
A first approach to a continuous simulation of daily
travel

Fabian Märki
David Charypar
Kay W. Axhausen

STRC 2010 September 2010



A first approach to a continuous simulation of daily travel September 2010

STRC 2010

A first approach to a continuous simulation of daily travel

Fabian Märki
IVT
ETH Zurich
CH-8093 Zurich
phone: +41-44-633 33 25
fax: +41-44-633 10 57
fabian.maerki@ivt.baug.ethz.ch

David Charypar
IVT
ETH Zurich
CH-8093 Zurich
phone: +41-44-633 35 62
fax: +41-44-633 10 57
charypar@ivt.baug.ethz.ch

Kay W. Axhausen
IVT
ETH Zurich
CH-8093 Zurich
phone: +41-44-633 39 43
fax: +41-44-633 10 57
axhausen@ivt.baug.ethz.ch

September 2010

Abstract

This paper introduces a microscopic traffic simulation that continuously simulates activity-
based agent behavior and the resulting traffic. It drops iterative optimization, that builds on
stochastic user equilibria, and moves to a continuous planning approach. The behavioral model
of this approach utilizes the concept of needs to model continuous demands. Several intuitive
parameters control demand and facilitate calibration of versatile behaviors. These behaviors
originate from a planning heuristic which makes just in time decisions about upcoming activ-
ities an agent should execute. The planning heuristic bases its decisions on the current need
levels of an agent and the development of these levels in the near future. We illustrate the model
through simulation runs and suggest directions of future research.
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1 Introduction

Microscopic travel demand simulation software (e.g. Balmer (2007)) simulates people individ-
ually. Each virtual person, referred to as agent, specifies day-plans which consist of activities.
These activities are then executed with a simulation software. Such simulation runs provide
agents with feedbacks about the utility of their day-plans. The aim of each agent is to max-
imize its utility and as a consequence, they adapt their day-plans according to the previous
simulation results. This replanning step is repeated until the simulation reaches a stochastic
user equilibrium where travel demand and travel supply are consistent (Nagel and Flötteröd
(2009)).

The design of the above-mentioned approach leads to high computational complexity which
limits the simulation horizon of standard size scenarios to a single day. This makes it difficult
to investigate effects that occur between days or between weeks. Another limitation is that
agents have to commit themselves to a specific day-plan. This restricts the ability of agents
to react to unexpected events. Even worse, the repetitive nature of the simulation provides
agents with the knowledge of an unexpected event. Accordingly, agents adapt their day-plans
in foresight of that event which is impossible in real life. These shortcomings keeps us from
utilizing this approach for our investigations. As a consequence, a different simulation becomes
necessary.

We propose a microscopic travel demand simulation which is capable of modeling demand
continuously. We use a behavioral model which utilizes the concept of needs to model the
continuous demand. Agents continuously track their need levels and provide this knowledge
to a planning heuristic which makes decisions about upcoming activities agents should exe-
cute. This makes it possible, that agents can spontaneously react to unexpected events. At the
same time, it also reduces memory consumption because agents do not need to keep track of
day-plans. We present different calibration mechanisms which extend the need-based approach
to enable distinct behavior based on the day of the week or other constraints like public holi-
days. These extensions make the need-based approach applicable to model not only recurrent
activities but also the richer contents of everyday life. We plan to take advantage of develop-
ments in distributed computation to decrease computation time further. The proposed activity
planning module will be embedded in a distributed computation environment (Charypar et al.

(2010)). This helps to overcome the burden of long computation times but also introduces con-
straints to the model. We illustrate how we respect these constraints and appropriately design
our algorithms.

The remainder of this paper is structured as follows: First, we discuss the dynamics of the need-
based behavior. We then introduce the structure of our need-based model and its calibration
mechanisms. The next section describes the planning heuristic and its key features. This is
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followed by an explanation of the model calibration and its validation on several examples. We
conclude the paper with an outlook on coming tasks.

2 Other Work

Arentze and Timmermans (2006) introduce need-based theory and propose a model for ac-
tivity generation (Arentze and Timmermans (2009)) which assumes that utilities of activities
are a dynamic function of needs. Whereas Arentze and Timmermans use needs to generate
day-plans for a multi-day planning period, we use needs to make just in time decisions about
upcoming activities agents should execute. Kuhnimhof and Gringmuth (2009) use a different
approach and simulate a 7-day model by recycling existing schedules. They could show that
their approach produces realistic day plans but suffers from a certain inflexibility when agents
should spontaneously react to unexpected events. Charypar and Nagel (2006) formulate the
planning procedure as a reinforcement learning problem and report that this approach has a
poor performance for large scenarios. We try to overcome this problem by using a planning
heuristic which approximates the optimal solution. Schlich (2004) considers travel as a conse-
quence of people’s endeavor of need satisfaction and Schönfelder (2006) sees the satisfaction
of needs as an explanation of the rhythms of individual travel behavior. Charypar et al. (2009)
address the shortcomings of the existing equilibrium model and propose a need-based activity
planning system.

3 Need Driven Behavior

This section introduces the need driven behavior. The first subsection is a lightweight overview
and meant for readers who want to get a general understanding of the topic. The second sub-
section introduces the mathematics use to describe the development of need levels over time.

3.1 Overview

The need-based approach assumes that needs build up continuously over time (Arentze and
Timmermans (2009), Schönfelder (2006)). Sooner or later, an increasing need drives an agent
to perform an activity to reduce that particular need. For instance, the activity meet friends

might satisfy a need to socialize with other people whereas the activity grocery shopping satis-
fies a need for food stock. As a side effect, an activity can also decrease or even increase other
needs. The activity shopping might have an exhausting effect resulting in a decrease in the need
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for physical exercise while it increases the need for relaxation. Accordingly, need levels are the
central component to model the state of agents.

Agents use a metric that describes the utility they can gain through the satisfaction of a need
by executing an specific activity at a certain location. This utility is defined by the difference
between the need levels before and after the agent satisfied the need (see Fig. 1). We make
sure that longer activities provide a higher utility by multiplying the resulting utility by the
default execution duration of the activity. The default execution duration defines the duration
an activity has to reduce a need from a high level to a low level. Including this factor is
important since otherwise, agents would always choose activities with the shortest possible
duration because this would result in the highest overall utility per time unit.

The need decrease function is of central importance because it not only describes the devel-
opment of the utility over time but also the activity duration an agent should choose to satisfy
the corresponding need. We use an asymmetric S-shaped function (see Fig. 1) with an inflec-
tion point as presented by Joh (2004). Feil et al. (2010) used this function to describe activity
duration and estimated its parameters. This is consistent with our requirements because the
necessary time to decrease a need level correlates to the duration an agent performs the cor-
responding activity. We include an additional parameter which defines the fraction of time an
agent was able to execute an activity (we refer to this parameter as execution rate). This pa-
rameter is of importance if an agent decides to satisfy a need during a time period where the
corresponding activity cannot or can only be partially executed (e.g. because the shop closes).

We decided to use the same functional form to describe need increase as we used for the need
decrease.

3.2 Mathematical Formulations

The aim of this subsection is to introduce the mathematics we use to describe the utility and
need development over time. We use functions called generalized logistic curves which orig-
inate from biological science (Richards (1959)). Joh (2004) introduced this function to travel
behavior simulation to characterize utility and Feil et al. (2010) reused them to describe activity
duration.

The utility an agent i receives for satisfying a need j is defined as (we omit indices i and j for
simplicity)

Uk(N
t, N t+∆t, defActDurk) = (N t −N t+∆t) · defActDurk (1)
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Figure 1: Function plots showing the development of utility and need levels

(a) Utility gain for activities with differ-
ent default durations

(b) Need increase for different start lev-
els

(c) Need decrease for different start lev-
els

(d) Need decrease with different execu-
tion ratios

where ∆t is the duration agent i decided to satisfy need j. N t represents the need level at
the time agent i starts satisfying need j and N t+∆t is the need level afterwards. defActDurk
is the default duration activity k of agent i should be executed to satisfy need j. Including
this parameter ensures that activities with a longer default duration result in higher utility than
activities with a shorter default duration.

The requirements for the need decrease function include, that the need should decrease mono-
tonically starting from the need levelN t that was reached before the agent decided to satisfy the
need and that the need level should stay above a predefined minimum need level. The decrease
an agent i experiences for its need j is defined as (we omit indices i and j)

Ndec
k (∆t, N t, execRatek) = N t − N t · execRatek(

1 + γdec · exp
[
βdec(αdec · Nt

Nmax −∆t)
])1/γdec

(2)
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where ∆t is the duration agent i satisfies need j. N t represents the need level at the time agent
i starts satisfying need j. execRatek defines the time quota need j could be satisfied during
∆t. This parameter is of importance if an agent decides to satisfy a need during a time period
where the corresponding activity k cannot or can only be partially executed (e.g. because the
shop closes). Nmax defines the maximal possible need level. So far, we use the same Nmax

for all needs because this simplifies the comparison of need levels in the calculations of the
heuristic. αdec, βdec and γdec are parameters that influence the shape of the S-curve. We refer
readers to Feil et al. (2009) for a detailed explanation of the properties of the function.

The requirements for the need increase function include, that the need should increase mono-
tonically starting from the need level N t that was reached after the need was satisfied the last
time and that the need level should stay below a predefined maximum need level Nmax. We
decided to use the same functional form as we use for the need decrease. The increase an agent
i experiences for its need j is defined as (we omit indices i and j)

N inc(∆t, N t) = N t +
Nmax −N t(

1 + γinc · exp
[
βinc(αinc ·

(
1− Nt

Nmax

)
−∆t)

])1/γinc
(3)

where ∆t is the elapsed time since agent i satisfied need j for the last time and N t represents
the need level at that time.

4 Definition of Need Based Model

This section outlines the model of our continuous activity planning module. This includes
a discussion of its calibration mechanisms and its relevance for a simulation of weekly and
monthly patterns in a distributed computation environment.

4.1 Model Definition

The central component of our model (see Fig. 2) is the Agent. Each Agent can have several
Primary Needs assigned which it has to satisfy. These Primary Needs can be needs which are
only assigned to this specific agent or they can also be needs that are shared e.g. with household
members (see below). Increase Functions and Decrease Functions describe the need levels of
Primary Needs over time (examples of realizations of these functions are provided in Fig. 1).
Each Primary Need can be satisfied by performing several Activities. For instance, a need for
social contact can be satisfied by activities like meet friends, go clubbing or talk to relatives. An
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Figure 2: Components of our model and their interdependencies

Activity can be performed at several Locations. Performing an Activity can have a side effect
on other needs (Arentze and Timmermans (2009)). We take care of this effect by assigning
Secondary Needs to an Activity. Secondary Needs refer to Primary Needs and change their
need levels through Increase and Decrease Functions.

4.2 Behavior Calibration Mechanisms

The need for sleep is an excellent example for a recurrent need because it has a periodic occur-
rence and happens every day more or less at the same time independent of the day of the week.
When it comes to needs which have distinct behavior depending on the time of day or the day
of the week, the need-based approach experiences difficulties to model behavior appropriately.
For instance, an agent can satisfy its need for grocery shopping only during opening hours and
the need for work during weekdays. Similar difficulties become apparent when needs have
different increase rates depending on the time of day or the weekday. For instance, the need for
food grows differently during daytime than at night and the need for work shows a different be-
havior during the week than at the weekend. As a consequence, an enhancement of the model
becomes necessary to make it suitable to model true life patterns. Consequently, we enhance
the model with two additional calibration mechanisms:

• A mechanism that tells agents when they cannot, can or even must satisfy certain needs,

• A mechanism that facilitates different grow rates of needs depending on the time of day
and the day of the week.

4.2.1 Execution Period

Execution periods define time durations during which an agent can satisfy a specific need. With
the parameters can do and cannot do it is, for instance, possible to model shop opening hours
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Figure 3: Execution periods modeling shop opening hours and flexible working hours

(a) Shop opening hours during a day (b) Weekly configuration of shop opening hours

(c) Flexible working hours during a day (d) Weekly configuration of flexible working hours

(see Fig. 3). Through the additional parameter must do it is possible to model more complex
contexts. Figure 3 also shows an execution period which models flexible working hours with
periods where the agent cannot work, periods when it can work and periods during which its
presence at the work place is required.

These execution periods can be assigned to locations. This makes it possible to precisely spec-
ify at which location an agent has to execute which activity. This is a powerful feature because
it provides a simple tool to model appointments of agents through a must do execution period.
Through this feature, agents can agree on a meeting place and meeting time and by inserting a
must do execution period in their memory, the planning heuristic will take care that agents keep
their promise and will be on time at the right location to meet their friends. This will especially
be convenient for models which consider interactions in social groups. At the same time, it is
also possible to extract the execution rate of an activity from an execution period. This value is
important for the calculation of the need decrease (see Eq. (2)). The execution rate is obtained
through the integration of the actual possible execution period over the total execution time of
an activity.

4.2.2 Need Increase Rate

We realized that it can become necessary to model needs with different need increase rates
depending on the time of day or the day of the week (see Fig. 4). An example is the need for
food. In average, we eat three times per day. However, the occasions when we eat are not
equally distributed over the day but are accumulated during daytime. A similar problem arises
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Figure 4: Different need increase rates

(a) Changing need increase rates depending on the
time of day

(b) Changing need increase rates depending on the
weekday

when we model the need to work over a week (see Fig. 4). During the week, the need regularly
increases. However, we do not work during the weekends and accordingly, the need increase
rate should be different during weekends. Otherwise, agents would show up at the workplace
on Mondays with an immense desire to work. Driven by these insight, we extended the model
so that it provides the possibility to define different need increase rates.

4.3 Shared Needs

Our agents base their decisions concerning the next need to satisfy on their need levels and the
resulting utility. Since the simulation runs on a distributed environment, it is computationally
expensive for agents to communicate and negotiate with other agents about who should satisfy
a shared need (e.g. needs that are shared among household members like grocery shopping).
Consequently, a solution which does not require communication between agents during the
decision making process, during which agents can be distributed among different computation
nodes, becomes necessary in order to reduce computational costs. The solution we propose is
to make sure that agents meet in cyclic intervals, e.g. through a must do execution period for
household members during bedtime. During this period, agents negotiate about a reallocation
of shared needs among each other based on their current stress level. Needs that are assigned to
an agent become its responsibility. This is a simple and powerful solution because it does nei-
ther require a special treatment of shared needs during the decision making process concerning
the next need to satisfy nor communication between involved agents.

We define the stress level of agent i as the amount of time agent i would need to reduce all its
need levels to a moderate level. This is defined by (we omit index i)

SL =
n∑
j=0

Ndec
j (N t

j , N
t+∆t
j )−1 (4)

where the inverse need decrease function Ndec
j (...)−1 is summed up over all needs j of agent
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i. N t
j defines the current need level and N t+∆t

j represents the predefined need level we want to
achieve.

Since every need contributes to the stress level, it is of interest to find the combination of needs
which leads to an equally distributed stress level among the involved agents. The problem
of equally distributing needs among agents is related to the knapsack problem. Since we do
not require an optimal solution, we utilize a variation of the greedy approximation algorithm
proposed by Dantzig (1957). Shared needs are sorted in decreasing order according their con-
tribution to the stress level. Thereafter, one need after another is assigned to the agent with the
lowest stress level until all shared needs are allocated to an agent.

Algorithm 1 Distribute shared needs among involved agents
sortedSharedNeeds← getAllSharedNeedsSorted()
agents← getAllInvolvedAgents()
for all need in sortedSharedNeeds do
agent← getAgentWithLowestStressLevel(agents)
agent.add(need)

end for

5 Planning Heuristic

In a continuous simulation, agents cannot replan the same day until an optimal state emerges
like Balmer (2007) does in the equilibrium model. Kuhnimhof and Gringmuth (2009) simulated
a 7-day model by recycling existing schedules. While this approach produces realistic day plans
it struggles with an inflexibility when agents should spontaneously react to unexpected events.
Charypar and Nagel (2006) formulated the planning procedure as a reinforcement learning
problem and reported that this approach has a poor performance for large scenarios.

We think that a planning heuristic is a feasible approach to overcome the limitations described
above. It enables agents to react to unexpected events because they make their decisions on
the fly. The aim of an heuristic is to quickly approximate an optimal solution. Consequently,
it is also not necessary to have perfect knowledge about the state and plans of other agents as
it would be desirable for the optimum seeking equilibrium model. This is helpful since we
simulate our agents on a distributed environment where global knowledge only comes with
extremely high computational costs which would defeat the primary advantage of a distributed
environment. One could argue that people are seeking for optimal day plans. However, other
authors (e.g. Simon (1955) and Schlich (2004)) doubt that the behavior of people can be ex-
plained as an utility maximization function. Schlich consolidates his doubts by pointing out,
that people often have a lack of knowledge of all their possible options and nearly always do
not have the time to validate them. Accordingly, we think that using a decision procedure that
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uses local information to approximate an optimal solution might turn out to be close enough to
real world behavior.

5.1 Considered Aspects

The planning heuristic we use in our model builds on the need-based approach and its calibra-
tion parameters we described above (see section Definition of Need Based Model). Thereby, it
considers following aspects:

• The utility an agent could obtain through the execution of an activity and the implied
need satisfaction,

• The flexibility to postpone the satisfaction of a need to a later moment of the current or
the next execution window,

• Needs which must be satisfied because of a must do execution period.

The aim of the first aspect is to provide agents the possibility to execute activities with a high
satisfaction potential. In that respect, our agents are also utility maximizers which consider the
immediate future. We obtain the utility through the utility function 1.

The problem of producing good day plans is related to the Vehicle Scheduling Problems with

Time Window Constraints. Atkinson (1994) and Ioannou et al. (2001) investigated this problem
in depth and recognized the importance of a look-ahead capability which considers the flexi-
bility to postpone a task. Applied to our problem, this feature ensures that agents look ahead
into the future and realize when it is necessary to execute an activity before its need grows to
an extreme level. An example of such a situation is the need for grocery shopping before a
long weekend. If agents do not look into the future and go grocery shopping before the long
weekend starts, their food stock would be consumed in the middle of the long weekend without
an option to restock.

5.2 Heuristic

The planning heuristic utilizes a three step decision procedure. In a first step, it determines the
activity-location pair that would yield the highest utility. It uses a measurement which we call
utility density. Utility density is defined as (we omit indices i and j)

UDk,l(U, eTDurl, eEDurk,minEDurk) =
U

eTDurl +max(eEDurk,minEDurk)
(5)
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Figure 5: Illustration of postponement considerations for the current and the next execution
window

(a) Agent considers postponing an activity within the
current execution window based on an awareness of
time pressure

(b) Agent considers postponing an activity to the next
execution window based on an awareness of long wait-
ing time until the next execution window starts

where U is the utility agent i obtains for satisfying need j. eTDurl defines the expected travel
duration to location l, eEDurk specifies the expected execution duration of activity k and
minEDurk represents its minimal possible execution duration. Since utility density considers
utility U , it respects personal preferences of agents. At the same time, it also incorporates travel
durations which makes sure, that agents have a preference for locations which are close to their
current location.

In a second step, the planning heuristic includes considerations about the flexibility to postpone
activities. The end time of the previously determined activity-location pair defines the earliest
time when the next activity can be executed. This time is important for the postponement be-
cause together with the expected travel duration and the expected execution duration it defines
the end time of the next activity. This end point determines whether the next activity can be
executed during the current or the next execution window. The heuristic value considering
postponement is defined as (we omit indices for simplicity)

PP (w1, w2,∆t, N
t) =

{
w1 ·N inc(∆t, N t) if actE ≤ cwe

w2 ·N inc(∆t, N t) otherwise
(6)

where actE defines the end of the next activity, cwe represents the end of the current execution
window, w1 and w2 are weight factors, ∆t specifies the duration between the time when agent
i satisfied need j for the last time and actE and N t represents the need level at the time when
it was satisfied the last time (see Fig. 5 for a visualization).

The postponement function provides agents with an awareness of time pressure. This aware-
ness drives agents to satisfy needs earlier even if it results in lower utility than the planned
activity. This favors the satisfaction of needs with high need levels and thereby reduces the

12



A first approach to a continuous simulation of daily travel September 2010

risk of missing the current execution window. At the same time, it also provides agents with
an awareness of situations with a long waiting time until the next execution window starts (e.g.
shops are closed during long weekends). This favors the satisfaction of needs whose need levels
would grow to extreme levels during the necessary waiting time.

Based on the above calculations, the planning heuristic replaces the planned activity-location
pair by the activity-location pair that yields the highest combined heuristic value. This value is
defined as (we omit indices for simplicity)

HV (w1, UD, PP ) = w1 · UD + PP (7)

where w1 defines a weight factor for the utility density value UD for the activity-location pair
k, l and PP represents its postponement value.

At this point, the agent knows which activity-location pair it should execute as long as it does
not violate a must do requirement of another activity-location pair (see section Execution Pe-
riod for an explanation of must do requirements). Algorithm 2 and figure 6 outline the decision
procedure agents use to recognize which activity-location pair they should execute. The se-
lected activity-location pair is executed as planned as long as it does not violate the next must

do execution period. Otherwise, the algorithm modifies the duration of the selected activity-
location pair until it fits before the must do execution period. The algorithm executes both
activity-location pairs if their combined utility density is higher than the utility density of the
must do activity-location pair.

Algorithm 2 Decision procedure for the must do violation check
if actE + expMustDoTravelDur < mustDoStart then

execute selected pair
else

shorten duration of selected pair to fit before must do pair
UDmustDo ← UD(travel +mustdo)
UDdoBoth ← UD(travel + selected+ travel +mustdo)
if UDdoBoth < UDmustDo then

execute must do activity-location pair
else

execute modified selected pair and must do pair
end if

end if
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Figure 6: Visualization of the must do violation check

6 Calibration and Validation

The first part of this section illustrates how we adjust the behavior of agents based on the
available calibration parameters. The aim is to provide an overview of the agent calibration
mechanism and to show how one can engineer an agent with a desired behavior using these
mechanisms. Thereafter, we demonstrate the behavioral patterns of fully calibrated agents.
The last part of this section shows a performance analysis of our algorithms.

The agent we want to simulate in this example works full time and lives in a household with
another full time working agent. Both agents have the same number of needs to satisfy which
results in approximately the same workload. We simulate these agents over a period of 100
consecutive weeks and assign 13 unconstrained needs (sleep, work morning, work afternoon,
daily housekeeping, house maintenance, garden maintenance, social contact, personal care,
physical exercise, leisure green, leisure active, slack time and food) to each agent. In this
example, we are going to include grocery shopping into the list of needs. We show how to adapt
its configuration to illustrate how the behavior calibration mechanism works. The assumed need
increase rate is two days.

• In a first simulation, we do not introduce any constraints to the need grocery shopping.
Fig. 7(a) illustrates that agents satisfy the need at no particular time. In average, the need
has a satisfaction rate of approximately 0.5 times per day as induced by the need increase
rate of two days.

• In a second simulation, we restrict the execution period (opening hour) of the need from
Monday to Saturday from 8.5am to 6.5pm. In contrast to the first simulation, agents
restrict themselves to the predefined execution durations. Furthermore, they realize that
shops are going to be closed during the night through the look ahead capability of the
planning heuristic. As a consequence, more agents go shopping in the evening than in
the morning. Additionally, almost 100 % of the agents refill their food stock during
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Saturday. This is also a result of the look ahead capability which makes agents aware
of the break during Sunday. Because the food stock lasts for approximately two days,
almost all agents need to refill their stock again on Monday (see Fig. 7(b)).

• In a third simulation, we further restrict the execution period from Monday to Wednesday
simulating a week with a long weekend. Agents realize the long weekend and refill their
food stock during Wednesday. Since the need increase rate does not change during the
long weekend, agents have a extremely high need to refill their food stock on Monday
morning (see Fig. 7(c)).

• In a forth simulation, we reuse the configuration of the third simulation and change the
need increase rate during the long weekend to four days. As a consequence, agents
change their behavior on Monday and refill their food stock during the day (see Fig. 7(d)).

• In a fifth simulation, we reuse the configuration of the first simulation (no restrictions at
all) and introduce a shopping appointment modeled through a must do execution period
on Saturday between 2pm and 2.5pm. The need satisfaction pattern illustrated in Fig. 7(e)
shows that 100 % of the agents go grocery shopping during that time which implies that
agents keep their appointments.

• In a last simulation, we reuse the configuration of the first simulation (no restrictions
at all) and share the need for grocery shopping between two household members. We
introduce a must do execution period during bedtime where agents negotiate about the
assignment of the shared need. Sharing a need between two agents is equivalent to di-
viding the responsibility of its satisfaction. Consequently, each individual agent has to
satisfy the need only every second time resulting in a reduction of the work load. Accord-
ingly, the average satisfaction rate of each individual agent is divided by two illustrated
by the reduction from 0.35 to 0.18 (see Fig. 7(f) and Fig. 7(g)).

In a final step, we calibrate all considered needs (see Table 1) and run a simulation over a period
of 100 equal weeks. Fig. 8 and Fig. 9 show the resulting behavioral patterns.

• During the week, agents primarily satisfy the need for grocery shopping after work. This
pattern changes on Saturday since agents are less constraint (no work). Some agents de-
cide to go grocery shopping during lunch break on Monday. This effect is a consequence
of a high need level resulting from the impossibility to go grocery shopping during Sun-
day.

• Daily housekeeping is primarily satisfied during evenings. This pattern changes during
the weekend since agents are less constraint (no work).
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Figure 7: Illustration of the influence of calibration mechanisms to the behavior of agents. Sam-
ples are generated over a simulation period of 100 equal weeks. Please note that
y-axes have different scales and that scales change in Fig. 7(e).

(a) Need satisfaction pattern with no restrictions.

(b) Need satisfaction is restricted to Monday to Saturday from 8.5am to 6.5pm.

(c) Need satisfaction is restricted to Monday to Wednesday from 8.5am to 6.5pm.

(d) Need satisfaction is restricted to Monday to Wednesday from 8.5am to 6.5pm with a different need
increase rate from Thursday to Sunday.

(e) Introduction of a shopping appointment on Saturday between 2pm and 2.5pm.

(f) Introduction of an appointment during bedtime where agents can negotiate about the assignment of the
shared need (no shared need are defined yet).

(g) Introduction of an appointment during bedtime where agents negotiate about the assignment of the shared
need grocery shopping.
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• Garden maintenance and house maintenance show a similar pattern and are mainly per-
formed during evenings and the weekend. House maintenance is not performed on Sun-
day because agents cannot obtain a reward at that day (due to a cannot do constraint).

• Leisure active and leisure green are equally configured and the configuration of physical

exercise is also almost equal. Consequently, the behavioral pattern is also very similar.
Agents preferably satisfy these two needs during the evening or lunch break. This pattern
changes during the weekend where the satisfaction also takes place during the afternoon.

• Personal care is preferably performed in the morning or in the evening.

• Work is restricted to weekdays and there are periods where the presence of agents at the
work place is required. Consequently, no agent works during the weekend and 100 % of
the agents work during the week when their presence is required.

• The satisfaction of the need for food denotes a peak during lunch break. This peak is less
remarkable during evenings and the weekend. Agents seem to have a intense workload
because most of them do not have enough time to eat in the morning. This results in an
average satisfaction rate of approximately twice during the week and increases to three
times on Sunday.

• The need for slack time is primarily satisfied in the evening after work. This pattern
changes during the weekend since agents are less constraint.

• The satisfaction of the need for sleep shows a similar pattern during weekdays. It changes
on Friday and during the weekend since agents satisfy the need for social contact in the
evening of those days.

6.1 Performance Measurement

The performance of the proposed simulation is important because we plan to use it for the
simulation of very large scenarios. This is the reason why we design our algorithm for a dis-
tributed environment. At the same time, it is also important to use algorithms that scale well
on the computation nodes. We use the configuration of the first simulation to do an empirical
performance analysis of our code. This analysis shows that the code scales in O(n) where n is
the number of simulated agents. This is a satisfying result because it shows that the simulation
time grows linear by the number of agents simulated by a computation node. The analysis also
reveals that the code scales in O(m · log(m)) where m is the number of needs handled by an
agent. This is also a satisfying result, especially since individual agents will only be responsible
for a small number of needs.
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Figure 8: Behavioral patterns of all considered needs. Samples are generated from 1000 agents
over a simulation period of 100 equal weeks. Please note that y-axes have different
scales. This figure is continued in Fig. 9.
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Table 1: Calibration of all considered needs of a working agent.
Need Execution Period Increase Duration Decrease Duration
grocery shopping Mo.-Sa.: 8.5am to 6.5pm (can do) Mo.-Su.: 47.5h Mo.-Su.: 0.5h
daily housekeeping Mo.-Su.: 7am to 11pm (can do) Mo.-Su.: 23.5h Mo.-Su.: 0.5h

garden maintenance
Mo.-Fr.: 6pm to 10pm (can do)

Mo.-Su.: 333h Mo.-Su.: 3hSa.: 8am to 10pm (can do)
Su.: 10am to 6pm (can do)

house maintenance
Mo.-Fr.: 6pm to 9pm (can do)

Mo.-Su.: 332h Mo.-Su.: 4h
Sa.: 8am to 9pm (can do)

leisure active Mo.-Su.: 9.5am to 9pm (can do)
Mo.-Fr.: 47h

Mo.-Su.: 1h
Sa.-Su.: 23h

leisure green Mo.-Su.: 9.5am to 9pm (can do)
Mo.-Fr.: 47h

Mo.-Su.: 1h
Sa.-Su.: 23h

physical exercise Mo.-Su.: 9.5am to 11pm (can do)
Mo.-Fr.: 47h

Mo.-Su.: 1h
Sa.-Su.: 23h

personal care
Mo.-Fr.: 6am to 11am (can do)

Mo.-Su.: 24h Mo.-Su.: 0.5hMo.-Fr.: 3pm to 12pm (can do)
Sa.-Su.: 6am to 12pm (can do)

work morning
Mo.-Fr.: 6am to 1pm (can do) Mo.-Fr.: 19.75h

Mo.-Su.: 4.25h
Mo.-Fr.: 9am to 11am (must do) Sa.-Su.: 48h

work afternoon
Mo.-Fr.: 12am to 6pm (can do) Mo.-Fr.: 19.75h

Mo.-Su.: 4.25h
Mo.-Fr.: 2pm to 3.5pm (must do) Sa.-Su.: 48h

food

Mo.-Fr.: 5am to 9am (can do)
Mo.-Su.(night): 10h

Mo.-Su.: 0.5h
Mo.-Fr.: 11am to 2pm (can do)
Mo.-Do.: 17am to 9pm (can do)
Fr: 17am to 12pm (can do)

Mo.-Su.(day): 5h
Sa.-Su.: 7am to 12pm (can do)

slack time
Mo.-Fr.: 4.5pm to 12pm (can do) Mo.-Fr.: 23.5h

Mo.-Su.: 0.5h
Sa.-Su.: 10am to 10pm (can do) Sa.-Su.: 6h

sleep
Mo.-Fr.: 10.5pm to 10am (can do)

Mo.-Su.: 15.5h Mo.-Su.: 8.5hSa.-Su.: 10.5pm to 1pm (can do)
Mo.-Su.: 4am to 6am (must do)

social contact
Mo.-Fr.: 4pm to 4am (can do) Mo.-Fr.: 92h

Mo.-Su.: 4hSa.: 5pm to 6am (can do) Sa.: 16h
Su.: 11am to 10pm (can do) Su.: 92h

7 Outlook

Due to the novelty of the presented simulation, it is important that we invest in validating this
approach in more detail and thereby show its strengths and weaknesses. In section Calibration
and Validation, we show that the model can be configured to produce various behavior. We plan
to use these insights to engineer different agent types (e.g. working person, housewife etc.) and
validate their simulated behavior with real world behavior. The validation could consist of
following phases:
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Figure 9: Fig. 8 continued.

1. Intra-day behavior validation based on weekdays. Thereby we plan to investigate follow-
ing properties:

• Numbers of activity types per weekday

• Duration of activity types per weekday

• Start time of activity types per weekday

2. Inter-day behavior validation. Thereby we plan to investigate following properties:

• Average time intervals between activity types

• Transition probabilities between activity types and weekdays
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Figure 10: Empirical performance analysis of our code. Samples are generated over a simula-
tion period of 100 equal days

(a) Analysis based on the number of
agents (each agent manages 14 needs)

(b) Analysis based on the number of
needs (simulation uses 10 agents)

3. Investigate the capability of our algorithm to produce diverse activity patterns

4. Similarities of weekdays based on the affinity-measurement of Joh (2004)

To be able to compare real life activity patterns with simulated ones, we need observed activity
patterns of respondents showing their behavior over several weeks. We intend to use two exist-
ing six week continuous travel diaries (Zimmermann et al. (2001) and Löchl et al. (2005)) and
analyses of activity patterns (e.g. Schönfelder (2006)) as the base for our validation.

We consider to implement an automated calibration and validation feature to further simplify
the calibration process. It should provide users the possibility to specify a certain behavior.
Thereafter, the user can run an algorithm which calibrates the defined agent type with the
appropriate settings and validates its behavior.

We are thinking of using the concept of projects (e.g. Axhausen (1998), Miller (2005) and
Schönfelder and Axhausen (2009)) as an extension of the need-based model. Axhausen defines
a project as a coordinated set of activities, tied together by a common goal or outcome. Miller
argues that projects are a reasonable organizing principle for dealing with complex human be-
havior. We see projects as a need generating mechanism which supplies agents’ need-driven
behavior with a continuous stream of needs. This could generate even more diversified behav-
ior than the current approach which builds on recurrent needs. Bringing these two concepts
together could also yield a pattern language where simple projects could serve as building
blocks for more complex projects (similar to the ideas of Alexander et al. (1977) and Gamma
et al. (1995)). Agents could reuse these pattern projects and implement them in their daily life.
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This would lead to similar but still distinct behavioral patterns of individual agents.

8 Conclusion

This paper introduces a microscopic traffic simulation that simulates the behavior of agents and
the resulting traffic continuously. The central component of the proposed behavioral model are
needs and their development over time. We illustrate that it is possible to produce comprehen-
sive behavior by combining the need-based approach with two calibration mechanisms. These
calibration mechanisms are the adaptation of the need development over time based on the
time of day and the day of the week and a mechanism that tells agents when they cannot, can
or even must satisfy certain needs. We think that these are intuitive parameters which facilitate
the calibration of the model. We designed our model for a distributed computation environment
to accelerate the simulation. This imposes certain constraints to the model and the algorithms.
We explain how the need-based model can be extended to support shared needs and still respect
these constraints. Agents keep track of their need levels and provide them to a planning heuris-
tic which makes just in time decisions about upcoming activities an agent should execute. The
planning heuristic has a look ahead capability. This makes it possible to base decisions not only
on the current need levels of an agent but also on the development of these levels in the near
future. Making decisions just in time in a continuous manner enables agents to react to unex-
pected events and thus to overcome unrealistic behavior of the iterative optimization concept.
The continuous nature of the simulation also helps to overcome performance issues and makes
it possible to investigate traffic effects that occur between days and between weeks. We con-
clude by presenting how we use the calibration mechanisms to model distinct behavior. This
demonstrates how agents can be engineered to show desired characteristics.
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