMs, we alter the conventional model such a way that more than one servers can
be assigned to each region. We model the problem as a discrete location problem with queueing
characteristics. In this new model, there are I types of servers which we call them bins. Each
server in these bins serves their own customers and the rest with different service rates (µi and
µ′
i). There is only one queue and this queue works in first in first out (FIFO) manner. Each

customer who enters the system or leaves the queue to have service chooses the server which
serves him with the maximum rate (which is given as priority list). We have n servers and
our aim is to decide how many servers should we assign for each bin (ni for ∀i) which will
optimize the average performance of the system (e.g. minimize interdistrict response, loss rate
and/or maximize average service rate). If the interarrival time of each customer and service
times of each server had deterministic distributions, this model would be modeled as a simple
discrete location allocation problem and could be solved by a linear programming formulation.
However, we are interested in stochastic systems and this model is more appropriate for the
probabilistic demand and service times.
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At first glance the proposed model can be seen suboptimal for emergency response systems
because, making responsible regions smaller and assigning one emergency response system
for each region would give better results. We are restricting the region sizes and assigning
more servers in each region which can give suboptimal solutions. However in the conventional
HQM, number of states increases extremely fast and with this extension, model can be used to
solve real life instances. Furthermore, for deciding the location and allocation of on-demand
transportation systems, this approach is more convenient. Cities can be partitioned into regions
and number of on-demand vehicles which will optimize the overall system performance can be
assigned to these regions accordingly. Although this model has exponential number of states
((n1 + 1) (n2 + 1) ... (nI + 1)) it is far less than the conventional hypercube models. As an
example, a system of 3 bins with 9, 6 and 5 servers in each for different inter and intradistrict
service rate case (µi 6= µ′

i for ∀i) number of states would be 32340 whereas this number would
be 420 if we assume equal service rates for inter and intradistrict responses (µi = µ′

i for ∀i).
Please note that for the same total number of servers, the conventional two models need over
million states.

The first extended hypercube queueing model (EHQM) that we are proposing assumes equal
intra and interdistrict service rates. Each number in the state name presents number of busy
servers in this bin. For instance “132” stands for 2, 3 and 1 busy servers in the first, second
and third bins respectively. An EHQM model contains ((n1 + 1) (n2 + 1) ... (nI + 1)) states
in which ni is assigned number of servers in bin i and I is the total number of bins. The
transition graph of an example with three bins which has 3,2 and 1 servers respectively in each
bin is shown in Figure 3. Note that this model has 24 states, which is 64 for Larson (1974)’s
hypercube model. By using the following transition graph we can write the transition equations
for each state and can calculate steady state probabilities. For instance for the state “012” in
which there are 2, 1 and 0 busy servers in the first, second and third bins we can write the
following transition equation:

P012 (λ1 + λ2 + λ3 + 2µ1 + µ2) = λ1P011 + λ2P002 + 3µ1P013 + 2µ2P022 + µ3P112 (1)

For different intra and inter-arrival service rates EHQM is not descriptive enough. For this
reason, we are proposing another model (EHQM′) which has more states but differentiates the
intra and interdistrict responses from each other. Note that it is also possible to construct a
model which is more detailed with different service rates for each customer-server pairs but
this might create excessive amount of states. That’s why we have only two different service
rates for each server, µi (intradistrict) or µ′

i (interdistrict). In addition to that, in the states, there
are two variables for each server. A variable pair for each server shows number of intra and

interdistrict responses separately. This new model has
∏
i

(
ni + 2

2

)
states.
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Figure 3: EHQM for three bins with equal inter and intradistrict service rates (µi)

In Figure 4 one can see a transition matrix of an (EHQM′) model which has 2 bins with 2 servers
in each. Each row of the state name gives information about one of the servers. For instance in
the state name “1110 ”, first row shows the properties of the first server. Both of its servers are
busy where the number on the left shows one of the servers serves intradistrict response and the
number on the right shows one of them serves an interdistrict response. Only the number on
the right is nonzero in the second raw which means there exists only one busy server in second
bin which serves an intradistrict response. This state can also be seen separately with the states
connected to it in Figure 5. The transition equation for the same state can be written as:

P11
10
(λ1 + λ2 + µ1 + µ′

1 + µ2) = λ1P01
10
+ λ2P11

00
+ µ′

2P11
11
+ 2µ2P11

20
(2)
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interdistrict(µ′
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5 Monte Carlo Sampling

Monte Carlo sampling is a class of computational algorithm that depends on repeated random
sampling to compute the sample results. In our problem, we plan to utilize this algorithm
to generate random arrival samples. Our main aim is to model spatial queueing systems as
mixed integer linear programming problems. We plan to use the generated arrival samples with
deterministic service time estimation to find where to locate the servers.

Before modeling the spatial queueing systems by using a mixed integer linear programming
formulation, we need to be sure that the properties of the HQM can be represented by Monte
Carlo sampling. For this purpose, a discrete time event simulation is created and the results
acquired from the simulator are compared with the results of the HQMs. We compared both
convergence and stability properties of the simulation. For the convergence check, we com-
pared the convergence rate of the simulation to the probabilities calculated by solving Markov
model of the HQM. Similar to that, for the stability performance of the method, we investigated
the probabilities of the simulation after sharp and tense changes. The experiments give promis-
ing results and show that this method is applicable for any HQMs. Before going into details of
these experiments, let us start with describing the simulation environment.

In these experiments we tested the 3n aggregate HQM without queue. The main reason to work
with a system without queue is the computation difficulties of 3n aggregate models with queue.
Different than 2n aggregate model, 3n aggregate model with queue has more than one tails.
In other words, if we want to implement a 3n aggregate HQM with queue, our problem size
is hardly limited. In a system without queue, each customer is either started to have service
from a server or left unserved as soon as they arrive the system. The interarrival distribution of
each customer type and the service time distribution of each server for given customer type are
predetermined. We have two events in the system: arrival and departure of a customer. As it
is mentioned before, arrival is either served right after arrival occurs or lost and left the system
without service.
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At the beginning of the simulation we created arrivals from each type of customer. When sim-
ulation clock hits an arrival a new arrival event is created by using the given arrival distribution
for the customer type and added to the event list. If it is served by a server, service time of
the customer is also calculated and a departure event is added to the event list. For ∗ is a value
generated from the distribution ∗, the pseudocode of the simulation can be seen in Figure 6.

input: T (arrival end time), Aj (random variable for interarrival of customer type j),
Sij (random variable for service time of server type i to customer type j),
Pj (priority list of server types for customer j), nj (number of servers of type j)

1. Initialize the event list E = {}, available server list Cj = 0 for ∀j
2. For each j

(a) Generate arrival event e of type j with occurrence time Aj

(b) Add event e to the event list

3. Repeat while there is an event in the list

(a) Take the earliest event e from the event list with time stamp t and type j
(b) If e is an arrival event

i. Generate arrival event enew of type j with occurrence time t+ Aj

ii. Add enew to the event list if its occurrence time is less than T
iii. Let i be the server who has the highest priority for customer type j
iv. If i is a number

A. Generate a departure event enew of server type i serving customer type j
with occurrence time t+ Sij

B. Decrease nj by 1
v. Else

A. Increase loss customers count by 1
(c) Else (if e is a departure event of server type i serving customer type j )

i. Increase nj by 1

Figure 6: Pseudocode for the discrete event simulation for HQM model without queue

The convergence rate of the system is investigated by comparing the simulation results with
the calculated steady state probabilities from the Markov chain of the same HQM model. We
have done the comparisons with plenty different scenarios and random number seeds. Here
you can see the results from three scenarios with three different demand intensity. In the first
scenario, we checked the convergence rate on conventional 3n HQM with 8 servers. In the
second and third examples, 3n aggregate models with 4 bins are taken into consideration. The
demand is almost equally distributed in the second scenario. Opposite to that, in third scenario
we simulated an instance with different demand rates. The parameters of each scenario with
average demand intensity can be seen in Table 1. In order to create heavily (lightly) congested
systems, the demand rates are multiplied (divided) by two.
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bin number of intradistrict interdistrict region demand priority list
ID servers service rate service rate ID rate of the region

Sc
en

ar
io

1

1 1 17 8 1 10 1 2 3 4 5 6 7 8 9
2 1 16 9 2 11 2 3 4 5 6 7 8 9 1
3 1 17 8 3 2 3 4 5 6 7 8 9 1 2
4 1 18 7 4 10 4 5 6 7 8 9 1 2 3
5 1 16 9 5 2 5 6 7 8 9 1 2 3 4
6 1 19 6 6 12 6 7 8 9 1 2 3 4 5
7 1 22 3 7 7 7 8 9 1 2 3 4 5 6
8 1 21 4 8 6 8 9 1 2 3 4 5 6 7
9 1 18 7 9 7 9 1 2 3 4 5 6 7 8

Sc
en

ar
io

2 1 3 21 4 1 28 1 2 3 4
2 3 17 8 2 32 2 3 4 1
3 4 22 3 3 44 3 4 1 2
4 5 21 4 4 52 4 1 2 3

Sc
en

ar
io

3 1 1 21 4 1 12 1 2 3 4
2 2 17 8 2 16 2 3 4 1
3 5 22 3 3 60 3 4 1 2
4 7 21 4 4 68 4 1 2 3

Table 1: Parameters of the three scenario

In Table 1, the first four columns are parameters related to bins and their servers and the rest
three columns are related to regions (customer types). The last column related to the regions
shows the priority list of the servers for given region. In other words, these numbers show in
which order the servers are assigned to the customer given in the row. In order to keep problems
understandable and not to confuse reader, we use simple priority lists.

The convergence graphs for the given scenarios can be seen in Figure 7. In these graphs, the
x-axes show number of incidents (arrival or departure) whereas y-axes are the average absolute
difference between steady state probability and the probability calculated from the beginning
of the simulation. In each scenario we used two different service time distributions: Markovian
and deterministic.

From the convergence graph given in Figure 7, it is seen that, the convergence rate of the
scenario to the exact solution is quite fast. After 10000 incidents the difference between exact
solution and the simulation solution becomes less than 1%. One of the other observations from
these graphs is the effect of service time distribution to the system. It can be seen clearly
that, the simulations with Markovian and deterministic service times have almost the same
convergence curves to the exact solution. These two findings tell us that these spatial queueing
problems can be modeled as mixed integer linear programming problems with an incident list of
5000 arrivals. Note that, this behavior is not specific to the scenarios represented, we observed
the same results in almost all of the scenarios that we have tested.
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Figure 7: Convergence graphs of the three scenarios
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Not only convergence but also stability of the simulation for rapid changes is also investigated.
In all three scenarios, demand rate of each region is multiplied by 5 between time interval 400
and 410. Different than the convergence graphs, in stability graphs, x-axes represent the time
and the y-axes are the probability differences between the exact value and the value calculated
from the scenario by taking recent time interval that contains 8000 incidents. The stability
graphs for the three cases can be seen in Figure 8.

Note that the duration of the three peaks in Figure 8 is different. The explanation for this
phenomenon is the following: In order to show all three scenarios in the same graph, we use
simulation clock in x-axes. However convergence rate does depend on number of incidents
not the simulation clock. If we check the peak durations in each graph, we will realize that,
half demand intensity peak is twice as long as the normal demand intensity. This relationship
is similar for normal and double demand intensity comparisons as well. In other words, if we
convert the x-axes into number of iterations all three peaks have equal lengths. The convergence
rate is a function of number of incidents not simulation clock.

We can also see from Figure 8 that the convergence of the system to the steady state probabil-
ities after rapid changes is fast. In other words, simulation reacts the changes in the demand
as soon as they occurs but recovers with the same pace; fluctuation in the demand effects the
simulation but compensates this dramatic increase in the demand quite fast as well. This is a
beneficiary property of the spatial queueing systems. Because of this property, HQM can be
applied to demands with fluctuations.When a time-dependant smooth demand is applied, an
HQM can be solved at each time step to identify the steady state performance measures, which
will be close to reality as fast convergence shows. Last but not least, in these graphs, it can also
be seen that the deterministic service time assumption gives very close results to the Markovian
service time model.

6 Conclusion

In this paper we have investigated different models and solution methods for spatial queueing
systems which have wide range of usage in the urban systems such as deciding the response ar-
eas of ambulances or paratransit vehicles. Although there are some hypercube queueing models
exist in the literature, they are not applicable to real life problems because of their computa-
tional complexity. In Section 4, two new aggregate hypercube queueing models are proposed
to tackle that issue. In Section 5, we investigate the applicability of Monte Carlo sampling and
discrete event simulation to the hypercube queueing problems. The results showed that the sys-
tem modeled by the simulation converges to the exact values quite fast and gives opportunity
to use mixed integer linear programming formulations for problems related to spatial queueing
models. It is also seen that the effect of service time distribution is minimal on the system and
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Figure 8: Stability graphs of the three scenarios
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exponential distribution can be substituted with deterministic distribution for the service time.
As a next step we have started to work on modeling of the hypercube queueing models with a
method as such. Preliminary results are promising and highly applicable to real life problems.
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