
Performance Improvements for Large Scale Traffic
Simulation in MATSim

Rashid A. Waraich
David Charypar
Michael Balmer
Kay W. Axhausen

Transport and Spatial Planning August 2009



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Transport and Spatial Planning

Performance Improvements for Large Scale Traffic Simula-
tion in MATSim
Rashid A. Waraich
Institute for Transport Plan-
ning and Systems (IVT)
ETH Zurich
CH-8093 Zurich
phone: +41-44-633 32 79
fax: +41-44-633 10 57
waraich@ivt.baug.ethz.ch

David Charypar
Institute for Transport Plan-
ning and Systems (IVT)
ETH Zurich
CH-8093 Zurich
phone: +41-44-633 35 62
fax: +41-44-633 10 57
charypar@ivt.baug.ethz.ch

Michael Balmer
Institute for Transport Plan-
ning and Systems (IVT)
ETH Zurich
CH-8093 Zurich
phone: +41-44-633 27 80
fax: +41-44-633 10 57
balmer@ivt.baug.ethz.ch

Kay W. Axhausen
Institute for Transport Plan-
ning and Systems (IVT)
ETH Zurich
CH-8093 Zurich
phone: +41-44-633 39 43
fax: +41-44-633 10 57
axhausen@ivt.baug.ethz.ch

August 2009

Abstract

Multi-Agent transport simulation models, e.g. MATSim have proven to be suitable for model-
ing microscopic demand for large scale scenarios based on planning networks. In the recent
years survey methods are using technologies which provides mobility information with a much
higher spatial resolution (e.g. GPS tracking). Therefore, the need to model travel demand on de-
tailed navigation networks rises, which slows down simulation speed significantly. This paper
presents methods to increase the performance of the micro simulation model of MATSim us-
ing event driven concepts as well as a parallel implementation. The performance experiments
with navigation networks of Switzerland containing up to one million roads and 7.3 million
agents clearly show that large-scale, multi-agent micro-simulation can also be applied on high
resolution networks.

Keywords
Keywords, in english, language

1



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

1 Introduction

Traffic simulations can be performed at different levels of detail. One common technique is
to model traffic as flows consisting of accumulated number of cars. A different approach is
to model each individual vehicle. Agent-based modeling (representing each person as a simu-
lation agent) combined with traffic flow micro-simulation allows for tracking persons dynam-
ically in time. Of course agent-based modeling is more expensive in terms of computation
power than aggregated models.

The open source Multi-Agent Transport Simulation Toolkit (MATSim, MATSim-T, 2008) was
designed from the beginning to meet the challenges of simulating large scenarios to optimize
travel demand. As shown in Figure 1, the demand optimization is an evolutionary process (Hol-
land, 1992). This means the iterative loop consisting of execution, scoring and replanning has
to be executed many times before the optimized demand can be analyzed. This paper focuses
on the performance related to the execution part. The traffic simulation (execution) generates
events for each action in the simulation, e.g. enter road, leave road or arrival at destination.
These events are then processed as the simulation is running, e.g. for generating statistical data
on the simulation and for the scoring module.

MATSim is currently facing a major challenge, as more and more applications require simula-
tion on high resolution networks. A few example applications are listed below:

• Global Positioning System (GPS) Surveys: Travel studies based on GPS data require
high resolution networks to map the GPS tracking data properly to the network (Casas
and Arce, 1999; Du and Aultman-Hall, 2007; Schüssler and Axhausen, 2009).

• Intelligent Transportation Systems (ITS): Measurements to improve traffic flow, such
as traffic lights at intersections have often impact on a larger area (e.g. see Balmer et al.,
2009a). In order to model the impact of traffic lights and related ITS phenomena, simu-
lation on high resolution networks is required.

• Commercial Applications: Companies owning street bill-boards need to know the traf-
fic which passes a specific one in order to determine the appropriate price tag for it.
Furthermore the properties of the people driving along these bill-boards are important
(e.g. where they live).

The difference in size of the networks is substantial. Planning networks often used with MAT-
Sim before contained less than 100 thousand links. The new navigation networks are of much
higher resolution and contains more than a million links. This increase puts high pressure on
both the micro-simulation and event processing in MATSim. This paper introduces several

2



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Figure 1: Co-evolutionary simulation process of MATSim

ways to improve the performance of MATSim and any other event driven micro-simulation in
this regard together with experiments and results. In the next section related work is presented.

2 Related Work

MATSim has always focused on large-scale traffic simulation scenarios. In the next subsection
the traffic simulation model underlying the different simulation implementations is discussed.

2.1 The Traffic Simulation Model

The general traffic simulation approach used in MATSim is based on queues. In this approach
links are the active element, which move around cars. Each link contains a queue which stores
the entry time of each car. Adjacent links collaborate with each other to assure that the different
traffic parameters and elements are simulated correctly. For example link capacity, free speed
travel time, intersection precedence and space available on the next link are parameters which
are taken into account by the simulation.

In the following subsections the different implementations of this approach are discussed.

2.2 QueueSim

The first micro-simulation for MATSim (called QueueSim) was based on a fixed-increment
time advance model (Raney et al., 2003) and developed in C++ programming language. The
vehicles were moved along in fixed time steps of one second. Although the model is quite

3



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

flexible, for larger simulations it is too slow because of the fixed simulation time step. A
parallel version of QueueSim was implemented leading to significant speed up (Cetin, 2005).

2.3 DEQSim

A major performance breakthrough was achieved with a new micro-simulation, called Deter-

ministic Event-Driven Queue-Based Traffic Flow Micro-Simulation (DEQSim, Charypar et al.,
2007b), also implemented in C++. Instead of performing the simulation along fixed time steps,
an event based model is used performing only discrete actions which are relevant to the model
(i.e. entering and leaving roads). Furthermore, DEQSim has been parallelized making it one of
the fastest large scale transport micro-simulations available (Charypar et al., 2007a).

2.4 JQueueSim

To improve maintainability of the code, MATSim was re-implemented in Java including the
single CPU version of QueueSim (here called JQueueSim). Furthermore, the performance of
JQueueSim has been improved significantly over the last few years while the main model (time
step based approach) still remains the same.

2.5 Graphical Processing Units

Graphical Processing Units (GPUs) on computer graphic cards perform many more operations
in the same amount of time as CPUs on computer boards. A first successful implementation of
QueueSim on GPUs rendered a speedup of 67 times (Strippgen and Nagel, 2009) compared to
JQueueSim. The main drawback of GPUs is, that the interface between the graphic card and
the rest of MATSim modules poses a bottleneck. Furthermore, current GPUs have an limited
amount of memory. For example the traffic simulation of Switzerland with 7.3 Million agents
requires around 60 Gigabyte of memory, depending on different settings. Graphic cards today
have often less than 1 GB of memory.

2.6 Re-implementing DEQSim in Java

The implementation of MATSim modules in Java means a major speed disadvantage for DE-
QSim: As DEQSim is implemented in C++ the communication of DEQSim with the other
MATSim modules is bridged by a slow file input/output (I/O) interface. Furthermore, exten-
sions in DEQSim are difficult to maintain because of the different programming languages.

4



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Even though, DEQSim is still faster than JQueueSim, JQueueSim has become the de facto
standard micro-simulation for MATSim.

In order to benefit from the speed superiority of DEQSim over QueueSim, a redesign and
re-implementation of DEQSim in Java is presented in the next section (called JDEQSim). Fur-
thermore, the interface between the micro-simulation and MATSim (called event handling)
has been redesigned and improved. At last, first preliminary results of a parallel version of
JDEQSim are shown.

3 Performance Improvements

3.1 Implementation of JDEQSim

Re-implementing DEQSim in Java provided the opportunity to restructure and redesign the
code. The C++ DEQSim code was only taken as a specification requirement and fully ig-
nored for the implementation of JDEQSim. The initial design of JDEQSim was influenced by
OMNet++ (OMNeT++, 2009), which is a modular and open-architecture discrete event com-
munication network simulator. The JDEQSim implementation consists of the following three
parts:

• Simulation Units Vehicles and links are the basic building blocks of the traffic simula-
tion.

• Messages Simulation units communicate with each other by exchanging different kinds
of messages. Each message contains a time stamp, e.g. when a vehicle is allowed to enter
the next link or when a car should start a leg. Each newly created message is sent to the
scheduler.

• Scheduler The scheduler contains a message priority queue, which is ordered after mes-
sage time and message type. Each received message is put into this queue. In the begin-
ning of the simulation, the queue is initialized: The first leg of each agent is scheduled
in the queue. Thereafter the scheduler fetches the first message and executes it. Often
this produces a new message, which is put into the queue. The scheduler processes al-
ways only the first message, until all messages have been processed, which terminates
the micro-simulation.

To a certain extent many elements used in JDEQSim are similar to concepts presented by
Axhausen (1988).

5



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Gaps in a Queue

From the beginning DEQSim had an additional feature making the model more realistic, which
is still missing in JQueueSim: Gaps travelling backwards as a queue is dissolving (Charypar
et al., 2007a). This makes the traffic model more realistic as when the front car in a queue starts
driving, it leaves behind a gap which travels with a constant speed backwards. Therefore cars
behind in the queue have to wait until such a gap reaches them, before they can start driving.

Prevention of Gridlock

At intersections, during the simulation a gridlock can happen, so that vehicles wait for each
other forever. In the real world when such a situation arises, where it is not clear who has right
of way, humans interact to resolve the ambiguity. In the micro-simulation this is resolved in
the following way: Whenever a situation is detected where a potential gridlock could happen,
cars continue moving to prevent the gridlock (Balmer and Nagel, 2006). This is achieved
by temporary allowing more cars to enter a link than its capacity. This is not problematic
in MATSim as agent plans where this situation occurs are penalized by the scoring module,
resulting in fewer gridlocks in the next iteration.

Transportation Modes

JQueueSim allows simulation of multiple transportation modes which is not implemented in
DEQSim. For example an agent can drive to work and at lunch time walk by foot to a restaurant.
Or a person might take a bike to ride to the bus stop and travel further by bus. JDEQSim has
profited from these developments and has incorporated all these features into the simulation
model from the beginning.

3.2 Parallel Event Handling

The communication between the micro-simulation and the rest of MATSim happens via events.
Events have different types such as enter/leave link or start/end activity. Furthermore, the event
also contains information on the location and time where the event occurred and which agent
was involved. These events can be processed by various modules of MATSim. This is called
event handling. For example by using event handling, travel time statistics can be calculated
for the simulation or events can be written out to a file for later processing. Also modules such
as the scoring module make use of event handling.

During the implementation of JDEQSim and its parallelization it was observed that event han-

6



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Figure 2: The execution time of different default event handlers relative to each other

dling is executed on the same CPU as the micro-simulation. Running event handling in parallel
to the micro-simulation has two advantages. Firstly, the micro-simulation can run faster, be-
cause if event handling contains a file writer handler (as by default), this will slow down the
micro-simulation. Secondly when applying MATSim on certain scenarios, custom handlers
are needed which may require lots of computation time. If multiple cores are available on a
machine (as mostly the case nowadays), event handling can be further distributed among them.

At the moment five event handlers are present in MATSim by default. Figure 2 shows the
relative time proportions of these five handlers to each other. As expected the event writer
(EventWriterTXT) is the most heavy weight event handler in terms of processing time.

Implementation of Parallel Event Handling

A common way in Java to use multiple CPUs (or cores) is to make use of threads. For parallel
event handling the user can specify how many threads should be dedicated to parallel event
handling in addition to the micro-simulation. The current implementation applies a round robin
approach (HAHNE, 1991) to assign event handlers to threads. This means it tries to assign the
same number of event handlers to each thread. It is obvious from Figure 2 that this approach is
suboptimal, because it would be best to put the event handler writing out events on a separate

7



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

thread and the others on a second one. Furthermore, it may seem that even by applying this
improved method, writing events to the hard disk is so slow so that using more than two threads
would not improve performance.

There are several reasons, why the presented approach was chosen and why more than two
threads can actually make the simulation faster. First of all, writing out events to a file is not
part of the communication interface between JDEQSim and MATSim (which is different in
DEQSim). This means, if MATSim is running for 60 iterations only each 10th iteration needs
to be written out. By doing so, full use of parallelization can be made during 9 of the 10
iterations. One reason for using a simple implementation for parallel event handling is that the
existing framework did not need to be changed and the new implementation could just wrap
the existing implementation into threads.

3.3 Parallelization of JDEQSim

In Charypar et al. (2007a) the parallelization of DEQSim is described. This is done by parti-
tioning the traffic network into several pieces, which are assigned to a separate CPU of a shared
memory machine. The Message Passing Interface (MPI, Snir et al., 1995) is used for commu-
nication between CPUs. When an agent travels from the network area assigned to one CPU to
a different one, MPI is used for passing the agent data between CPUs. This operation includes
periodically synchronizing the state of links at the border of each network partition. In Java,
threads (Lea, 1999) are commonly used as a basis for parallel programming. In order to pass
data between two threads the synchronized keyword is used. Unlike MPI, the synchronized
keyword does not allow to explicitly specify which data should be transferred between which
CPUs.

The advantage of the Java synchronized keyword is, that no explicit data structures have to
be built for transferring data between threads. But in the context of parallelizing JDEQSim,
this is also a major disadvantage: Whereas MPI allows to explicitly specify, which data to
transfer, it is not always obvious what data will be exchanged due to a synchronized statement
in Java. Furthermore usage of the synchronized keyword is a quite expensive operation in Java
in terms of computation time, because often more data is being synchronized between threads
than actually needed. As many elements of data transfer are hidden and handled by the Java
Virtual Machine (JVM, Lindholm and Yellin, 1999), the programmer has little control over
them.

Before describing the successful implementation of the parallelization of JDEQSim two im-
plementation ideas which failed are described (Single Scheduler - Multiple Message Executors

and Multiple Scheduler - Multiple Message Executors). This might help to better follow why
certain elements are present in the final adapted approach (Time Delta between Threads).

8



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

3.3.1 Single Scheduler - Multiple Message Executors

In Java each thread can access all data within the JVM. One possible approach might be to
just use one scheduler within the JVM, where all the messages are queued. Multiple message

executor threads can be used to process messages (e.g. moving vehicles on links). Of course
appropriate synchronization between threads is needed for link and vehicle objects. Although
this approach might seem promising, the scheduler with the message queue poses a bottleneck:
For insertion of messages into the scheduler queue the synchronized keyword has to be used.
Event adding per thread message buffers into the scheduler does not help much to resolve this
problem.

3.3.2 Multiple Scheduler - Multiple Message Executors

Another approach might be to partition the network into pieces similar to what is done in the
parallelization of DEQSim. In this case each partition is assigned to a separate message ex-
ecutor thread and has its own scheduler. The different threads need to synchronize periodically
for two reasons. First of all for consistency of data, vehicles which enter a new partition of
the network must be synchronized. Secondly border links must be synchronized periodically at
predefined intervals to ensure that one thread does not advance the simulation too much. This
synchronization interval is determined by the travel time needed to travel border links (link
adjacent to a link in a different partition). This is almost identical to how the parallelization of
DEQSim is performed.

Unfortunately this approach does not perform well because of the periodical waiting on other
threads. There are several higher level constructs in Java to wait on other threads, such as wait

and notify or barriers (Lea, 1999). Furthermore, the most primitive approach is to do busy
waiting (do some dummy computations until the condition is met). All of these approaches did
not render satisfactory results for the problem at hand.

Time Delta between Threads

The Method In Figure 3 the successful parallelization approach is depicted. The prototype
has been implemented for two CPUs. The traffic network is thereby divided in two parts in
vertical direction, so that about the same number of events will occur during the day in each part
of the network. This number can be estimated from the journey plans of the agents which are
given as input to the micro-simulation by MATSim. A (message executor) thread is assigned to
each of these partitions, which has a separate scheduler. Border links have been defined, which
are adjacent to links in the other partition. The vehicles objects which pass over border links

9



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Figure 3: Parallelization of JDEQSim

are synchronized between the threads. No synchronization of links is required as messages
concerning a certain link are only processed by the thread to which the link belongs.

Scheduling of messages is done in the following way: As long as the link specified in the
message belongs to the same thread it was scheduled by, no synchronization is required. The
message can simply be put into the corresponding message queue. But if one thread schedules
a message for the other thread, because a vehicle is passing between partitions, synchronized
access to the queue object is required. This is further optimized by using a buffer inside the
queue. As the proportion of vehicles moving between network partitions is much smaller than
those travelling inside the same network partition, relatively few synchronization statements
between threads are required.

One problem remains to be handled that is, one thread should not advance too much in time. At
this point the question arises, what does correctness of a parallel simulation mean? The parallel
simulation does not have to generate the same sequence of events as a sequential simulation
in order to be correct. As often events have identical time stamps, the simulation can arbitrary
select, which of these events to process first. For example, if we have two agents going to
work at exactly 6am in the morning, it is up to the simulation to decide, which event should be
processed first. If both of them might want to enter the same link then one gets to go first. This
decision by the micro-simulation changes the event time for the involved agents but does not

10



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

have any significant effect on the overall simulation.

So, for a parallel simulation to be considered correct, it should not change the aggregate traffic
properties of a sequential simulation on average. Keeping this fundamental property in mind,
it is possible to define a small time delta (for example 10 seconds), which a thread is allowed
to advance more than the other threads. This might produce a very small number of cars,
which get lucky at border link intersections and thereby advance one place in the queue of
the next link. But these low probabilistic events should not change the overall properties of
the simulation significantly. It has been verified that the number of events and their logical
sequence is not affected by adapting this heuristic. Nevertheless, this phenomenon needs to be
investigated further.

By allowing a small time delta between different threads, there is also the advantage, that
all messages that are within this delta, can be fetched at once and processed by the message
executor thread. Therefore the number of synchronization statements used within the scheduler
are reduced.

Open Issues and Ongoing Work

Load Balancing The agents’ plans help estimating the number of events that will occur in
a network partition. But the traffic in each area changes over the day. Defining new borders
during the simulation of the day might help in this regard, but its possibility and impact needs
to be further investigated.

The different message types require different amount of processing time. This could also be
taken into account in future. For the experiments presented in this paper, the partitioning of the
network was calibrated manually. This should be automated in future.

Time Synchronization between Threads Although the approach regarding synchronization
of time between threads seems intuitive, experiments are required to validate that this approach
does not have any significant effect on the relevant parts of the model. For example, it needs to
be investigated, what portion of vehicles have advanced into the other partition before the time
they would have entered it, if a smaller time delta was chosen.

Generalization of the Approach to N CPUs The prototype has been implemented only for
two CPUs at the moment, but it can be generalized to N CPUs. This can be done by splitting
the link network vertically in N partitions so that each partition contains the same number of
events. Then each of these partitions is assigned to a separate thread.

11



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Adaptation of Parallel Event Handling Required The events processed by event handling
must have an ascending time stamp. When the events are being produced in parallel by JDE-
QSim, buffering and sorting of the events is required before they can be sent for event process-
ing. This requires the implementation of an efficient input buffer at the parallel event handler.

4 Experiments and Results

4.1 Overall Speedups

Experiments to compare JQueueSim, DEQsim and JDEQSim were performed on the NAVTEQ
road network (NAVTEQ, 2009) for Switzerland (around 882K links). A population sample of
the people surrounding the city of Zurich which drives cars was used (around 614K agents).
The hardware used for this experiment is a Sun Fire X4600 M2, with 16 cores (8 dual core
CPUs) and 128GB of memory. For the same setup also the effects of parallel event handling
were analyzed. In Figure 4 runtime measurements for JQueueSim, DEQsim and JDEQSim are
shown for the micro-simulation including event handling. All JQueueSim and and JDEQSim
runs with more than one CPU are using parallel event handling. E.g. the JDEQSim run with 2
CPUs is using one CPU for the micro-simulation and one for parallel event handling.

4.1.1 Parallel Event Handling

The Figure 4 clearly shows the significant impact of parallel event handling on both JQueueSim
and JDEQsim. Currently DEQSim cannot use parallel event handling, because the integration
is not implemented. But the impact of parallel event handling with DEQSim would not be that
significant: By default DEQSim runs have already turned off the event handler which would
write events to the disk again (because this is already part of the interface between DEQSim
and MATSim).

The figure also shows, that for the default event handler setting in MATSim using more than
one thread for event handling gives only a small additional speedup.

4.1.2 Amdahl’s Law

Amdahl’s law (Amdahl, 1967) describes the maximum achievable speedup of a parallel pro-
gram. It says, that if a certain portion of a program cannot be parallelized (e.g. because of
writing out events to files), then the maximum achievable speedup is limited even with un-
bounded computation power. To give an example of Amdahl’s law: If 5% of a program cannot

12



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Figure 4: The computation time with different micro-simulation settings for a single iteration

be parallelized, then it is not possible to achieve a speedup of more than 20 (even by having
one million CPUs).

The figure shows the implication of Amdahl’s law for DEQSim within the MATSim context.
Because of the I/O overhead of the communication between the micro-simulation and MATSim
a speedup of even two seems impossible. This means more than 50% of the micro-simulation
consists of parts, which have to be executed sequentially.

4.1.3 Relative Micro-Simulation Speeds

In order to compare the speed of JDEQSim and JQueueSim micro-simulations only the case
where parallel event handling is turned on is relevant (this takes away the fraction of event
handling). This shows that JDEQSim is around 3 times faster than JQueueSim for the given
scenario. The JDEQSim micro-simulation is slower than the DEQSim simulation (without
considering the I/O overheads), which can depend on many factors among others that JDEQSim
is running within a JVM, whereas DEQSim is compiled to native code.

13



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

4.1.4 Most Efficient Configuration

The figure clearly shows, how to make most efficient use of CPUs: Running JDEQSim with
one parallel event handling thread. As the machine used has around 128GB RAMs and the run
above uses less than 15GB of RAMs, up to 8 JDEQSim runs can run in parallel. Furthermore,
as most new desktop computer today have at least two cores, the same solution can provide
significant speed up as till now only JQueueSim was the option for them.

4.2 Influence of Network Size

In the previous experiment JDEQSim was three times faster than JQueueSim. But this cannot
be generalized, because if the network is congested, then JDEQSim can be tens of times faster
than JQueueSim, because the run time of JQueueSim is directly correlated to the duration of the
simulated period, which is not the case with JDEQSim. Furthermore, the speed of JQueueSim
also varies with the ratio between network size and population (number of agents), which is
highlighted in this experiment. In this experiment all micro-simulations are running using
one CPU. Furthermore parallel event handling is turned using a single thread. The network
capacity is chosen in such a way that no congestion should happen. The three scenarios which
are considered in Figure 5 are:

• Scenario A: Network with 882K links and 61K agents (36M events)

• Scenario B: Network with 61K links and 616K agents (58M events)

• Scenario C: Network with 882K links and 614K agents (363M events)

This experiment clearly shows, that C++ DEQSim and JDEQSim scale linearly with the num-
ber of events. Only in scenario A for DEQSim the I/O overhead of loading the network is
immense compared to the actual simulation time.

Scenario A and B have the same magnitude of number of events. But the ratio between net-
work size and population size is rather different. Therefore in scenario A JQueueSim performs
extremely bad. In fact, JDEQSim is more than twelve times faster than JQueueSim.

4.3 Multiple Event Handler - Scalability

To test the scalability of parallel event handling, a dummy handler is used which only performed
CPU intensive tasks and did not have any disk I/O. This handler is then added for event handling

14



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Figure 5: The influence of network size on the different micro-simulations

Figure 6: Scaling of Parallel Event Handling with the number event handlers and threads

15



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

several times. This experiment was performed for different numbers of threads and handlers to
find the speedup, which is shown in Figure 6.

Currently only a small number of event handlers are present by default in MATSim, but many
applications are under development and planned in the MATSim community (MATSim-T,
2008), which require additional event handlers. The good news is, that the more handlers
are added to parallel event handling, the better the speedup. This is expected, because adding
more work to the handler reduces the relative penalty of synchronization between threads.

Parallel event handling scales linearly up to 4 threads. Although parallel event handling only
makes little use of Java’s synchronized keyword, still the performance drops with 8 CPUs
already significantly (speedup only around 6). Similar programs written in C++ with MPI
could easily achieve speedups of around 8 in this case (Charypar et al., 2007b).

4.4 Speedup for Parallel JDEQSim

An experiment with JDEQSim for the whole population of Switzerland (7.3 million agents)
was performed on a network with around one million links. The agents travelled using different
transportation modes, such as car, bus, bike and by foot. The experiment was done with parallel
event handling (single thread) and took around 3 hours and 16 minutes for a single iteration
(only micro-simulation and event handling). As MATSim is an iterative process, often more
than 60 iterations containing the micro-simulation execution are needed to reach a relaxed state
(Balmer et al., 2009b). Therefore new ways to accelerate the simulation even further (such as
parallelizing JDEQSim) are required in order to simulate even larger scenarios in a reasonable
time frame.

As described earlier, a first prototype of the parallelization of JDEQSim for two CPUs has been
implemented. As event handling has to be adapted to properly function with parallel JDEQSim
only measurements of the micro-simulation were done (with event handling turned off). The
experiment consisted of 1.62 million agents residing in the area of Zurich city. The network
contained 163K links. This experiment took 29 minutes 40 seconds with JDEQSim, while on
parallel JDEQSim (2 CPUs), the experiment only took 18 minutes 37 seconds. This means a
speed up of 1.6, which is quite encouraging.

5 Conclusions and Future Work

In this paper JDEQSim is presented, which accelerates MATSim substantially. Furthermore,
JDEQSim can simulate bigger runs with much fewer CPUs than required till now. This makes it

16



Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

suitable both for running several runs on machines with lots of CPUs and to simulate MATSim
runs faster than before on machines with fewer CPUs.

As discussed in the section on experiments, the parallel version of DEQSim is limited by Am-
dahl’s law within the MATSim context. On the other hand JDEQSim is missing MPI and has to
cope with the JVM threading model and different JVM implementations, which have different
properties on different machines. But nevertheless it is expected, that future JVMs should be
able to handle locking more efficiently, so that it makes sense to pursue the path of parallelizing
JDEQSim further.

This paper only considered the performance gains of the micro-simulation and event handling
in MATSim, but there are also other ways to improve the performance of MATSim. For ex-
ample some replanning modules such as rerouting are relative slow and could be improved.
Furthermore, by improving the way replanning is being used one can reduce the number of
iterations until the equilibrium is reached and as such the runtime for MATSim overall.

6 Acknowledgement

Special thanks to Yu Chen who was the first to try out JDEQSim and gave feedback regarding
first bigger runs. Furthermore, thanks to Marcel Rieser who gave technical advice regarding
MATSim. Thanks also to Prof. Kai Nagel for various conceptual discussions related to MAT-
Sim.

References

Amdahl, G. (1967) Validity of the single processor approach to achieving large scale computing
capabilities, paper presented at Spring joint Computer Conference, 483–485, NY, USA.

Axhausen, K. W. (1988) Eine ereignisorientierte Simulation von Aktivitätenketten zur Park-
standswahl, Ph.D. Thesis, University of Karlsruhe, Karlsruhe.

Balmer, M., A. Horni, K. Meister, F. Ciari, D. Charypar and K. W. Axhausen (2009a) Wirkun-
gen der Westumfahrung Zürich: Eine Analyse mit einer Agenten-basierten Mikrosimula-
tion, Final Report, Baudirektion Kanton Zurich, IVT, ETH Zurich, Zurich, February 2009,
http://www.ivt.ethz.ch/vpl/publications/reports/ab550.pdf.

Balmer, M. and K. Nagel (2006) Shape morphing of intersection layouts using curb side ori-
ented driver simulation, in J. P. van Leeuwen and H. J. P. Timmermans (eds.) Innovations in

Design & Decision Support Systems in Architecture and Urban Planning, 167–183, Springer,
Eindhoven.

17

http://www.ivt.ethz.ch/vpl/publications/reports/ab550.pdf


Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Balmer, M., M. Rieser, K. Meister, D. Charypar, N. Lefebvre and K. Nagel (2009b) MATSim-
T: Architecture and simulation times, in A. L. C. Bazzan and F. Klügl (eds.) Multi-Agent

Systems for Traffic and Transportation Engineering, 57–78, Information Science Reference,
Hershey.

Casas, J. and C. Arce (1999) Trip reporting in household travel diaries: A comparison to GPS-
collected data, paper presented at the 78th Annual Meeting of the Transportation Research

Board, Washington, D.C., Jan, Oliver 1999.

Cetin, N. (2005) Large-scale parallel graph-based simulations, Ph.D. Thesis, ETH Zurich,
Zurich.

Charypar, D., K. W. Axhausen and K. Nagel (2007a) An event-driven parallel queue-based mi-
crosimulation for large scale traffic scenarios, paper presented at the 11th World Conference

on Transportation Research, Berkeley, June 2007, http://www.ivt.ethz.ch/vpl/
publications/reports/ab425.pdf.

Charypar, D., K. W. Axhausen and K. Nagel (2007b) An event-driven queue-based traffic flow
microsimulation, Transportation Research Record, 2003, 35–40.

Du, J. and L. Aultman-Hall (2007) Increasing the accuracy of trip rate information from pas-
sive multi-day GPS travel datasets: Automatic trip end identification issues, Transportation

Research Part A: Policy and Practice, 41 (3) 220–232.

HAHNE, E. (1991) Round-Robin scheduling for max-fin fairness in data networks, IEEE jour-

nal on selected areas in communications, 9 (7) 1024–1039.

Holland, J. H. (ed.) (1992) Adaptation in Natural and Artificial Systems: An Introductory Anal-

ysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, Cambridge.

Lea, D. (1999) Concurrent Programming in Java.: Design Principles and Patterns, Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Lindholm, T. and F. Yellin (1999) Java virtual machine specification, Addison-Wesley Long-
man Publishing Co., Inc. Boston, MA, USA.

MATSim-T (2008) Multi Agent Transportation Simulation Toolkit, webpage, http://www.
matsim.org.

NAVTEQ (2009) NAVTEQ, webpage, http://www.navteq.com.

OMNeT++ (2009) OMNeT++, webpage, http://www.omnetpp.org.

Raney, B., N. Cetin, A. Völlmy, M. Vrtic, K. Axhausen and K. Nagel (2003) An agent-based
microsimulation model of Swiss travel: First results, Networks and Spatial Economics, 3 (1)
23–41.

18

http://www.ivt.ethz.ch/vpl/publications/reports/ab425.pdf
http://www.ivt.ethz.ch/vpl/publications/reports/ab425.pdf
http://www.matsim.org
http://www.matsim.org
http://www.navteq.com
http://www.omnetpp.org


Performance Improvements for Large Scale Traffic Simulation in MATSim August 2009

Schüssler, N. and K. W. Axhausen (2009) Processing GPS raw data without additional infor-
mation, paper presented at the 88th Annual Meeting of the Transportation Research Board,
Washington, D.C., Jan, Oliver 2009.

Snir, M., S. Otto, D. Walker, J. Dongarra and S. Huss-Lederman (1995) MPI: The complete

reference, MIT Press Cambridge, MA, USA.

Strippgen, D. and K. Nagel (2009) Using common graphics hardware for multi-agent traffic
simulation with cuda, paper presented at Simutools ’09: Proceedings of the 2nd International

Conference on Simulation Tools and Techniques, 1–8, ICST, Brussels.

19


	Introduction
	Related Work
	The Traffic Simulation Model
	QueueSim
	DEQSim
	JQueueSim
	Graphical Processing Units
	Re-implementing DEQSim in Java

	Performance Improvements
	Implementation of JDEQSim
	Parallel Event Handling
	Parallelization of JDEQSim
	Single Scheduler - Multiple Message Executors
	Multiple Scheduler - Multiple Message Executors


	Experiments and Results
	Overall Speedups
	Parallel Event Handling
	Amdahl's Law
	Relative Micro-Simulation Speeds
	Most Efficient Configuration

	Influence of Network Size
	Multiple Event Handler - Scalability
	Speedup for Parallel JDEQSim

	Conclusions and Future Work
	Acknowledgement
	Bibliography

