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Abstract

This paper examines whether a household buys a car, and if, how much it drives that car. In this paper an

approach based on the Multiple Discrete-Continuous Extreme Value Model (MDCEV). The MDCEV

has been developed by Chandra R. Bhat (2005). In Bhat (2006) he adapted the Model to  car choice and

use. In this paper households could choose to own several cars and how much to use them. His approach

has two drawbacks: First the total annual number of kilometres a household drives is considered to be

fixed and second the fact that holding cars causes fixed costs is neglected. 

I now adapted the model, such that households decision is based on an economic rational decision. This

decision incorporates that owing cars causes fixed costs and that households decide on the number of

kilometres they want to drive per year. So far, the model has been developed to the case where

households may choose between none or one car and on the annual distance they want to drive. 

Model parameters were estimated by use of Swiss data on car use on household level. Policy simulations

yield similar fuel price elasticities as found in international studies. The model shows further, that

reduction of fuel demand by higher fuel prices is mainly caused by households owning cars but using

them less. The contribution of households switching from owning a car to not owning a car to the

reduction in fuel demand is very low. The first reason for this is, that not many households will switch to

not owning a car due to higher fuel prices. The second reason is, that these people did not drive many

kilometres before when they owned a car. Further results show that household location - urban versus

rural area - plays an important role both on demand for driving and on the decision whether to own a car

or not. With respect to the choice of policies for reducing fuel demand, results show that not only the

type and height of taxes on fuel and cars may play an important role, but also spatial planning.

Keywords
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The Determinants of Energy Demand of the Swiss Private

Transportation Sector

1.1 Introduction of the Model

In contrast to the discrete-continuous choice approach of Dubin and McFadden (1984), which can only

capture exclusive choices between car types, or if several car types are involved, bundles of cars, this

model can capture non-exclusive choices of a set of cars including the choice of not owning a car. This

extension is very relevant for Swiss data, since in Switzerland 19% of households do not own a car

and 30% of households own two or more cars. 

The model based on the Multiple Discrete-Continuous Extreme Value Model (MDCEV) introduced by

Bhat (2004) is applied to car choice and use in Bhat (2006). Bhat assumes that total driving distance is

given for each household and is equal to the sum of kilometers driven by the vehicles that households

declared  in  a  survey.  Further  Bhat's  approach  contains  the  assumption  that  households  are  not

restricted  by  either  the  households'  budget  or  the  fixed  costs  when  owning one  or  several  cars.

Therefore, that model only captures households' preference for car types but does not capture the

households' economic behavior. For instance, Bhat's model does not capture that it is economically not

rational for households to own a vast number of cars. The purpose of the extension of Bhat's model is

therefore to transform the model so that it represents the economic behavior of the household. 

In the following, the foundations of the models are presented in section 1.1. In section 1.2 the most

simple model where households can choose between owning a car and choose the driving distance, or

not owning a car is derived for the case where fixed costs of car ownership are neglected. In section

1.3 the model is extended to the case where owning a car implies a fixed cost. 

This  introduction  is  structured  as  follows:  First  the  basic  principle  of  the  model  framework  is

presented.  Second  the  microeconomic  optimization  problem  is  stated  in  a  general  form  where

households  may  choose  between  several  cars.  Third  some  illustration  for  the  two  good  case  is

presented. Fourth the problem of unobservability of household preferences is by the researcher is

stated and how this problem is captured by the model is described. Fifth, the utility function used in

this framework is presented and it is discussed, why this distinct function was chosen.

The basic principle of the model framework
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The model  presented in the following describes the microeconomic decision of  a household with

respect to car ownership and use. In its general form it is assumed that households can choose from a

set of cars one or several cars.  The choice is only restricted in the way,  that households may not

choose two cars from of the same type. It is assumed, that the decision of deciding for one or several

car types and the choice of distance driven with the corresponding cars is simultaneous. The household

can also decide not to own a car. The household is assumed to maximize its utility for a given budget.

The utility function values the utility the household yields by driving cars of different types and from a

consumption good. The consumption good includes all goods apart from driving cars: Housing, health,

food, insurances etc. The household can choose zero, one or several cars out of a set of different car

types. Each car type can only be chosen one time. The budget constraint contains expenditures for

driving one or several cars, namely the number of kilometers multiplied by the cost per kilometer

driven by a specific car type. The budget constraint also contains - apart from the simplified cases,

where  fixed  costs  are  neglected  -  the  fixed  costs  of  owning  one  or  several  cars.  The  remaining

expenditure is spent on the consumption good. The inclusion of fixed cost of car holding allows for a

realistic description of households' behavior with respect to the decision whether to own or not to own

a car.  This decision is especially  relevant  for household with low income.  It  is  assumed that  the

consumer has perfect information. This means hath the consumer exactly knows its preferences and is

informed  about  the  features  of  all  car  types  it  could  choose.  In  contrast,  from the  researchers'

perspective the utility function of the households are not known exactly and are therefore stochastic

functions. For empirical research parametrized utility functions will be used. Some parameters are

stochastic accounting for the fact  that  the utility functions are stochastic.  Some of the parameters

depend  on  household  and  car  characteristics.  These  parameters  will  be  estimated  by  Maximum

Likelihood estimation. In order to get a simple formula for the Maximum Likelihood function the

utility function must be of a certain type and certain assumptions on the distribution of the stochastic

term are necessary. The concrete utility function used and the assumptions on the parameters are

presented in the last part of this introduction.

The microeconomic optimization problem

Now, the microeconomic problem solved by a household is described. The household is considered to

behave as if it maximizes a utility function 

( )max
x

u x , (1.1.1)

subject to:

( )1 1 0

2 2
i

J J

i i x i i

i i

y p x p x I x k>
= =

≥ + +∑ ∑  and 0 1..ix i J≥ ∀ = . (1.2.1)

The amount of consumption of good one is denoted by 
1x . Index i=2..J is an index for car types. The

annual distance in kilometers driven by car type i is denoted by i
x . Vector x contains all i

x . Variable
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i
p  denotes the cost per kilometer for car driving by car i. The costs per kilometer consist of fuel costs

and depreciation caused by driving the car, eg. wear of the mechanical components and tires. Variable

i
k  refers to the annual fixed of holding a car. These fixed costs consist of parking cost, insurance

costs, taxes and depreciation. In this context, depreciation only captures the loss of value caused by

factors unrelated to the use of cars, like rusting and loss in value due to technical obsolescence. It is

assumed that if a household owns a car household will also drive by this car and therefore annual

distance  i
x  is assumed to be strictly positive in this case. When a household decides not to own a

certain car type  i, then the corresponding distance  ix  is zero. Therefore ownership of car type  i is

equivalent to a positive value i
x . Since fixed costs only arise if a car is owned, an indicator is needed

when summing up the fixed cost of the different car types. Indicator ( )0ix iI x>  is one if i
x  is greater

than zero and zero otherwise. 

The microeconomic optimization problem stated above differs from the standard problem as described

in many textbooks where the budget restriction is linear in all  
ix . The difference arises because the

budget restriction is now non-linear in 2..
i

x i N∀ =  due to the indicator function ( )0ix iI x> . Therefore

the  optimization  problem  cannot  be  solved  by  standard  Lagrangian  approach.  Instead,  the

maximization problem has to be solved by the Kuhn Tucker approach. To show that, it is necessary to

restate the constraints (1.1.2):

( ) ( )1

1

0
J

J i i

i

g x q x y+
=

= − ≤∑ , (1.1.3a)

where ( ) ( )0ii i x i i i iq x I x k p x>= ⋅ + ⋅ , with 
1 0k =  and 

( ) 0 , 1,2,3,.., .j jg x x j J= − ≤ = (1.1.3b)

This problem can be stated as Lagrangian:1

In the following it  is  shown, that  the Kuhn-Tucker  approach can be applied to the maximization

problem stated by (1.1.1) and (1.1.2). This will be done by the Kuhn-Tucker Theorem. This theorem

relates to the Lagrangian representation of (1.1.3):

( ) ( )
1

1

J

j j

j

L u x g xλ
+

=

= −∑ . (1.14)

The Kuhn-Tucker Theorem states, that if x∗  solves (1.1.1) and the constraints (1.1.3) hold at x∗ , then

there exists a set of Kuhn-Tucker multipliers 0jλ ≥ , for i = 1, 2,.., J+1 such that

1Varian (1992), page 505.
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( ) ( )1

1

, 1, 2,..,
J

j

j

ji i

u x g x
i J

x x
λ

∗ ∗+

=

∂ ∂
= ⋅ =

∂ ∂∑ . (1.1.5)

Furthermore, there are the so called complementary slackness conditions for: 

0jλ > , if ( ) 0
j

g x∗ = , (1.1.6a)

0jλ = , if ( ) 0
j

g x∗ < , (1.1.6b)

where  j=1,2,..J+1.

The Kuhn-Tucker sufficiency2 theorem states,  that if  x∗  complies (1.1.5) and (1.1.6) if solves the

maximization  problem  stated  by  (1.1.1)  and  (1.1.2)  if  ( )u x  is  a  quasi-concave  function3 and

( ), 1, 2,.. 1
i

g x i J∗ = +  are convex functions. 

Note that any utility function must be quasi-convex to satisfy the fundamental axioms on preference

relations4. Since ( )1g x  is not a convex function, the Kuhn-Tucker sufficiency5 theorem does not apply

to the problem stated by (1.1.4) and (1.1.5). Therefore, the problem has to be restated as follows:

Assume that the household first chooses zero, one or several cars out of the set kS  of cars plus always

the consumer good at choice set 
c

S . Each car of the set 
c

S  may only be chosen once. The household

then maximizes the utility conditional on the choice 
kS , where 1,2,..,k K=  is an index for all possible

choices  kS . That means that its budget will be reduced by the fixed costs of the cars in the set  
kS

causes. Given this reduced budget, household will then solve the following maximization problem:

( )
,

max
i kx i S

u x
∈

, with 0, /j c kx j S S∈= , (1.1.7)

subject to:

1 1

1 k

J

i i i

i i S

y p x p x k
= ∈

≥ + +∑ ∑  and 0
i k

x i S≥ ∀ ∈ . (1.1.8)

2See Varian (1992), page 503.

3 See Mas-Colell, page 49.

4The property of strictly-convex preferences implies that a utility function is strict quasi-concave, see Mas-Colell et al (1995),

page 49. Strictly-convex preferences  are defined as strictly convex if for  every  x,  we have that  ,x y x x
∼ ∼

≻ ≻ ,  and  x y≠

implies    ( )1y z xα α+ − ≻  for all ( )0,1α ∈ , see Mas- Colell et al (1995), page 44. Strict quasi-concavity is defined as if

( )( ) ( ) ( )( )1 min ,u x y u x u yα α+ − >  for any x, y and ( )0,1α ∈ , then ( )u i  is a “, Mas-Colell, page 44. The assumption of a

strict-convex utility function is an additional restriction, but most commonly used utility functions are strictly-convex. The

utility function that will be used for the model presented here is also strictly-convex . Note that every function that is strictly-

convex is also quasi-convex .

5See Varian (1992), page 503.

6



The Determinants of Energy Demand of the Swiss Private Transportation Sector

 The Multiple Discrete-Continuous Extreme Value Model (MDCEV)______________________________August, 2009

Now, for each kS  the Lagrangian has to be set up:

( ) ( )
k

i i

i S

L u x g xλ
∈

= −∑ , with 0, /j c kx j S S∈= . (1.1.9)

Restrictions ( ) 0,j j kg x x i S= − ≤ ∈  are defined as 

( ) 0,j j cg x x j S= − ≤ ∈ , (1.1.10a)

( ) 0, /j k cg x j S S= ∈ . (1.1.10b)

Restriction ( )1Jg x+
 is now defined as 

( )1 0
k k

J i i i

i S i S

g x p x k y+
∈ ∈

= + − ≤∑ ∑ . (1.1.10c)

Note that ( )1Jg x+  does now depend linearly on ,i kx i S∈  and in this case it is a convex function. The

same holds for  ( ),j kg x i S∈ . Conditions  ( ) 0, /j k cg x j S S= ∈  (1.1.10b) are not relevant, since they

are always fulfilled.

Since all restrictions 

( )i
g x

 are now convex, the Kuhn-Tucker sufficiency Theorem holds. Therefore,

if  x∗  is feasible and solves (1.1.11) and fulfills (1.1.12), then x∗  solves the maximization problems

stated in (1.1.7) and (1.1.8).

( ) ( )1

1

,
J

j

j k

ji i

u x g x
i S

x x
λ

∗ ∗+

=

∂ ∂
= ⋅ ∈

∂ ∂∑ , (1.1.11)

with the corresponding complementary slackness conditions: 

0jλ > , if ( ) 0
j

g x∗ = , if (1.1.12a)

0jλ = , if ( ) 0
j

g x∗ < , (1.1.12b)

where ki S∈ .

Solving this maximization problem the household will yield optimal consumption level and driving

distance  for  the  set  kS .  The  utility  household  gets  form  this  consumption  shall  be  denoted  by

( )*

k
u u x= . The household will now compute 

k
u  for any possible choice 

k
S . The household will then

choose the choice set 
kS  that yields the highest utility. 

Illustration of the maximization principle in the case of two goods 
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In  the following,  there  is  some intuitive presentation of  the model  where households  can choose

between two goods with one of them causing fixed costs for any positive consumption level. It will be

shown, how changes in prices, income and preferences on optimal solution is. This is done for the case

where only one car or no car can be chosen. 

I want to start by illustrating the maximization routine described in paragraph above:

1x

2x

2
D

1
D

Diagram 1.1.1: Optimal consumption for given fixed cost for car driving

The dashed line represents the budget constraint when the household decides not to own a car and

therefore does not have to bear fixed cost. In this situation all income is spent on the consumption

good. The optimal consumption bundle when deciding not to own a car is represented by 1D . The

household will compare the utility when spending all income only for the consumption good to the

situation where it decides also to drive by car. In this situation the budget line is on a lower level

because a part of the income is spent for the fixed cost of owning a car. The household now decides

the optimal amount of driving. The slope of the budget line is equal to the price of the consuming good

divided by the marginal cost of driving. Since price of the consumption good is normalized to one, the

slope of the budget line is equal to one divided by price of good two. Utility maximization calculus for

the case where the household is supposed to own and use a car yields optimal consumption bundle 
2D .

The solid line represents the iso-utility level of the maximal utility that can be reached with the income

net the fixed costs. The household will now compare the utility level yielded given the case when

spending the whole budget on the consumption good to the case when owing and using a car. In the

case as illustrated in the diagram above, the household would yield a higher utility when owning a car,

since 
1D  is below the utility level yielded by 

2D . Note that for the same utility function, this decision

can change, when fixed costs are increasing: When fixed costs are increasing, solid budget line will

shift towards to the origin of the diagram and therefore also 2D  does. From this it follows that the

crossing of the solid lined iso-utility function will shift towards the left. At some point, 
2D  will be
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above the iso-utility function and for this case it is optimal not to own a car. Diagram below illustrates

such a situation.

1x

2x

2
D

1
D

Diagram 1.1.2: Optimal consumption for high fixed cost for good two

Compared to the situation illustrated in diagram (1.1.1) decision of owning a car can change when

income is lower, since fixed costs will decrease available income by a larger share.

1x

2
x

2D

1D

Diagram 1.1.3: Optimal consumption for given fixed cost for good two when income is low

When income is decreasing, optimum consumption bundle 2D  shifts towards the origin and therefore

also iso-utility function does. Since the distance between the two budget lines remains the same, at

some point,  1D  will be above the iso-utility function and therefore it will be optimal not to own a car.

This is  quite intuitive, since for lower income the fixed costs are getting relatively higher.  In the

extreme case,  fixed cost would lower available income to zero and household could not consume any

goods. 
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In the following case the effect of an increase of the price of good two is examined.

1x

2x

2D 1D

Diagram 1.1.4: Optimal consumption for given fixed cost for good two when price of good two is

high

The above diagram shows that if price of good two increases, optimal consumption of good two given

good two is decreasing. From this, the iso-utility line is crossing the 1x  axis closer to the budget line.

Since the distance between the crossing of the budget lines on the 1x  axis is still the same, 1D  is now

in the better set of iso-utility line corresponding to the case where good two is consumed. Therefore in

the case illustrated above, household will choose not to buy a car.

The model does now not only capture the effect of changes in economic variables income y, fixed cost

of owning a car 
2k , and cost of driving a kilometer with that car 2p  as presented above but also

individual preferences. 

1
x

2x

2D

1D

 

1x

2x

1D

2D

Diagram 1.1.5: Optimal consumption with strong and weak preference for car driving
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On the left, optimal solution of a household with strong preference for car driving is illustrated. This

household will  choose to own a car and consume bundle  2D .  On the right,  optimal solution of a

household with weak preference for car driving is illustrated. This household will choose not to own a

car and consume bundle 1D . 

The key issue of the model is now to explain these relative preferences of households by data. These

preferences can depend on household characteristics, like the number of household members or on the

type of household location, like city versus rural areas. Given these preferences, change in behavior of

households behavior when economic variable like income and prices changes can be simulated. The

following diagram shows the predicted outcome when a households with a given preference but

varying income could decide for no car, a small car, a big car or both a small and a big car. In contrast

to the preceding examples households can now decide between no car, a small car with low fixed and

variable costs and a big car with high fixed an variable cost. It is assumed, that the big car yields

higher utility than the small car, since the big car is more comfortable an provides more space for

transporting goods.  

Diagram 1.1.4: Engel-curves for consumption and driving for given preferences6

6Diagram was computed based on the utility function ( ) ( ) ( )1 1 1 2 2 2 3 3 3

d d d
U w x a w x a w x a= ⋅ + + ⋅ + + ⋅ +  subject to fixed and

marginal  cost.  Parameters  were   1 2 3 1 2 30, 0.7, 1, 1, 0.8, 1.2, 0.1a a a w w w d= = = = = = =  and  economic  variables  were

1 2 3 1 2 30.95, 1.05, 0.8, 0, 1, 1.4p p p k k k= = = = = = . Note that 
3 2w w>  denotes relative preference of driving a big car (good

three) being greater than relative preference of driving a small car (good two). Utility was maximized given different income

levels y. Price 
3 2p p>  denotes, that marginal costs of driving a big car are higher that driving a small car. The same holds for

fixed costs: 
3 2k k> . Relation 

3 2a a>  implies that marginal utility of driving a small car decreases faster that driving a small

car. This is quite reasonable, since for instance driving long distances by a small car gets faster tiring than driving the same

distance by a big car.

For a detailed description of the maximization routine see in the following sections.
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In this case when household income increases, first no car would be chosen and the whole income

would be spent on consumption good  1x . This choice is denoted as “case 1” above. When income

increases first the small car will be chosen to drive with - 2x  - due to its lower fixed cost, “case 2”.

When income increases further, the household will choose to drive the big car - 3x  - due to its higher

preference for  it,  despite to  its  higher  fix  costs,  “case 3”.  When the income  is high  enough,  the

household will choose to drive both cars, “case 4”. In this case the household will drive more by the

more expensive car due to its higher preference for this car type, despite of higher marginal costs.

Note the steps in the Engel curves are due to the fact that fixed costs arise when owning a car. These

fixed costs will reduce the disposable income. An interesting detail is the jump in distance driven from

zero to a positive value when the car is bought due to a higher income. This seems reasonable since

only owning but not driving a car yields utility and no one would bare the fixed costs when the only

change would be, that the consumption level of the consumer good has to be reduced due to the

decrease of available income.

Until now, preferences were assumed to be known. In reality however, not all factors that determine

individual preferences are available and second it is not exactly known how the factors influence the

individual preferences. From this follows that individual preferences cannot be exactly described from

researchers perspective. Hence, whether a household  chooses to own a car or not - given observed

household characteristics and economic variables - can be predicted by the researcher only with a

certain probability. Also for the case a household chooses to own a car, the amount consumed of good

one and the distance driven cannot exactly be determined. It is only possible to compute probabilities

that these amounts are within certain intervals. 

The chapter is structured as follows: First, in section 1.2, the model is introduced for the simple case

when there are only two goods and no fixed costs. Then in section 1.3. the two good case is extended

to the case with fixed cost. After that, the model is expanded to the case of three goods, first  in section

1.4 without fixed cost and later including fixed costs  in section 1.5. 

1.2 Model with two goods and no fixed cost

I  first  start  with  this  very  simple  model  because  the  basic  implications  can  be  studied  in  a

comprehensive way. Further the basic problems when deriving the ML function can be examined and

presented in the most simple way. The ML function describes the probability observing the household

given  model  parameters.  It  will  be  used  to  determine  the  model  parameters  by  use  of  the  MLE

procedure.  In this section the model with two goods and  no fixed cost is described. First the basic

assumptions are presented and some implications of the model are illustrated by diagrams. Finally the

ML function necessary for estimating the parameters when observing data is derived.
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The model is based on a additive utility function that includes a random term. This random term stands

for the fact that researchers may not be able to determine consumers true utility function. There are

two goods. Good two 
2X  denotes the kilometres driven by the car. In this model owning a car does

not implicate fixed costs. Good one 
1X  denotes a bundle of goods containing any goods apart form

driving car. The utility function is defined as follows:

( ) ( ) ( ) ( ) ( ) ( )1 2

1 1 2 2 1 1 1 1 2 2 2 2exp exp
d d

U u X u X m X a m X aξ ξ= + = + ⋅ + + + ⋅ + , (1.2.1)

where: , 1, 2.j j jm s b jγ δ= ⋅ + ⋅ =

Since the marginal  utility is  decreasing in  1X  and  
2X  both  1d  and  2d  are bound to the interval

between zero and one:7 0 1, 1,2jd j< < = . The lower 
j

d  the more rapid the marginal utility of good j

decreases when 2X  increases. Parameters 1a  and 2a  are shifting parameters. Since marginal utility of

1X  and 2X  are infinite at 1 1X a= −  and 2 2X a= −  respectively, 1a−  and 2a−  define lower limits for

1X  and 
2X  for  optimal solutions for 1X  and 2X  when the ranges of the solutions are not bounded.

Since good one 1X  is essential, 1a  must be non negative in order to insure that the solution for 
1X  is

always  positive.  Since  good  two  is  not  essential  2a  must  be  positive.  This  allows  for  negative

solutions for 2X  that will be bounded to zero. Expression ( )exp
j j

m ξ+  is weighting ( ) jd

j j
X a+ . The

higher  ( )exp
j j

m ξ+ ,  the  stronger  the  preference  for  good  j.  This  weight  is  determined  by

sociodemographic  variables  s and  characteristics  
jb  of  the  corresponding  good  j,

, 1, 2j j jm s b jγ δ= ⋅ + ⋅ = . This means for instance that households with many members usually have a

higher preference for driving a car.  Therefore it  can be expected that  the number  of  people  of  a

household would increase 
2m  and therefore utility of good 2X  would be weighted higher compared to

good  1X  for such households. The random terms  j
ξ  represent sociodemographic variables  sɶ  and

vehicle characteristics bɶ  that cannot be observed by the researcher. These random terms are assumed

to be iid Gumbel distributed8:

7 ( ) ( ) ( )
2

2

2
1 exp 0, if and only if 0 1.

jd

j j j j j j j

j

U
d d m X a d

X
ξ

−∂
= ⋅ − ⋅ + ⋅ + < < <

∂
 This implies also, that the utility function is

concave and therefore the Hessian matrix is negative (semi-) definite:
2 2 2

2 2 2 2 2
1 1 2 1

2 2 22 2 2
1 2 1

2 2

1 2 2 2

0

0 and 0

0

U U U

X X X X U U U

X X XU U U

X X X X

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

= = ⋅ > <
∂ ∂ ∂∂ ∂ ∂

∂ ∂ ∂ ∂

, if and only if 0 1, 1,2jd j< < =  and 
1 1X a> −  and

2 2X a> − .

The term 
2

1 2

U

X X

∂
∂ ∂

 is equal to zero because the utility function is of additive separable type. 

8The Gumbel distribution is a non symmetric distribution but is shaped similarly to the normal distribution, see figure in the

appendix A1. The Gumbel distribution also has has some useful properties necessary for getting a ML function that is an
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( )0,1
j

iid guξ ∼ , ( ) ( )expx x
f x e eξ

− −= ⋅ − . (1.2.2)

Both the choice of this special form of the utility function and the assumption on the error terms are

done  because  it  allows  for  some  formal  simplifications  when derivating  the  ML function.  These

simplifications will yield a ML function in closed form. Further, the cumulated density function that

will appear in the ML function is of a simple form and therefore permits a short computation time. It is

assumed that the household maximizes its utility by choosing optimal values for 1X  and 2X . For this

it has to take into account its budget constraint: 

1 1 2 2y p X p X= ⋅ + ⋅ . (1.2.3)

Note  that  for  this  case there  are  no fixed costs  assumed for  good two.  The maximization of  the

household can be represented by solving the following Lagrangian:

( ) ( ) ( ) ( ) ( )1 2

1 1 1 1 2 2 2 2 1 1 2 2exp exp
d d

L m X a m X a y p X p Xξ ξ λ= + ⋅ + + + ⋅ + + ⋅ − ⋅ − ⋅ , (1.2.4)

1 20, 0X X> ≥ .

Note that in the following  1ξ  and  2ξ  that represent unobserved characteristics are treated as given.

This  is  for  formal  reasons  but  is  also  reasonable,  since  households  known  their  characteristics.

Therefore random terms 
1ξ  and 2ξ  are considered as known by the households.

The corresponding first order conditions are:

1 1 0U X pλ∂ ∂ − ⋅ = , (1.2.5)

2 2 0U X pλ∂ ∂ − ⋅ ≤ . (1.2.6)

The third first order condition is budget constraint (1.2.3). By plugging in the expressions for the

marginal utility functions and reformulating, (1.2.5) and (1.2.6) can be written as follows:

( )
( ) 1

1 1 1 11

1 1

1
exp

d
d m p

x a
ξ λ−⋅ + ⋅ = ⋅

+
, (1.2.7)

( )
( ) 2

2 2 2 21

2 2

1
exp

d
d m p

x a
ξ λ−⋅ + ⋅ ≤ ⋅

+
. (1.2.8)

explicit  function  of  the  parameters,  see  in  the  appendix.  The  Gumbel  distribution  is  also  often  called  extreme  value

distribution of type I. 
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The reason why (1.2.6) is an inequality but (1.2.5) is an equality is that  1 0a =  that implies optimal

1 0X >  solutions while as  
2 0a >  that allows for negative solutions  

2X , that have to be bound too

zero. Because of 2a  being greater than zero, solutions for 
2X  that are bound to zero are possible. For

this case the marginal utility of 
2X  is strictly smaller than the Lagrangian multiplier λ  times 

2p . The

reason why only 2X  can yield bounded solution will become clear when this case will be illustrated

below. Intuitively it can be imagined that households start solving the system of equations by choosing

a very high positive value for the Lagrangian multiplier λ . Given this value λ , the household solves

(1.2.7) for ( )1 1X x λ=  and (1.2.7) for ( )( )2 2max 0,X x λ= . Household will then check if the budget

constraint is violated: ( ) ( )1 1 2 2y p x p xλ λ≥ ⋅ + ⋅ . Since for very high values λ  the values ( )1x λ  and

( )2x λ  are small, the budget constraint will not be violated. Since both  ( )1x λ  and  ( )2x λ  depend

negatively on  λ ,9 the household will lower  λ .  It  will do this until the whole budget is used for

consumption due to increasing values for both  ( )1x λ  and  ( )2x λ . This optimization process can be

illustrated by the following diagrams:

1 2,x x0
1ax 1bx

2b
x2a

x
⌢

2a−

1a−

2 2aU X pλ∂ ∂ =

2 2b
U X pλ∂ ∂ =

1 1aU X pλ∂ ∂ =

1 1b
U X pλ∂ ∂ =

Diagram 1.2.1: The maximization calculus10

9

( )
( )

( )
( )

( ) ( )
( )

1

1 1

1 1 1 11

1 11 1

1 1 1 1 1 1 1 1 11 2

1 1 1 1

1
exp

0,
1 1

exp 1 exp

d

d d

d m p
x adx p

d
d m p x d d m

x a x a

ξ λ λ

λ ξ λ ξ

−

− −

∂ ⋅ + ⋅ − ⋅ ∂
+ −

= − = − <
∂ ⋅ + ⋅ − ⋅ ∂ − − + ⋅

+ +

( )
( )

( )
( )

( ) ( )
( )

2

2

2

2
2 2 2 21 2

2 22
2 2 2 2 2

2 2
2 2 2 2 21

2 2 2

1
exp 0 :

1
1 exp

1
exp

0 : 0

d

d

d

p
d m p x

x adx d d m
x ad d m p x

x a x

ξ λ λ
ξ

λ ξ λ

−

−

−

 ∂ ⋅ + ⋅ − ⋅ ∂ > − +  − + ⋅= − =  +
 ∂ ⋅ + ⋅ − ⋅ ∂
 + = 

.
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Here the results for two values λ  are illustrated, a bλ λ> . For aλ  the optimal value of 2X  has to be

bound to zero, since for 
2 2aU x pλ∂ ∂ =  the value for 2X  would be smaller than zero. Because 2X  is

bound to zero and therefore increased compared to the non bounded solution, marginal utility of 2X  is

smaller than 2a pλ , ( )2 2 20 aU x X pλ∂ ∂ = < . Further it is assumed that for aλ  budget is not completely

used up, ( ) ( )( )1 1 2 2max 0,a ay p x p xλ λ> ⋅ + ⋅ . Therefore the household can still increase its utility by

decreasing λ . This will increase in each case 
1X  and in the case as illustrated above, at some point

2X  will change from being zero to a positive value.  When λ  has been decreased to bλ , the whole

budget is used up and household has maximized its utility. Note that diagram 1.2.1 does also illustrate

the  role  of  the  shifting  parameters  1a  and  2a :  1a−  and  2a−  define  the  minimum value  of  the

consumption of good one and good two when maximizing without restricting values to be positive.

From diagram 1.2.1 and formula (1.2.7) it can be seen that marginal utility of 1X  goes to infinity when

1X  goes to zero. Therefore optimal solution of 1X  is strictly positive for any finite λ . Contrary to 
1a ,

2a  is greater than zero for allowing negative non restricted solutions for  2 2X a> −  that have to be

bound to zero. Since in the context of the applications, 1X  always has to be positive, 1a  is chosen to

be zero for insuring non-bound solutions, 1 0X > . In contrast 2a  is chosen to be greater than zero what

allows for solutions of 2X  that are bound to zero, 2 0X =  as described above. Here the shape of the

utility function, the prices and the income are such that for this case both 1X  and 
2X  are greater than

zero when choice is optimal. When income would be such that it would be used up at level 
aλ  then the

optimal solution for 
2X  would be equal to zero. When the corresponding income levels for these two

cases are denoted ay  and by , the two optimal solutions for these cases can be illustrated as follows:

1x

2x

2
a−

0 A

B

ic

C

Diagram 1.2.2: Optimal consumption for different levels of income 

10An alternative illustration of the maximization calculus by choosing a λ  such that the expenditures is equal to income, is

presented in the appendix A2. 
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Solution denoted by A indicates the optimal solution bundle ( )*

1 2,
a a

x x  for income ay , in that case

( ) ( )*

1 2 1, ,0
a a a

x x y p= . The solutions denoted by B indicates the optimum solution levels ( )*

1 2,
b b

x x

that are both positive. Both solutions correspond to scenario described above and illustrated in

diagram 1.2.1 in a different way. Again 
1a  and 2a  play an important role. As illustrated by diagram

1.2.2, the slope of the isoquant goes to infinity when 1X  goes to 1 0a− =  and goes to zero when 
2X

goes to 2a− . The reason for this is 
1

1
0

lim
x

U X
→

∂ ∂ = ∞  and 
2 2

2lim
x a

U x
→−

∂ ∂ = ∞ . Due to this, 
1X  can never

be zero for any income and price, while 2X  can be zero for some prices and incomes. 

Curve ic  is the income consumption path. Since households preferences are homothetic11, the income

consumption part is linear increasing above a certain level of income, denoted by cy . The

corresponding budget line would cross point C. Below income level cy  consumption path is

horizontal, since 
2X  is always bound to zero. 

Up until now all solutions were presented for given values 1ξ  and 
2ξ . When a couple of households

would be observed, then even if all parameters 1a , 2a , 
1m , 

2m , 
1d , 

2d , prices 1p , 2p  and income y

would be given, optimal values ( )1 2,X X  will vary between the households. This is because the utility

functions of the households depends on 1ξ  and 2ξ  and therefore also the optimal values ( )1 2,X X  will

be random variables too. The following diagram illustrates the solution for twenty households with

equal parameters but different realizations of random terms 1ξ  and 
2ξ . In top left diagram the optimal

consumption bundle for a given preference is illustrated. Diagrams in the second columns are

histograms of the amounts consumed by the different households. Top right diagram is just for

projecting the consumption values of realized values 2x  from the vertical axis to the horizontal axis.

 

11 Note, that the utility function is homothetic with respect to  ( )i ix a+  and therefore the income consumption curve for

( )i ix a+  is a straight line increasing line in the case where  
ix  is not bounded. The kink at point  C  is because of  2x  is

bounded to zero for income levels lower than cy .
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Diagram 1.2.3: Distribution of optimal consumption for twenty households with identical

parameters12

Diagram above shows optimal consumption values for households that all have the same income y=10,

are faced with the same prices, 1 2 1p p= = , have the same deterministic part of the preference,

1 2 1m m= =  and have the same shape parameters  1a , 2a , 1d  and 2d . Difference in optimal

consumption only arises due to different realizations of the random terms 1ξ  and 2ξ . The solution

shows a wide range of optimal values. Note that there are a couple of bounded solutions, 2 0x = .

Bounded solutions result if relative preference for driving a car - ( ) ( )2 2 1 1exp expm mξ ξ+ +  13 - is so

small that households will choose not to own a car. 

The aim of this model is now to estimate the values of the parameters 1a , 2a , 
1m , 

2m , 
1d , 

2d , when

the  prices  1p ,  2p  and  the  incomes  
ny  and  the  values  ( )1 2,

n
x x  of  households  1,2,..,n N=  are

observed. This will be done by Maximum Likelihood estimation: Parameters have to be changed such

that the probability of observing ( )1 2 1,2,..,
,

n N
x x

=
 is maximized,                                                         

12The parameters were chosen as follows: 
1 2 1 2 1 20, 2, 0.001, 1= = = = = =a a d d m m  and the prices 1 2 1= =p p .

13Note,  that  utility  function  is  ordinal  and  therefore  equivalent  to  any positive  transformation.  Applying  transformation

( ) ( )( ) 1

1 1expf u m uξ
−

= + ⋅  yields  ( ) ( ) ( ) ( ) ( )1 2

1 2 1 1 2 2 1 1 2 2, exp exp
d d

u x x x a m m x aξ ξ= + + + + ⋅ + .  Therefore

( ) ( )2 2 1 1exp expm mξ ξ+ +  can be considered as weight of  ( ) 2

2 2

d
x a+  relative to ( ) 1

1 1

d
x a+ . 
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( )( )1 1 2 2 1 2 1,2,..,1,2,..,
, | , , ,n n n Nn N

P X x X x p p yθ ==
= = , where ( )1 2 1 2 1 2 1 2, , , , , , ,a a d d a a m mθ = .    (1.2.9) 14

Since it is assumed that the observations of the households are independent, probability (1.2.9) can be

rewritten as:

( )( ) ( )( )1 1 2 2 1 2 1,2,.., 1 1 2 2 1 21,2,..,
1

, | , , , , | , , ,
N

n n n N n n nn N
n

P X x X x p p y P X x X x p p yθ θ==
=

= = = = =∏ . (1.2.10)

This means, that probability ( )( )1 1 2 2 1 2, | , , ,n n nP X x X x p p yθ= =  has to be calculated. To do this, two

cases have to be distinguished: Case one that gives the probability of observing a bounded solution for

2X  and case two where both optimal values 
1X  and 

2X  are positive. For case one, a probability and

for case two a density function has to be calculated. Before calculating the probability functions for

these two cases the first order conditions (1.2.7) and (1.2.8) have to be reformulated.

( )1 1 lnV ξ λ+ = (1.2.11)

( )2 2 lnV ξ λ+ ≤ (1.2.12)

with:

( ) ( ) ( ) ( )1 1 1 1 1 1 1ln ln 1 lnV d p m d X a= − + − − ⋅ + , (1.2.13)

( ) ( ) ( ) ( )2 2 2 2 2 2 2ln ln 1 lnV d p m d X a= − + − − ⋅ + . (1.2.14)

Case 1: Only good one is consumed

This  means,  that  the  realisation  of  good  two  is  bounded,  
2 0X = .  Therefore  (1.2.12)  is  a  strict

inequality. By plugging (1.2.11) in (1.2.12), the following inequality has to be fulfilled:

2 1 2 1,V Vξ ξ< − +  (1.2.15)

Since from 
2 0X =  follows that the whole budget is spent for good one yielding 1 1X y p= . Therefore

values  
1V  and 

2V  are known and fixed. Derivating probability of observing  
2 0X =  will be done in

two steps. First step is to compute probability of (1.2.13) conditional on 1ξ :

( ) ( )2 1 2 1 1 1 2 1|P V V F V Vξξ ξ ξ ξ< − + = − + (1.2.16)

14Note that in fact both  both  1X  and  2X  are continuous random variables, but with some discrete probability at  2 0X = ,

1 1X y p=  respectively. For a simpler formulation, notation ( )( )1 1 2 2 1 2 1,2,..,1,2,..,
, | , , ,n n n Nn N

P X x X x p p yθ ==
= =  is used.
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By integrating out 1ξ , the unconditional probability ( )2 1 2 1P V Vξ ξ< − +  can be calculated:15

( ) ( ) ( )( ) ( )
1

1 2
2 1 2 1 1 1 2 1

∞

=−∞

< − + = − + ⋅ =
+∫
V

V V

z

e
P V V F V x V x z f z dz

e e
ξ ξξ ξ . (1.2.17) 16

Therefore probability of observing 1 1X y p=  and 2 0X =  is

1

1 2
1 2

1

0
V

V V

y e
P X X

p e e


= ∧ = = + 

. (1.2.18) 17

Note that 
1V  and 

2V  are equal to (1.2.13) and (1.2.14) evaluated at  1 1X y p=  and 
2 0X = .

Case 2: Both goods are consumed

In this case, both first order conditions (1.2.14) and (1.2.15) are equalities since optimal solution is

non-bounded. From this follows

2 1 2 1V Vξ ξ= − + . (1.2.19)

In  a  first  step  1X  has  to  be expressed as  a  function of  2X  by use of  budget  restriction  (1.2.3).

Therefore 1V  becomes a function 2X :

( ) ( ) ( ) ( ) 2 2
1 2 1 1 1 1 1

1

ln ln 1 ln
y p X

V X d p m d a
p

 − ⋅
= − + − − ⋅ + 

 

⌣

, (1.2.20)

In  a  second step probability  of  observing  2 2X x=  has  to  be determined.  Since  ( ) ( )1 2 2 2V x V x−
⌣

 is

strictly increasing in 2x ,18 (1.1.10), can be solved as follows:19

15This  follows  by  applying  the  law  of  total  probability:  ( ) ( ) ( )
1

|
n

i i

i

P A P A B P B
=

= ⋅∑ ,  if  { }, 1,2,..,iB i n∈  is  a  finite  or

countably infinite partition of a probability space and each set nB  is measurable.

16 Apply rule 6 in appendix A1.

17This result can also been directly yielded by applying rule 3 of appendix A1 to 2 1 2 1 2 1 1 2< − + ⇔ − < −V V V Vξ ξ ξ ξ . Since

by this rule the cumulated density function of 2 1Z ξ ξ= −  is ( ) ( )
2 1

1 1 z
Z F z eξ ξ− = +∼  it follows, that the probability of case 1

is: ( ) ( ) ( )

1

1 1 21 2
2 1 1 2 1 2

1

1

V

Z V VV V

e
P V V F V V

e ee
ξ ξ

− −
− < − = − = =

++
.

18
( ) ( )( ) ( ) ( ) ( ) ( )

( )
1 2 1 2 1 1 21 1 2 2

1 1 1 1 2

1 1
0.

∂ − ∂ ∂ ∂ ∂∂ − − −
= − = ⋅ − = ⋅ − <

∂ ∂ ∂ ∂ ∂ ∂ + +

⌣ ⌣ ⌣
V z V z V z V z V X V zX d p d

z z z X z z x z a p z a

19Applying theorem ”Densities of transformed random variables” yields (1.2.21), with

( ) ( ) ( )2 2 1 2 2 2 1= − +
⌣

h X V X V X ξ  and
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( ) ( ) ( ) ( )( )
2 2 1

1 2 2
1 2 10 |

2 1 2
1

1

1 1
.

X X

d p d
f z f V z V z

y p z p z a
a

p

ξξ ξ∧ >


 − −
= ⋅ + ⋅ − +

− +  + 
 

⌣

 (1.2.21) 

Probability density function ( ) ( )
2 2 0X X

f z∧ >  can be obtained by integrating out 1ξ  from (1.2.21):20

( ) ( )
( ) ( )

( ) ( )( )
2 1

2 2
2 1

1 2 2

0 2
2 1 2

1

1

1 1
.

1

V z V z

X X
V z V z

d p d e
f z

y p z p z a ea
p

−

∧ >
−


 − −
= ⋅ + ⋅

− +  ++ 
 

⌣

⌣ (1.2.22)

Note  that  ( )
2Xf z  refers  to  the  case  where  2X  is  not  bounded,  which  means  that

( ) ( )2 1 2 2 2 1= − +
⌣

V X V Xξ ξ  is  always true.  Note that  ( )
2 2Xf y p  goes to infinity,  but that  does  not

imply, that the probability for ( ) ( )2 2 1 0P X y p P X= = =  does have a finite value, what would be in

contrast to that parameter 
1a  forces the possible range for optimal solutions of 1X  to values greater

than  zero,  
1 0a− = .21 Note  also,  that  integrating  (1.2..22)  yields  probability  

2 0>X ,

( ) ( )2 20 1 0P X P X> = − = .22

( )
( ) ( )( )

( ) ( )1 2 2 22 1 2 2
2 1 2 2 2

22 2 1 2
1

1

1 1∂ −∂ − −′ ′= = = − = ⋅ +
−∂ ∂ ++

⌣

⌣V x V x d p d
J x V x V x

y p zx x p z a
a

p

ξ
 yields (1.2.21).

20 Applying rule 8 in A.1 on ( ) ( )( )1 2 1− +
⌣

f V z V zξ ξ  yields this results.

21 For a proof see appendix A3.

22Proof: Since (1.2.19), ( ) ( )2 1 2 2 2 1= − +
⌣

V X V Xξ ξ . Since ( ) ( )1 2 2 2−
⌣

V X V X  is strictly increasing in 2X , ( ) ( )1 2 2 2−
⌣

V X V X  is

greater than  ( ) ( )1 20 0−
⌣

V V  for any positive value  2X . Therefore  2ξ  that always has to match  ( ) ( )2 1 2 2 2 1= − +
⌣

V X V Xξ ξ ,

will take any value greater than ( ) ( )1 20 0−
⌣

V V , when 
2

X  is increasing from zero to its maximal value 
2 2

=X y p . Therefore

integrating (1.2.22) over 2X  is equivalent to probability  ( ) ( )2 1 2 10 0> − +
⌣

V Vξ ξ . This probability is counter probability of

(1.2.17) and therefore  ( ) ( )2 20 1 0> = − =P X P X .
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The graph of function ( ) ( ) ( ) ( ) ( )
2 2 2 2

1

2| 0 0
0

X X X X
f z f z P X

−

> ∧ >= ⋅ >  is as follows:

Diagram 1.2.4: Probability density function for good two

The density is rather like a uniform distribution with a sharp increase at the boundary of the feasible

range of  
2X . In the next section it will be shown how this shape changes when the variance of the

error term is changed. Before the effect of such a change is discussed, first this case will be brought to

an end. From previous results,  ( )( )1 1 2 2 1 2, | , , ,n n nP X x X x p p yθ= =  can now be calculated.23 Before

this is done, this probability can be restated, since  
1X  is a function of  2X  and  y .  Therefore the

probability measure (1.2.9) for the ML estimation is:

( ) ( ) ( ) ( ) ( )
2 22 1 2 0 2| , , , 0 0 0X XP z X p p y f z I z P X I zθ ∧ >= = ⋅ > + = ⋅ = (1.2.23),24

where ( )0I z >  and ( )0I z =  are indicator functions being one, when the argument is true and zero

otherwise. The probability ( )2 0P X =  is defined in (1.2.18) and the density ( )
2 2| 0X Xf z>  is defined in

(1.2.22). By plugging (1.2.23) in the ML function (1.2.10) all parameters can be estimated for given

data ( )1 2 1,2,..,
, ,n n n n N

x x y
= .

23Note that in the following the observed variables are noted without index n. 

24Note that also the probabilities ( )2 0P X > , ( )2 0P X =  and the probability density function ( )
2 2| 0X Xf z>

 are also conditional

on the parameter values but in this notation it is not explicitly noted.
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Change of the variance of the error term

As diagram 1.2.4 shows the solutions of was shown in  
2X  conditional on that they are positive is

almost  uniformly  distributed  over  the  interval  of  feasible  solutions.  This  means  that  unobserved

preferences have a large impact on the outcomes even when income and prices are the same for all

households. It seems reasonable that the spread of solutions could be smaller in reality, i.e. there is

more concentration of solutions around a value within the interval of feasible solutions of  2X . This

outcome should now also replicated by the model. In the following it is shown that a concentration of

realisations 
2X  around a certain value - means that the density function will reach a maximum at this

value - can be realised by decreasing the variance of the error terms  
1 2,ξ ξ . The following diagram

shows the outcome, when the variance of both 
1 2,ξ ξ  is reduced by factor 0.36 all parameters, prices

and income being the same as in diagram 1.2.3. 

Diagram 1.2.5: Distribution of optimal consumption when variance in error terms is reduced25

This diagram shows that the realizations of 2X  are now more concentrated around the value 2 3X = .

Further the probability of 2X  being zero is strongly reduced. Again the density function of 
2X  and the

25The parameters were chosen as follows: 1 2 1 2 1 20, 2, 0.001, 1= = = = = =a a d d m m  and the prices 1 2 1p p= = . The variance

of variance of both 
1 2,ξ ξ  - that are iid standard Gumbel distributed - is reduced by factor 0.36.
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probability 2X  being zero is calculated for use for the ML function. In the following the error term

will be 
1 2,βξ βξ  instead of 1 2,ξ ξ .

Case 1: Only good one is consumed, changed variance of error terms 

This means, that the realisation of good two is bounded, 2 0X = . Again the situation is the same as in

the case where the error terms are 
1 2,ξ ξ , but now the error terms are 1 2,βξ βξ .

2 1 2 1,V Vβξ βξ< − +  (1.2.24)

with 1V  and 2V  being the same functions as in the case before, namely:

( ) ( ) ( ) ( )1 1 1 1 1 1 1ln ln 1 lnV d p m d X a= − + − − ⋅ + , (1.2.25)

( ) ( ) ( ) ( )2 2 2 2 2 2 2ln ln 1 lnV d p m d X a= − + − − ⋅ + . (1.2.26)

By  use  of  rule  3  of  Gumbel  distributed  random variables  as  stated  in  the  attachment  A  1,  the

probability ( )1 2 1 2P V Vβξ βξ− < −  can be calculated straight forward:

( ) ( )
( )1 2

1 2

1 2 1 2 1 2 1

1

1
V V

P V V F V V

e

βξ βξ
β

βξ βξ −
− −

− < − = − =

+
(1.2.27)

Case 2: Both goods are consumed

Also in this case the situation is the same as in the case where the error terms are 1 2,ξ ξ , but now with

error terms are 1 2,βξ βξ . 

2 1 1 2V Vβξ βξ− = − (1.2.28)

In a first step 
1X  has to be expressed as a function of 

2X  by use of the budget restriction. Therefore

1V  and 2V  are again like in the previous case:

( ) ( ) ( ) ( ) 2 2
1 2 1 1 1 1 1

1

ln ln 1 ln
y p X

V X d p m d a
p

 − ⋅
= − + − − ⋅ + 

 
, (1.2.29)

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2ln ln 1 lnV X d p m d X a= − + − − ⋅ + . (1.2.30)
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Now the density ( )2 2 0X X
f ∧ >  can be calculated by applying property 3 of attachment A 1.26

( ) ( ) ( ) ( )( ) ( ) ( )( )
1 22 2

1 2

1 20X X

d V z V z
f z f V z V z

dz
βξ βξ−∧ >

−
= − ⋅ = (1.2.31)

( ) ( )( )

( ) ( )( )

1 2 1

1

1 2

1
1

1 2 2 2 2
12

1
1 2 1

2 2
1

1

1 1 1
.

1

V z V z d

d
V z V z

e d p d y p X
a

p z a py p X
ae

p

β

β
β

− − −

− −




− − − ⋅ = ⋅ ⋅ ⋅ + ⋅ +   +    − ⋅  ++         

The shape of the density of 2X  changes now from u-shape for high values β  to hump shape for low

values β . For 2β = , 1β =  and 0.6β =  the probability density functions are as follows:

Diagram 1.2.6: Probability density function for good two for different variances of the error term

This  diagram  shows  that  the  smaller  the  variance  of  the  error  term  the  more  concentrated  the

realisations  are  around the  level  2 4X = .  When the  variance  of  the  error  term goes  to  zero,  the

realisations will converge to level 
2 4X =  - the level when there are no stochastic components 1ξ  and

2ξ  - with probability one. 

26
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2 1

1 2 1 2 2 2 1 22

0
0 0

lim lim
X X

dz dz

P V z dz V z dz V X V X V z V zP z X z dz
f z

dz dz
∧ > → →

 + − + < − < −< < +
= = =     

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 2 1 21 2 1 2 1 2 1 2 1 2

0 0
lim lim
dz dz

P V z dz V z dz V z V z F V z V z F V z dz V z dz

dz dz

βξ βξ βξ βξβξ βξ − −

→ →

  + − + < − < − − − + − +
= = =  

   
  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 2

1 2

1 2 1 2

1 2 .
dF V z V z d V z V z

f V z V z
dz dz

βξ βξ
βξ βξ

−
−

− −
= − = − − ⋅
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troduction of the Model,    (This file: R:\bhat\bhat_doku_rt\Bhat_STRC_2009_II_ver2.odt, Sat 29 Aug 09, 00:10:33)

1.2 Model with two goods and no fixed cost

1.3 Model with two goods and fixed cost for good two

1.3.1 Model setup and calculation of the ML function

In this case car driving, denoted by good two, is connected with fixed cost  when consuming any

positive amount. The household has to decide if it wants to bear the fixed costs or if it wants to spend

all income on the consumption good one only. In latter case it has the disadvantage of decreasing

marginal utility of consumption good and in former case it can spread the income on two goods and

yield higher marginal utility but has to bear disutility by disposable income lowered by the fixed cost

caused by car ownership. The impact of changes in income,  fixed cost  and prices on household's

decision on consumption has already discussed in the introductory section. In the following, the focus

shall now be on the impact of changes of household's preference for car driving. To understand this

impact  and  its  implications  is  crucial  when  deriving  the  observation  probabilities  of  household's

consumption  choices.  In  the  following  optimal  consumption  decision  for  households  with  equal

income at given prices but with different preferences for good two car driving,  is illustrated. Note,

that variable 2x  denotes the annual kilometers driven by the household.

Diagram 1.3.1: Optimal consumption for households with different preferences

Top left diagram shows budget line and iso-utility functions at maximal utility of households with

different preference for car driving. The higher this preference the higher are optimal values 1x  and

therefore the lower are optimal values  
2x  and the more to the bottom-right the iso-utility functions

26



The Determinants of Energy Demand of the Swiss Private Transportation Sector  

  The Multiple Discrete-Continuous Extreme Value Model (MDCEV)_____________________________August, 2009

shift. When preference for car driving gets below a certain level, households will decide not to own a

car any more and to spend all income on consumption good one. The point, where households switch

between these two types of consumption schemes is indicated by the green dashed line and the dash-

dotted iso-utility function. This case shows also, that for given income and fixed cost the realizations

of good two will either be zero or above a certain limit that is indicated by this boundary. This is

plausible: For instance no household would bear the fixed costs of holding a car and then not driving

it. Iso-utility functions corresponding to utility functions with preferences lower than this threshold

level are illustrated by the magenta coloured curves crossing at consumption bundle  1 210, 0x x= = .

Before  deriving  probabilities  for  observing  household's  consumption  decisions,  household's

maximization problem shall be formulated for this case. Utility function and distribution are still the

same as in the case without fixed cost described in previous section, see (1.2.1) and (1.2.2). For this

model, budget restriction has changed:

( )1 1 2 2 2 2y p x k F x p xκ= ⋅ + ⋅ + ⋅ (1.3.3)

Note that for this case there are now fixed costs assumed for good two. Function ( )Fκ i  is an indicator

function,  being  one  if  the  argument  is  positive  and  being  zero  otherwise.  Maximization  of  the

household can be represented by solving the following Lagrangian:

( ) ( ) ( ) ( )1 2

1 1 1 1 2 2 2 2exp exp
d d

L m X a m X aξ ξ= + ⋅ + + + ⋅ +

( )( )1 1 2 2 2 2y p X k F X p Xκλ+ ⋅ − ⋅ − ⋅ − ⋅ , (1.3.4)

1 20, 0X X> ≥ .

As in the previous section,  1ξ  and  2ξ  represent unobserved characteristics and are treated as given

since it is assumed that these values  are known by the households.

The corresponding first order conditions can be written as:

( )
( ) 1

1 1 1 11

1 1

1
exp

d
d m p

X a
ξ λ−⋅ + ⋅ = ⋅

+ (1.3.5)

( )
( )

( )( )
2

2 2 2 2 2 21

2 2

1
exp

d
d m k f X p

X a
κξ λ−⋅ + ⋅ ≤ ⋅ ⋅ +

+ (1.3.6)

Function  ( )2f Xκ  is  the  derivative  of  function  ( )2F Xκ  and  goes  to  infinity  at  
2 0X = ,

( )
2

2lim
X

f Xκ
→∞

= ∞ . Therefore, there are always two solutions, 
2 0X =  and 

2 0X ≠ . These two types of

solutions are denoted - like in previous section - as “case 1” and “case 2”. Note that in case two,
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solutions 
2 0X <  will be bound to zero. Indicator function ( )2F Xκ  provides nothing else than that for

solutions 
2 0X >  household's available income is reduced by fixed costs 

2k . 

In the following, the decision between consuming both goods or only good one is discussed in more

detail. The two diagrams below show the two cases for which households decide for case one, where

all budget is used to consume good one, and case two, where households decide to buy a car and to

bear its fixed cost. Below diagram is already presented in top-left part of diagram (1.3.1) in a similar

way. Again in both diagrams below, income, fixed cost and price are identical for both households. On

the left side, household has a higher preference for driving, while as on the left side household has

lower preference for car driving. 

1x

2x

2D

1D

 

1x

2x

1D

2D

Diagram 1.3.2: Optimal consumption for given fixed cost for good two 2x

The two straight lines depict the budget lines. The solid budget line corresponds to the income net the

fixed  cost  for  good  two  for  the  case  of  positive  consumption  of  good  two  and  the  dashed  line

corresponds to the income that is relevant when 2x  is chosen to be zero and therefore there are also no

fixed cost for that good. In the left diagram a household with strong preference for car driving chooses

to buy a car  (case 2). This is due to decreasing marginal utility of good one. Because of this, spending

the income on both goods but accepting the loss of available income due to fixed costs yields a higher

utility. In the situation illustrated in diagram on the right household has low preference for car driving.

The loss of available income when owning a car has a stronger effect than the gain by spreading

consumption on both goods. Therefore spending the whole income on good one yields a higher utility

(case 1). 

The following diagram offers an alternative illustration of that decision:
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1 2,x x0 1ax
1b

x

2b
x

2a
x

( )1 1u x

( )2 2u x

1

1a

U X

pλ

∂ ∂ =

=

2

2

∂ ∂ =

=
a

U X

pλ

1 1∂ ∂ = bU X pλ

( )1 1a
u x

( )1 1bu x

( )2 2a
u x

( )2 2b
u x

Diagram 1.3.3: The maximization calculus1

Here the results for two values λ  are illustrated, a bλ λ> . For 
a

λ  the optimal value of 
2x  is positive

since  for  
1 1aU X pλ∂ ∂ =  the  value  for  2x  is  positive.  Variable  a

λ  is  chosen  so  that  the  whole

disposable income  
2−y k  is used up for consumption. Variable  

b
λ  is the value corresponding the

solution when the whole income is spent for good one and there are no fixed cost, 1 1X y p= , 2 0X = .

In the example illustrated the case when all income is spent on good one yields higher utility than case

when the income is spent for both goods and fixed cost have to be beared: Diagram above shows, that

sum of partial utilities of amounts 1ax  and 2ax  corresponding to a
λ  (case 2) yields lower utility than

sum of partial utilities of amounts 1bx  and 2bx  corresponding to “case 1”:

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2+ > +b b a au x u x u x u x ( ) ( )1 1 1 2 1 1 2 2, 0 ,⇔ = = = > = =a a au X x y p X u X x X x .

Calculation of the Maximum Likelihood function

Again  probability for  observing  2 0X =  and the  density function for  observing  2 0X >  has  to  be

calculated for ML function (1.2.10). Also when fixed costs are included in the model,  probability

function  ( )2 0P X =  (case 1) and density function  ( ) ( )
2 2 0X X

f z∧ >  (case 2) have to be computed.  The

difficulty in this extended model is that 2X  being zero cannot only result when the realization of the

random parameters 1ξ  and 2ξ  are such that for given disposable income yields a boundary solution for

2X . For this model, 2X  can also be zero when optimal solution of 2X  at disposable income 2y k−  is

an interior solution (case 2) but saving the fixed cost for good one and spending the whole income on

1Note that ( ) ( ) ( )exp= + ⋅ + id

i i i i i iu x m x aξ  is partial utility of good i.
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good one (case 1) would yield a higher income. For this latter comparison utility levels have to be

computed for both cases. In the following first optimal consumption values and  utilities are computed.

After that, condition when utility for case 1 is greater than utility for case 2 is stated and probabilities

are computed. By use of this condition it will be possible to compute the probability that case 1 is

observed.

Case 1: Only good one is consumed

This means, that the realisation of good two is bounded, 
2 0X = . For this case, utility is 

( ) ( ) ( ) 1

1 1 2 1 1 1 1,0 | , , exp
d

U y p m y p aθ ξ ξ ξ= + ⋅ + . (1.3.7)

Case 2: Both goods are consumed

In this case, like in the case without fixed cost, condition (1.2.19) holds but now available income is

reduced to income minus fixed cost, 2y k− . Therefore function (1.2.20) changes to 

( ) ( ) ( ) ( ) 2 2 2
1 2 1 1 1 1 1

1

ln ln 1 ln
y k p X

V X d p m d a
p

 − − ⋅
= − + − − ⋅ + 

 

⌣⌣

, (1.3.8)

and density (1.2.22) changes to

( ) ( )
( ) ( )

( ) ( )( )
2 1

2 2

2 1

1 2 2

0 2
2 2 1 2

1

1

1 1

1

−

∧ >
−

 
 − −
 = ⋅ + ⋅

− − + + + 
 

⌣⌣

⌣⌣

V z V z

X X
V z V z

d p d e
f z

y k p z p z a
a e

p

. (1.3.9)

Now, probability ( )2 0P X =  has to be determined. Note, that  2X  can be zero for two reasons. The

first reason is, that interior solution in case 2 can yield negative values for 2X . In the following, this

first reason is denoted as condition one and corresponds to2

2 1 2 1.V Vξ ξ< − +
⌣⌣

 (1.3.10)

The second reason is that consumption scheme in case 2 can yield lower utility than spending all

income for the consumption good number one as in case 1. In the following, this second reason is

denoted  as  condition  two.  Condition  two  is  equivalent  to  comparing  the  sum of  partial  utilities

( ) ( )1 1 2 2b bu x u x+  to  ( ) ( )1 1 2 2a au x u x+  in diagram 1.3.3. The function that would yield the utility of

2See also “case 1” in section 1.2.
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case 2 for any income,  price and preference parameters  is  the indirect  utility function. Using this

function, condition two would be then:

( ) ( )1 1 2 2 1 2 1 2,0 | , , , , | , ,U y p v y k p pθ ξ ξ θ ξ ξ> − ,  (1.3.11)

where ( )1 2 1 2 1 2, , , , ,= a a d d m mθ .

( )U i  denotes the direct utility function and ( )v i  the indirect utility function provided that optimal

consumption levels of the two goods are not bound to zero.

It is important to note, that condition two is not equivalent to condition one. The following diagram

where the decision of two households is presented illustrates this fact. Both households face the same

income  and prices  and  differ  only  in  preference  for  car  driving.  First  household  on  the  left  has

preference for car driving such that it is indifferent between owning a car an bearing the fixed cost and

spending all income for consumption good one. Second household's preference for car driving is so

that it would not drive car when being forced to hold a car. This household's preference corresponds to

the case, where case two would yield a boundary solution 2 0=X .3  

1x

2x

2D

1D0
1x

2x

2D
1D0

 

Diagram 1.3.4: Optimal consumption at critical preference levels for car driving

Diagrams above show that preference for car driving where households would switch from bounded to

interior solutions given they own a car is much lower than preference where household would switch

from not owning to owning a car, given they take fixed costs of car ownership into account. 

Note that indirect utility function is based on non-bound solutions for optimal consumption of the two

goods. Therefore, negative solutions for car driving are not excluded. This leads to the question, if for

3Note, that the lower preference for car driving is, the more optimal consumption  2D  shifts to the bottom along the solid

budget line, since optimal amount of car driving is decreasing in this case.  
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very low preference for car driving the value of utility function in (1.3.11) could become again larger

than the value of the direct utility function at some point. The following diagram illustrates such a

situation.

1x

2x

2a−

0 A

B

C

( )1,0BU U y p=

( )2 1 2, ,CU v y k p p= −

Diagram 1.3.4: Optimal consumption at critical preference levels for car driving

This diagram illustrates that for some preference level for car driving it was optimal to choose solution

A that was inferior to solution B, that illustrates case 1, where all income is spent on consumption good

one. Despite of that, for very small preferences for car driving, relation (1.3.11) can change again.

The question is now, if there are any parameter values of utility function (1.2.1) 4 for which a solution

as illustrated in diagram 1.3.4 is possible. In the following it will be shown that for  
1 2d d d= =  the

answer is no. For proving this,  first the indirect  utility function  ( )2 1 2 1 2, , | , ,v y k p p θ ξ ξ−  has to be

determined. This will be done by deriving the non-bounded Marshallian demand functions and then

plugging in these in the direct utility function. 

Marshallian demand function can be computed by solving Lagrangian (1.3.4).  Note that  this time

parameters are choosen to be  
1 2d d d= = . This is necessary since only for  

1 2
= =d d d  the indirect

utility will be of explicit functional form. Later it will become obvious why this is important.

Solving Lagrangian (1.3.4) yields the following first order conditions:

4Note that (1.2.1) is ( ) ( ) ( ) ( ) ( ) ( )1 2

1 1 2 2 1 1 1 1 2 2 2 2exp exp
d d

U u X u X m X a m X aξ ξ= + = + ⋅ + + + ⋅ +  and that this utility function

is always used for MDCEV models.
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( ) ( ) 1

1 1 1 1 1exp
d

d m X a pξ λ−
⋅ + ⋅ + = , (1.3.12)

( ) ( ) 1

2 2 2 2 2exp
d

d m X a pξ λ−
⋅ + ⋅ + = , (1.3.13)

Form these first order conditions follows5

( )1 2 2 1X B X a a= ⋅ + − , with ( )
1 1

1 1
2 2

1 1

exp exp
1

d dp p m
B m

p p d

ς
ς

− −   + = ⋅ − − = ⋅ −    −   
, (1.3.14)

where 2 1ς ξ ξ= −  and 2 1m m m= − .

Note  that  expression  ( )exp m ς+  denotes  preference  for  car  driving  relative  to  preference  for

consumption good.6

Plugging (1.3.14) in the budget restriction and solving for 2X  yields:7

( )2 1 2 1

2

1 2

y k p B a a
X

p B p

− − ⋅ ⋅ −
=

⋅ +
. (1.3.15) 8

Solution for 1X  can be computed by plugging (1.3.15) in (1.3.14): 

( )2 1 2 1

1 2 11

1 2

y k p B a a
X B a a

p p B
−

− − ⋅ ⋅ −
= + ⋅ −

+ ⋅
, (1.3.16)  

with B as defined in (1.3.14) for both (1.3.15) and (1.3.16).

5 
( ) ( )
( ) ( )

( )
11

2 2 2 2 2 2 2 1
2 1 2 11

1 1 1 21 1 1 1

exp
exp

exp

dd

d

d m X a p X a p
m m

p X a pd m X a

ξ λ
ξ ξ

λξ

−−

−

⋅ + ⋅ +  +
= ⇔ = ⋅ − + − ⇔

+⋅ + ⋅ +  
 

( )
1 1

1 1
2 2 1 2 2 1 2 1 2 1

2 1 2 1

1 1 2 1 1 2

exp exp .
1

d dX a p X a p m m
m m

X a p X a p d

ξ ξ
ξ ξ

− −  + + − + − ⇔ = ⋅ − + − ⇔ = ⋅    + + −   

6Note that any positive transformation of utility function (1.2.1) yields the same Marschallian demand functions and leave

relation  same relation (1.3.17) unchanged. Dividing (1.2.1) by ( )1 1
exp +m ξ  is a linear positive transformation that yields:

( ) ( ) ( ) ( )1 2 1 1 1 2 1 2 2 2
, exp= + + − + − ⋅ +

d d
U x x x a m m x aξ ξ , if it is assumed that 1 2= =d d d .

7 ( )1 2 2 1,X B X a a= ⋅ + −

( )( ) ( ) ( )2 1 2 1

2 1 2 2 1 2 2 2 1 2 1 1 2 2 2 2

1 2

y k p B a a
y k p B X a a p X y k p B a a p B X p X X

p B p

− − ⋅ ⋅ −
− = ⋅ ⋅ + − + ⋅ ⇔ − − ⋅ ⋅ − = ⋅ ⋅ + ⋅ ⇔ =

⋅ +

8It is important to note, that relation between  
1X  and  

2X  would be non-linear for  1 2d d≠ . Consequently expression that

would yield when plugging (1.3.14) in 
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Plugging in these two Marshallian demand functions in the utility function yields the indirect utility

function:

( ) ( )2 1 1 2 2 2 1 1 2 2
2 1 2 1

1 2 1 2

, , | , exp

d d

y k p a p a y k p a p a
v y k p p m

p p B p B p
θ ς ς

−

  − + ⋅ + ⋅ − + ⋅ + ⋅
− = + + ⋅  + ⋅ ⋅ +  

. (1.3.17)

Therefore condition two ( ) ( )2 1 2 1, , | , ,0 | ,v y k p p U y pθ ς θ ς− >  (1.3.11) can be rewritten as: 

( )

( )

2 1 1 2 2 2 1 1 2 2

1

1 2 1 2

1 2

1

exp

exp .

d d

d

d

y k p a p a y k p a p a
m

p p B p B p

y
a m a

p

ς

ς

−

  − + ⋅ + ⋅ − + ⋅ + ⋅
+ + ⋅ >  + ⋅ ⋅ +  


> + + + ⋅
 

(1.3.18)

Now,  the  probability  that  these  conditions  are  fulfilled simultaneously  has  to  be  calculated.  One

important feature is that both conditions depend only on one random variable, namely ς . Before the

probability  that  both  conditions  are  fulfilled  is  calculated,  conditions  one  and  two  have  to  be

transformed:

( ) 2 1 1 2 2
1 2

1 2

y k p a p a
g a

p B p
ς

− + ⋅ + ⋅
= −

⋅ +
, (1.3.23)

( ) ( )2 1 2 1

2 21

1 2

d

y k p B a a
g B a

p p B
ς

−

− − ⋅ ⋅ −
= + ⋅ +

+ ⋅ 

( ) ( ) ( )2 1 2 1

1 2

1 2 1

exp exp

d d

d
y k p B a a y

m a m a
p B p p

ς ς
− − ⋅ ⋅ − 

+ + ⋅ − + − + ⋅ ⋅ +   
. (1.3.24)

Condition one and two are fulfilled, when  ( )1 0g ς > ,  ( )2 0g ς >  respectively. It can be shown, that

( )1g ς  and ( )2g ς  have the following shape:9

9For a proof, see A5.
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0

( )1g ς ( )2g ς

ς
1ς 2ς

Diagram 1.3.7: The principle of calculating the probability of good two being zero

Since both function are increasing in ς  in the relevant range 1ς ς> , both condition one and two are

fulfilled in the range ς  being above ( )1 2max ,ς ς . It can be proven,10 that  ( )2 2g ς  is always smaller

than zero and both ( )1g ς  and ( )2g ς  are increasing for any 1ς ς> . From this it follows that 2 1ς ς>

and therefore ( )1 2 2max , =ς ς ς .11 This result is rather intuitive: Condition one stands for the case when

households choose whether 2X  shall be consumed regardless of fixed costs, while as in condition two,

they also take into account that consuming good two implies fixed costs. It quite natural, that in latter

case households will switch to consume good two only at a higher level of relative preference  ς ,

namely at  preference level  2 1>ς ς .  Given preference level  2ς ,  probability that  households choose

2 0=X  is equal to the probability that ς  is smaller than this critical level:

( ) ( ) ( ) ( )
2

2 2 1 2 20 | , , |

=

=−∞

= = − = =∫D
P X y y k p p f d F

ς ς

ς ς
ς

θ ς ς ς , (1.3.25)

10See appendix A5.

11Note, that it is also necessary to proof that ( )2 0g ς <  for any 1ς ς< . If this was not the case, then a case where owning a

car but not driving it would be a rational choice. Since it can be proven that ( )2 0g ς <  for any 1ς ς<  this counterintuitive

case is excluded in this framework. 
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with ( ) 1

1 −
=

+ z
F z

e
ς  being the cumulative density function of ς .

Since 2ς  is the root of ( )2g ς , which can not be solved for 2ς  as an explicit function, 2ς  has to be

computed numerically. 

What remains to calculate is the density function of the  2X  being a positive solution. Again this

density  is  the  same  like  in  the  case  with  no  fixed  cost  but  in  this  case  with  parameter  values

1 2d d d= = :

( ) ( ) ( )
( ) ( )

( ) ( )( )
2 1

2 2
2 1

2
2 1 20 2

2 2 1 2
1

1

1 1
| , , |

1

V z V z

DX X
V z V z

d p d e
f z y y k p p

y k p z p z a ea
p

θ
−

∧ > −


 − −
= − = ⋅ + ⋅

− − +  ++ 
 

, (1.3.26)

with ( ) ( ) ( ) 2 2
1 1 1

1

ln 1 ln
y k p z

V z p d a
p

 − −
= − − − ⋅ + 

 
 and

( ) ( ) ( ) ( ) ( )2 2 2ln ln 1 lnV z d p m d z a= − + − − ⋅ + .

Therefore the Likelihood function is as follows:

( ) { }( ) ( )( )
( ) ( )( ) 2

2

2 2

1

2 1.. 2 1 2 2 20
, | , , , 0

X iX i

II

i i i N i iX X
x y k p p P X f xθ −

= ∧ >= = ⋅ℓ , (1.3.27)

where ( )
2

2

2

2

0 : 1

0 : 0
x

X
I X

X

> 
=  

≤ 
.

Note  that  for  notational  simplicity  ( )2 0=iP X  was  not  explicitly  written  to  be  conditional  on

parameters θ  as done correctly in (1.3.25) and (1.3.26). 

The shape of density (1.3.26) depends on all parameters  1 2, ,a a d  and economic variables. 

Change of the variance of the error term

Again, also in the case where fixed costs are considered, changes in variance of error terms change the

shape of probability density function. A smaller variance than in the standard Gumbel case a computed

above would lead to a more realistic distribution of values in diagram 1.3.1:
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Diagram 1.3.8: Optimal consumption for households with small differences in preferences

Probability  ( )2 0=P X  and density function  ( ) ( )
2 2 0∧ >X X

f z  can be computed as illustrated in chapter

1.2. The functions yield then:

( ) ( )
2

2
2 2 1 2

1
0 | , , |DP X y y k p p f d F

ς ς

ς ς
ς

ς ς
θ ς

β β β

=

=−∞

  
= = − = =  

  
∫ , (1.3.28)

with 
1

1
−

 
= 

 
+

z

z
F

e

ς

β
β

 being the cumulative density function of ς  and

( ) ( ) ( )
2 2

2 1 20
| , , |∧ > = − =DX X

f z y y k p p θ (1.3.28)

( ) ( )( )

( ) ( )( )

2 1

2 1

1

2

2
1

2 2 1 2
1

1

1 1 1

1

−

−

 
 − −
 = ⋅ ⋅ + ⋅

− − +   +  +    
 
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pd d e
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β
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1.3.2 Parameter estimation and empirical results

In this section first the basic principle and some specific problems in ML estimating the parameters of

this model are discussed. Second the estimation procedure is described. Third some information on

data and their use for the model are given and estimation results (of different model specifications: not

done yet) are presented. 

The basic principle of ML estimation

ML estimation yields to maximize probability of observing data of a dataset. This is done by changing

the parameters such that the probability function of the model fits the observed data the “best”.

Following histogram shows distance  driven from Swiss  households  in  an  income category  about

84'000 swiss francs per year. Households live in a urban area.

Diagram 1.3.9: Observed data of X2 of households with income 84000Fr living in urban area

Note that in diagram above observations where households do not drive a car are filtered out. The aim

is now in principle to choose parameters so that the shape of density function (1.3.28) fits best this

histogram and at the same time that probability (1.3.28) is as close as possible the share of households

not owning a car. It is important to note that ML estimation tries - in prociple - to fit all histograms for

all income categories and all places of living. The advantage of this model compared to more simple

structures like the Tobit model is that the different model parameters affect the shape of the densities

and the value of the probability for observing households without cars in quite different ways. This

property allows for a good fit of the model with the data despite of the small number of parameters. 
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In the following the impact on the shape of density and the value ( ) ( )2 2 1 20 | , , |= = −DP X y y k p p θ

is illustrated for all parameters of the set ( )2 , , ,= a d mθ β  12. Note that the driving force of the

densities below is random variable ς .

First the effect of a change of m shall be examined:

Diagram 1.3.10: pdf of X2 or different relative (deterministic) preference m for car driving 

This diagram shows that an increase in relative preference for car driving shifts the density function to

towards the right. Higher annual kilometres driven become more likely. At the same time, probability

that households do not own a car is reduced. Note that probabilities that households do not on own a

car is represented by the surface below the dash-dotted lines. One important feature of a change in m

is that it does not affect the minimum distance a household does drive when deciding to own a car. 

12Note  that  ( )2 , ,= a d mθ  is  assumed  to  be  zero  and  transformation  of  utility  function   -  as  presented  in  footnote

corresponding to (1.3.14) -  showed, that only difference 2 1= −m m m  matters. Therefore parameter set θ  has been reduced

by some parameters.
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Diagram 1.3.10: pdf of X2 for different „variance parameter“ β

This diagram shows that a decrease in „variance parameters“ β  concentrates density function to a

certain value and reduces density for high annual kilometres dramatically. At the same time,

probability that households do not own a car is reduced. Again, one important feature of a change in

β  is that it does not affect the minimum distance a household does drive when deciding to own a car. 

Diagram 1.3.11: pdf of X2 for different „shape parameter“ d
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Diagram above shows that an decrease in „shape parameter“ d  decreases the minimum distance a

household does drive when deciding to own a car. This is due to the fact that d determines the decrease

of marginal utility: The lower d, the faster the utility of car driving decreases. On the other hand the

first some kilometres yield higher utility than in the case where d is high. Therefore for lower values

of d households rather try to spread consumption on  both goods even if their income is decreased  by

the fixed costs arising when owning a car. That is what explains the decrease in the minimum distance

a household does drive when deciding to own a car. Further, decreasing d strongly decreases the

probability that households do not own a car.

Diagram 1.3.12: pdf of X2 for different „shift parameters“ a2 

Diagram above shows that an increase in „shift parameter“ a2  only increases the minimum distance of

a household does drive when deciding to own a car. This is due to the fact that a2 pushes expression

( )2 2+
d

x a   to a range, where the first kilometre driven yields a lower marginal utility. Also here,

shifting this minimum distance to a higher value increases the probability of not owning a car.

The problem of discontinuity

Diagram above shows that if  
2 10000=x  is observed, then if  2a  was 2 10=a  this observation has a

positive probability. When increasing 2a , at some point probability of observing 
2 10000=x  switches

to zero. The problem is, that such a discontinuity is not feasible when computing MLE: As soon as one

observations probability of one observation yields zero the probability for observing all data get zero

and therefore any change of parameters do not change the probability of observing the dataset. The
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problem that one observation probability can get  zero can arise,  when varying  d.  Therefore MLE

procedure must be modified. 

Estimation procedure

As mentioned above, standard MLE procedure may not be applied due to the discontinuity problem.

For solving this problem, the following estimation routine is applied:

1. Choose some value for 2a  and d.

2. Eliminate all positive observations that are in the interval ( )( )2 20, X ς .

3. Estimate β  and  γ , where = ⋅m sγ  with s being sociodemographic variables

4. Check if simulated ( )2
ˆˆ 0 | ,data=P X θ  and ( )2

ˆˆ | ,dataE X θ  are the same like in data. θ̂  is the

set of parameters set and estimated respectively as described above. 

5. Evaluate the result  by a valuation function  M.  This function is increasing in difference of

simulated and empirical probability of  
2X  being 2 0=X  and simulated expectation value and

empirical mean of distance driven and increasing in the number of eliminated observation in

step 2. 

6. Change  2a  and d until M has reached its minimum value.

Empirical results

In the following survey data from Mikrozensus zum Verkehrsverhalten 2005, BfS (2005), was used.

These data are cross section data of more than 30'000 Swiss households. Among other information,

these households reported the total amount of kilometres they drove by their car or their cars, in case

they had more than one. Theses distances were summed up for each household and is considered as

driving  distance  2x  in  the  model.  According  to  assumptions  of  the  model  it  was  assumed  that

households have no cost, when switching from no car to one car an vice versa. This means that the

loss of value of the car when selling it due to information symmetry between seller and buyer and

transactions  costs  were  neglected.  In  principle  the  economic  environment  of  the  households  is

considered as if households would rent their cars. Since there is only one car type captured in the

model it is assumed that households can choose between no car and a standard car. This standard car

has a fixed cost of 7000sFr per year. Variable costs are assumed to be  0.2sFr plus the fuel costs based

on a fuel consumption of 8 l/100km. Both fixed cost and variable costs are based on calculations of

TCS (2009) for a typical middle class car. Fuel price is based on the average fuel price of the last 12
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month before the household was interviewed. Households owning more than one car where considered

as if they had only one car. The dataset was cleaned from entries where households would spend more

than one third of their income just for driving, drove more than 65'000 km a year and of households

that stated they were driving less than 1000 km's per year.  In all those cases it  was assumed that

households  were  giving  wrong  information  on  their  driving  distance  or  that  they  use  the  car

professionally. After removing these dataset, some random sample entries of households owning no

car were removed in order to keep the share of households owning no car remains the same. From this

sample, again a random subsample was taken  in order to keep computation time low. As household

specific variables, only a dummy for household living in rural area was used. This variable turned out

to be most influential in other models.

Estimation routine was performed as described in paragraph above. Resulting parameters where:

1 2

ˆ ˆ ˆˆ ˆ ˆ, 00.18951 0.818, 24d a a= = = ,

and the parameters determining the relative preference for driving cars m are 

( ) ( ) ( )0.0663
1

0.1389 0.03
2-2.2696, 0.34882 , 0.30662ˆˆ ˆγ γ β= = = ,  with  1 2m ruralγ γ= + ⋅  and  β̂  being  a  parameter

determining the variance of the unobserved preference of the households as defined in (1.3.28). Since

parameters 
1 2,γ γ  and β  are estimated by Maximum Likelihood estimation, standard errors could be

computed. Standard errors of parameters estimated are in brackets. All values are highly significant.

Parameter  
2γ̂  is greater than zero what implies that households living in rural areas have stronger

preference for driving. This is a rather intuitive finding since distance to facilities is larger in average

and offer of public transportation is less in such areas. Estimated parameters yield density functions

for demand for driving 
2X  that fits data quite well, as diagrams below show. 

 

         rural          urban

Diagram 11: Observed data of X2 and pdf for income 84000Fr: Rural and urban areas
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Simulation results

Given these estimated parameters it is now interesting to compute changes of household behaviour if

variables  like  prices  and  fixed  costs  change.  In  the context  of  determining  fuel  demand  and car

holding,  it  is  interesting  to  compute  changes  in  expected  demand  of  driving  and  probability  of

deciding not to own a car:

( )2, 2 1 2 2 1 2

ˆˆ ˆ ˆˆ ˆ ˆ, , , | , , , ,simX E X p p y k a a d mς ς =  
 

, (1.3.29)

( ) ( )
22 2 1 2 2 1 2

ˆˆ ˆ ˆˆ ˆ ˆ0 , , , | , , , , 0Xsim
P X P X p p y k a a d m ς = = = 

 
. (1.3.30)

Summing up the change in unconditional expected value of demand in car driving for each household

will yield the expected total change of driving of the whole population.

Policy effects

In this paragraph the results of some policy changes are presented. The first policy of interest is an

increase in costs per kilometres, 2p :

A change in costs per kilometres, 2p  by one percent yields a change in total kilometres driven of 

1.32%. Since fuel price contribute only about one third of the variable costs of the car13, and increase

of fuel prices would decrease total kilometers driven only by 0.44%. Therefore fuel price elasticity is

about 0.44. This value is in the range as found in other international studies.14 An interesting result is

also that in this case the share of households that do not own a car only decreases by 0.119% from

21.295%  to 21.176%. This is a very small share and implies that the reduction in aggregate driving

distance and therefore in aggregate fuel demand mainly is contributed by households still using a car

but using that car less. Moreover this effect is very small since model implies that only households

that already drove low annual distances would sell their car.

Another interesting policy is to increase taxes on car ownership. A tax that would increase fixed cost

of cars by one percent, would presumably decrease the share of households owning a car and reduce

their budget available. A one percent increase in fixed cost would increase the share of households not

owning a car from 21.295% to 21.65% and total distance driven would decrease by fuel consumption

would  decrease by 0.266%. Later figure is hard to interpret, since no elasticity can derived from this

figure. One possibility to compare the effect of this tax to an increase in fuel taxes is to calculate the

total tax revenue. The effect on fuel demand can then be related to the tax revenue. The tax having

more effect per tax revenue, may then be the “better” tax. 

13The average fuel price was 1.46, share of fuel cost was only about one third: ( )1.26 0.08 1.26 0.08+0.2 =0.335⋅ ⋅ .

14See Dahl et al. (1991), Graham et al. (2002) or Schleiniger (1996).
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Comparing these taxes yields: 

1% tax on fuel 1% tax on fix cost

abs. effect one average driving distance 67.67km 39.03km

abs. effect one car ownership driving distance 3.99% 35.30%

rel. effect one average driving distance 0.46% 0.27%

Average tax revenue per household 18.3 55.1

abs. effect one average driving distance per 1sFr tax revenue 3.69km /sFr 0.71km /sFr

rel. effect one average driving distance per 1sFr tax revenue 0.025% /sFr 0.005% /sFr

abs. effect on share of car ownership per 1sFr tax revenue 0.22% /sFr 0.64% /sFr

Table 1.3.1: Effects of a tax on fuel to a tax on car ownership and driving distance

This table shows that per tax revenue a tax on fuel is about five times more effective than a tax on car

ownership with respect to a reduction in annual kilometres driven. On the other hand, a tax on car

ownership is three times more effective when the aim is to reduce the share of household owning a car.

Another interesting information is how much people would drive more, if they moved from an urban

area to a rural area and vice versa. The model predicts the following changes:

present location urban rural

share of household on total population 79% 21%

average annual km's before move 13420 19262

average annual km's after move 22181 11784

absolute change in average annual km's 8761 -7478

share of no-car households before move 24% 12%

share of no-car households after move 6% 26%

absolute change in share of no-car households 18% -14%

Table 1.3.2: Effects of household location on car ownership and driving distance

The model predicts a huge change in car ownership and car use when household change from urban to

rural areas and vice versa as is shown in table above.  An interesting detail is, that urban households

would drive more additional kilometers if they move to a rural than rural households would drive less.
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The reason for this might be that average income of urban households is higher than that of rural

households, namely 81'759sFr compared to 75'900sFr.

With respect to policies for reducing fuel demand, results above show that not only the type and height

of taxes on fuel and cars may play an important role, but also spatial planning.

46



The Determinants of Energy Demand of the Swiss Private Transportation Sector

  The Multiple Discrete-Continuous Extreme Value Model (MDCEV)____________________________March 26, 2009

Literature

Bhat,  Chandra  R.,  2005,  „A  multiple  discrete–continuous  extreme  value  model:  formulation  and

application to discretionary time-use decisions“, Transportation Research Part B 39 (2005), 

pp. 679–707.

Bhat, Chandra R., 2006, „Household vehicle type holdings and usage: an application of the multiple

discrete-continuous  extreme  value  (MDCEV)  model“,  Transportation  Research  Part  B  40

(2006), pp. 35–53.

Bhat, Chandra R., 2008. „The multiple discrete–continuous extreme value (MDCEV) model: role of

utility  function  parameters,  identification  considerations,  and  model  extensions”,

Transportation Research Part B 42 (3), pp. 274–303.

Dahl,  Carol  und  Thomas  Sterner,  1991,  „Analyzing  gasoline  demand  elasticities:  a  survey”,   

Energy Economics, July 1991, pp. 203-210.

Dubin, Jeffrey A. und Daniel L. McFadden, 1984, „An Econometric Analysis of Residential Electric

Appliance Holdings and Consumption“, Econometrica, Vol. 52, No. 2 (Mar., 1984), pp. 345-

362.

Fang, Hao Audrey,  2008, „A discrete–continuous model of households’ vehicle choice and usage,

with an application to the effects of residential density“, Transportation Research Part B 42

(2008) 736-758.

Graham, Daniel und Stephen Glaister, 2002, „Review of income and price elasticities of demand for

road  traffic”,  Final  Report.  Centre  for  Transport  Studies,  Imperial  College  of  Science,

Technology and Medicine.

Graham, Daniel und Stephen Glaister, 2005, „Decomposing the determinants of road traffic demand“,

Applied Economics 37(1): 19-28.

Mas-Colell  Andreu,  Michael  D.  Whinston  and  Jerry  R.  Green,  1995,  ”Microeconomic  Theory”,

Oxford Univ. Press, 1995.

Shao, Jun, 2003, „Mathematical statistics”, Springer, New York.

Schleiniger, Reto, 1995, „The Demand for Gasoline in Switzerland - in the Short and in the Long

Run“, working paper, Institute for Empirical Research in Economics 9503, 1995.

Varian, Hal R., 1992, „Microeconomic Analysis“, 3rd edition, Norton, 1992.

47



The Determinants of Energy Demand of the Swiss Private Transportation Sector

  The Multiple Discrete-Continuous Extreme Value Model (MDCEV)__________________________January 18, 2008

 Appendix

A 1 Gumbel distribution

The Gumbel distribution as used in the context of this paper is defined as follows:

( )0,1X gu∼ , ( ) ( )expx x
f x e eξ

− −= ⋅ − . (A1.1)

The shape of the probability density function is as follows:

Diagram A.1.1: Probability functions of the standard Gumbel and the standard normal distribution

The shape of the cumulated density function is as follows:

Diagram  A.1.2:  Cumulated  density  functions  of  the  standard  Gumbel  and  the  standard  normal

distribution

The diagram show, that the shapes of the density function of the standard Gumbel and the standard

normal distribution are very similar. The  standard Gumbel is non symmetric an the mean is non zero,

namely equal  the  Euler  Mascherioni  constant  [ ] 0.577..E X λ= = .  The variance  is  lower,  namely

[ ] 2var 6 0.523..X π= = .  In  contrast  to the standard normal distribution has some very properties.

Here the most important of them are listed:
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1. [ ] ( )( )ln ln 2 0.3665..median X = − = .1

2. [ ] 0mode X = .2

3. If 1X  and 2X  are iid standard Gumbel and  are  linear transformations with the same shifting

parameter, namely 1 1 1= +Y Xα β  and 2 2 2= +Y Xα β , then ( )1 2 1 2 1 2= − = − + −Z Y Y X Xα α β

is distributed as:3

( )
( )1 2

1

1

1
z

Z F z

e
α α

β
− − +

=

+

∼
.

1 ( ) ( ) ( )( ) ( )( )exp 0.5 log log 0.5 log log 2 .
x

ZF z e x x
−= − = ⇔ − = − ⇔ = −

2
( ) ( ) ( ) ( ) ( )exp exp 0 exp exp 1 0.

Z x x x x x x x x x x xf z
e e e e e e e e e e e x

z

− − − − − − − − − − −∂
= − − + − = ⇔ − = − ⇔ = ⇔ =

∂

3Proof: First the cumulated density function of Z conditional on x2 has to be calculated:

( )
2 2

1 2
| | 2 .Z X Z X

z
F z F X

α α
β

 − +
= + 

 

Note, that from 1 2 1 1 2 2= − = + − −Z Y Y X Xα β α β  it follows 
1 2

1 2

Z
X X

α α
β

− +
= + .

Using ( ) ( )
2 2|Z X Z XF z E F z =    it follows that:

( ) ( )
1 2 1 22 2

2 2
2 2 2 2

2 2

21 22
2

2 2 2

2

2

ln 1

2

exp exp exp

exp 1 exp

z zx x
x x

x x x x

Z

x x

xzx
x

x x x

x

F z e e e dz e e e dx

e e e dx e e

α α α α
β β

α α
β

  − + − +=∞ =∞− + − +  
− − − −  

=−∞ =−∞

− + + − +=∞ − + 
− − − 

=−∞

  
  = ⋅ − ⋅ − = ⋅ − − =

   
  

 
 = ⋅ − + = ⋅ −

  
  

∫ ∫

∫

1 2
2

2

2

1 2 1 2 1 2
2 2

2 22

2

2

ln 1 ln 1 ln 1

exp

z
x

z z z
x x

ex

x

e x e x ex

x

dx

e e e

α α
β

α α α α α α
β β β

− + 
− +  
 

− + − + − +    
− − + − +         
    




=∞ 
 
 

=−∞

    
    − + − + + − + +=∞    

     
    

=−∞




=
 

 




= ⋅ ⋅ − 
 

 

∫

∫

1 2
2

1 2

ln 1

2

1
.

1

z
x

e

z

dx e

e

α α
β

α α
β

− + 
− +  
 


− + 

 
 

 − +
− 
 

= =

=

+
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The corresponding density function is: 

( )
( )

( )

1 2

1 2

1

2
1

1
.

1

z

z

e
Z f z

e

α α
β

α α
β

β

− − +

− − +

= ⋅


+  
 

∼

4. If 1X  and 2X  are iid standard Gumbel and are linear transformations, namely 
1 1 1Y Xα β= +

and 2 2 2Y Xα β= + , then ( )1 2max ,Z Y Y=  is distributed as:4

( )

1 2

ln

exp

z
e e

Z F z e

α α
β β

β

   − − +       




= − 


 

∼ . 

The corresponding density function is:

( )

1 2 1 2

ln ln
1

exp

z z
e e e e

Z f z e e

α α α α
β β β β

β β

β

          − − + − − +               




= ⋅ ⋅ − 


 

∼ . 

This means that Z is distributed as if 

1 2

lnZ X e e

α α
β ββ


= + +  

 
, where X is standard Gumbel.5

5. Applying property four to ( )1 2max , ,.., NZ Y Y Y= , where i i i
Y Xα β= +  and iX  is iid standard

Gumbel yields:6

4Proof:

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1

1 2

1 2 , 1 2 2 1 1 1 2 1 1 1 2 2,

exp exp

x z x z x z x z x z x z

Z x x X X X X

x x x x x x

z z z

X X

F z P X z X z f x x dx dx f x f x dx dx f x dx f x dx

F z F z e e e e e

α α α α
β β β β

= = = = = =

=−∞ =−∞ =−∞ =−∞ =−∞ =−∞

    − −
− − −    
    

= ≤ ∧ ≤ = = = ⋅ =


= ⋅ = − − = − +

 
 

∫ ∫ ∫ ∫ ∫ ∫

1 21 2

2
lnln

exp exp .

zz
e ee e

e e

α αα α
β ββ β

ββ
β

     − − +− + +              


  
 = − = −         

   

5Note that 

1 2 1 2 1 2

ln ln ln
Z Z

X e e X e e Z X e e

α α α α α α
β β β β β ββ

β β

      
= − + ⇔ + + = ⇔ = + +                 

.

6The proof for this property is straight forward:
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( )
( )1 2

1

1

1
z

Z F z

e
α α

β
− − +

=

+

∼
.  This  means  that  Z is  distributed  as

1 2

lnZ X e e

α α
β ββ


= + +  

 
, where X is standard Gumbel.7

6.
1

1 1
−

 +  = =  
   + +

a

X a a

X a e
E F

e e

σ

ξ

σ σ
σ

,  where  X is  standard  Gumbel  ( )Fξ  is  the  CDF  of

standard Gumbel.8

7.
1

1
− −

 + +   ⋅ =    
     + +

X a b

X a X b
E F F

e e

ξ ξ

σ σ
σ σ ,  where X is standard Gumbel and ( )Fξ  is the

CDF of standard Gumbel.9

8. ( )( )
( )( )

( )|

|

,
, .

X a X

X a X a

E F X a
E f X a f a

a

∂
= =

∂

Applying this rule to the case where ( )( )|

1
,X a X X

X a
E f X a E fξσ σ

+ = ⋅  
  

, ( )ifξ  being the

density  of  a  standard  Gumbel  distributed  random  variable,  yields:
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where X is standard Gumbel, ( )fξ  is the PDF and ( )Fξ  is the CDF of a standard Gumbel

distributed random variable. Note that here: ( ) ( )| , .a Xf X a f X aξ= +

9. ( )
1

1
1

1

!

1

n

i

i

i

a
n

X i n
n

i a

i

e
E f X a n

e

ξ

=

−
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= −

=

∑


+ = ⋅
  

+ 
 

∏
∑

,  

where X is standard Gumbel and ( )Fξ  is the CDF of standard Gumbel.

10. Theorem: (Densities of transformed random variables)10

Shall  ( )1, ..., kX X X=  a random vector with density  X
f ,  and shall  ( )1, ...,i i kY h X X= ,  for

1,...,i k= , such that 

1. 1,..., kh h  is continuous;

2. for every  
kx ∈ℝ ,  such that  ( )i iy h x=  for all  1,...,i k= .  We write then  ( )i ix l y= ,

1,...,i k= .  
1l h−=  can also denoted “inverse function of h”, where ( )1, ..., kl l l=  and

( )1, ..., kh h h= .

3. derivatives i ix y∂ ∂  exist and are continuous.

Then ( )1, ...,i kY Y Y=  has density

( ) ( ) ( )( ) ( )1 , ...,Y X kf y f l y l y J y= ⋅ ,
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10See Shao (2003), page 23.
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where ( )

1 1

1

1

det

k

k k

k

x x

y y

J y

x x

y y

∂ ∂ 
 ∂ ∂
 

=  
 ∂ ∂ 

∂ ∂  

⋯

⋯ ⋯ ⋯

⋯

.
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A 2 The maximum utility calculus: An alternative illustration

In the following the maximum utility calculus is again illustrated. In contrast to illustration in section

1.2 the illustration is based on the first order conditions (1.2.7) and (1.2.8). For the illustration the first

order conditions are reformulated first:

( )
( ) 1

1
1 1 1

1 1 1

1
exp

d

d
m

p x a
ξ λ−⋅ + ⋅ =

+
, (A.2.1)

( )
( ) 2

2
2 2 1

2 2 2

1
exp

d

d
m

p x a
ξ λ−⋅ + ⋅ ≤

+
. (A.2.2)

The reformulated first order condition (A.1.1) can be interpreted as “the marginal utility of spending

an additional unit of the income for good one has to be equal to λ  for an optimal choice of 1x “. The

same holds for 2x  when 2x  is positive. When 2x  is bound to zero,  the marginal utility of spending an

additional unit of the income for good two  will be smaller than  λ . Using (A 1.1) and (A 1.2) the

choice can be illustrated as follows:

1 2,x x0
1a

x 1bx
2b

x
2a

x
⌢

1a−
2a−

aλ

bλ

( )1
1

1

U x
x

p

∂ ∂( )2
2

2

U x
x

p

∂ ∂
λ

Diagram A 2.1: The maximization calculus

Again this illustration shows, that the parameters  1a  and 2a  define the minimum consumption level

of  1x  and 2x , since for  1 1x a= −  and  2 2x a= −  marginal utilities of spending one additional unit of

income goes to infinity. This illustration also shows that expenditures increase when λ  decreases.
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A 3 Probability of observing good one to be zero

This  section relates  to  the two good case  without  fixed cost  as  describer  in   section 1.2.  In  the

following  it  is  proven,  why  probability  ( )1 2

2

0
y

P X P X
p


= = = 

 
 is  zero.

It  is  important  that  despite  ( )
2 2| 0X Xf z>  goes  to  infinity  for  2z y p=  the  discrete  probability  for

2 2 1, 0X y p X= =  is zero. This would not be compatible with the fact that  1 1 0x a= − =  is a lower

limit of the possible range of realisations of  1X . For prove  2 2 1, 0X y p X= =  being zero, first the

functional  form  of  ( )
2 2| 0X X

f z>  in  the  limit  2z y p=  has  to  be  calculated:

( )
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )( )

1 1
2 22 2

11 1 1 1 1
111 2 1 1 1

1

1 1 1

1 2 2 1

2 2

2 2
2

lnln ln 1 ln
ln ln

1

ln ln 2 2
1

1

2

| 0

lim 0 lim 1 0

lim

d
y p Xy p X ad p m d a

ppV X d p m

d

d p m

V X V z V z

z y p z y p

X X
z y p

e e e e

y p X
e a

p

e e

f

−   − ⋅  − ⋅  + − − + − − ⋅ +      − − + −   

−

− + −

− −

→ →

>
→

= = ⋅ =

 − ⋅
= ⋅ + ⇒

 

⇒ = ⇒ + =

⇒ ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

( ) ( )

2

2 1

1 2
2

1
2

2 1 1 1

1 2
2

1
0

1 2 2

0 0
2 1 2

1

1

11 0
ln ln1 2 2 2 2

1 0 0
2 1 2 1

1

1

1 1
lim

1 1
lim

V
V z V z

V Vz y p

d V
V z d p m

V Vz y p

d p d e
z e e

y p z p z a e ea
p

d p d y p X e
e e a

y p z p z a p e ea
p

−

−

→

−−

− + −

→


 − −
= ⋅ + ⋅ ⋅ = − + +  + 

 


 − − − ⋅
= ⋅ + ⋅ ⋅ + ⋅ = − + +    + 

 

= ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

( ) ( )

1
2

2 1 1 1

11 2
2

2

2 1 1 1

1 2
2

1 10
ln ln 1 2 2 2 2

10 0

1 2 12 2
1

1

1
0

ln ln 1

0 0

2 2
1

1

1 1
lim

1
lim

dV
V z d p m

dV Vz y p

V
V z d p m

V Vz y p

e d p d y p X
e e a

p z a pe e y p X
a

p

e d
e e

e e y p X
a

p

− −

− + −

→

−

− + −

→




 − − − ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ + =   ++   − ⋅   +  
  

 −
= ⋅ ⋅ ⋅ +  − ⋅  +

 

1

2

1

d

p

p



 ⋅ = ∞
  

 

Since ( )
2 2

2
| 0lim X X

z y p
f z>→

= ∞  there is some doubt that 2 2 1, 0X y p X= =  could be greater than zero. But

this has not necessarily have to be: The “area” below the ( )
2 2| 0X Xf z>  can still be zero, when the length

of the interval considered around 2z y p=  goes to zero. This means that the following integral has to

be calculated:
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( )2

2 2
2

| 0lim
z y p

X X
z y pz

f z dz
εε

=

>= −→ ∫ .  For checking if this integral  yields a finite value it makes the following

transformation is feasible:

( ) ( )2

2 2 2 2
2

| 0 | 0 2lim lim
z y p

X X X X
z y pz z

f z dz f z y p
εε ε

ε ε
=

> >= −→ →
= ⋅ = −∫ .  (Check  that  !!!)  Plugging  in  the  functional

form of ( )
2 2| 0X X

f z>  in the limit 2z y p= , this formula yields:

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

2

2 2 2 2
2

2 1
2 2 1 1 1

11 2

2

2 2 1 1 1

1 2

| 0 | 0 2

1
0 0

ln ln 1 2

0 0

12 2

1

1

0
ln ln

0 0

lim lim

1

z y p

X X X X
z y pz z

V a
V y p d p m

dV V

V
V y p d p m

V V

f z dz f z y p

e d p
e e

pe e y p y p
a

p

e
e e

e e

εε ε

ε

ε

ε ε

ε
ε

ε

=

> >= −→ →

−
=

− − + −

− − + −

= ⋅ = − =




 − = ⋅ ⋅ ⋅ ⋅ ⋅ = + − ⋅ −   +  
  


= ⋅ ⋅ ⋅

+

∫

( ) ( ) ( )
( )

( ) ( ) ( )

1

2

2 2 1 1 11

11 2

1

1 2

1

1

1
0

ln ln1 2
1 10 0

1

1

1 0.

d

V
V y p d p md

dV V

d p

p

p

e p
e e d

pe e

ε

ε

ε

−

−

− − + −−
−




− ⋅ ⋅ =     
  

 
= ⋅ ⋅ ⋅ ⋅ − ⋅ = +   

Therefore ( )2 2 1, 0 0P X y p X= = =  is proven.
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A 4 Minimum consumption threshold of good two

In this section the sign of  the influence of  
2 1 2, , ,y k p p  and parameters  1 2, ,d a a  on the minimum

consumption threshold of good two ( )2 2X ς  shall be examined. All proves are based on applying the

implicit function theorem on ( )2 2 1 2 1 2, , , , , , 0g y k p p d a a = .

The first prove that the influence of 2k  on ( )2 2X ς  is positive. This is done by 

( ) ( )
( )

2 2 2 2 1 2 1 2 2 2 2

2 2 2 1 2 1 2 2

, , , , , , ,

, , , , , , ,

X g y k p p d a a k X X

k g y k p p d a a k

ς ς

ς ς ς

∂ ∂ ∂ ∂ ∂
= − ⋅ −

∂ ∂ ∂ ∂ ∂ . (A 4.1)

First, ( )2 2 1 2 1 2, , , , , , ,g y k p p d a a ς ς∂ ∂  is calculated:

( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( )

( )

2 2 1 2 1 2 2

2 2
2 2 2 2 2 2 2

1

1

1
1 1

2 2

, , , , , , ,
0,

1 0 for , since .

1 1
exp 0.

1 1 1

dd d

d
d

g y k p p d a a dg B B

dB

dg B p
d B Q B a Q B Q B a

dB p

B p m p
B

p d d d p

ς

ς ς

ς ς

ς ς
ς

−

−

∂ ∂
= ⋅ >

∂ ∂

= − ⋅ ⋅ ⋅ − > >

∂  + = ⋅ ⋅ = ⋅ ⋅ >  ∂ − − −  

⌣

⌣

Therefore, in the relevant range, namely for ( )2 2 1X X ς>  the sign of ( )2 2 1 2 1 2, , , , , , ,g y k p p d a a ς ς∂ ∂

is positive. Now, the sign of ( )2 2 1 2 1 2 2, , , , , , ,g y k p p d a a kς∂ ∂  has to be determined. Again derivation

by applying chain rule is used:

12 2
1 2 1 1

12 2 11 1
1

2 2 2 1 2

1 0,

d d d d d

d

p p
Q B Q Q B Q

g p Qp p
B d Q

k k k p k

−

−

∂ + ⋅ ⋅ ∂ + ⋅ ⋅
∂ ∂

= = = + ⋅ ⋅ ⋅ ⋅ <
∂ ∂ ∂ ∂ 

(A 4.2)

1 2

2 1 2

since 0.
Q k

k p p B

∂
= − <

∂ + ⋅

Further11 

( )2 1 1
2 1 2

1 2 2

1 1
0

1

dX p p
Q B B

p B p B d pς −

∂
= ⋅ ⋅ ⋅ ⋅ ⋅ >

∂ + − (A 4.3)

11

( ) ( )22 1 1 1
2 1 2

1 2 2 2

1 1 1
0, since 0

1 1

d d
Q BX p p pB B

Q B B B
B p B p B d p d pς ς ς−

∂∂ ∂ ∂
= ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ > = ⋅ ⋅ >

∂ ∂ ∂ + − ∂ − .
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and 

2

2 1 2

1
0

X

k p p B

∂ −
= <

∂ + ⋅ (A 4.4)

Therefore ( )2 2 2 0X kς∂ ∂ > .

Next the negative influence of 2a  on ( )2 2X ς  is proven. This is done by 

( ) ( )
( )

2 2 2 2 1 2 1 2 2 2 2

2 2 2 1 2 1 2 2

, , , , , , ,

, , , , , , ,

X g y k p p d a a a X X

a g y k p p d a a a

ς ς

ς ς ς

∂ ∂ ∂ ∂ ∂
= − ⋅ +

∂ ∂ ∂ ∂ ∂ . (A 4.5)

The only component that has not been calculated is ( )2 2 1 2 1 2 2, , , , , , ,g y k p p d a a aς∂ ∂ :

( ) ( )2 2 1 2 1 2 1 1 12
2 2

2 1

, , , , , , ,
0d d d

g y k p p d a a p
d B Q a

a p

ς − − −∂
= ⋅ ⋅ − >

∂
(A 4.6)12

since ( )2 2 2Q aς ς ς> ∀ > .

Further 

1

2 2 2 1

1 1

2 2 1 2 1 2

1 1 0
X Q p p B

a a p B p p B p

−

− −

∂ ∂ ⋅
= − = − = − <

∂ ∂ ⋅ + ⋅ + (A 4.7)

Plugging these results in (A 4.5) yields:

12

( )2 2 1 2 1 2 1 1 1 1 11 2 2 2
1 2 2

2 2 1 2 1

1 1 1 1 12 2 2 2
1 2 21

1 2 1 1 2 1

1 1 1 12 2 2
2 2

1 2 1 1

, , , , , , ,
d d d d d

d d d d d

d d d d

g y k p p d a a dQ p dQ p
d Q B d Q d B a

a da p da p

p p p p
d Q d B Q d B a

p p B p p B p p

p p p
d B Q d B Q

p p B p p B

ς − − − − −

− − − − −
−

− − − −

∂
= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ =

∂

= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ =
+ ⋅ ⋅ +

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
+ ⋅ ⋅

1 12
21

2 1

1 1 1 1 1 12 1 2 2 2
2 2 2

1 1 2 1 1 2 1

1 1 1 1 1 1 12 1 2 2 2 2
2 2 2 2

1 1 2 1 2 1 1 1

d d

d d d d d d

d d d d d d d d

p
d B a

p p

p p p p B p
d B Q d B Q d B a

p p p B p p p B p

p p p B p p p
d B Q d B a d B Q d B a

p p p B p p B p p p

− −
−

− − − − − −

− − − − − − − −

− ⋅ ⋅ ⋅ =
+

⋅
= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ =

+ ⋅ + ⋅

 ⋅
= ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

+ ⋅ + ⋅ 

( )

1

1 1 12
2 2 2 2 2

1

0 for , 0 respectively.d d dp
d B Q a Q a X

p

− − −

=

= ⋅ ⋅ − > > >
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( ) ( )

( ) ( )( )
( )

( )

( )

1 1 12
2 2 1

2 2 1 1 11
2 1 2 1

22 1 2 2 1 2
2 2

1

1

1 1 1
2 1 2 1

1 2 2 1 2

1 1 1
2 1

1 2 2

1 1

1
1

1 1

1 1

1 1

1 1

d d d

d

dd d

d

d

p
d B Q a

X p p p Bp
Q B B

pa p B p B d p p B p
d B Q B a

p

d p p p B
B Q B B

d p B p B d p p B p

d p p p
Q B B

d p B p B d p

ς
− − −

−

− −
−

−

− −

−

⋅ ⋅ −
∂ ⋅

= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − =
∂ + − ⋅ +− ⋅ ⋅ ⋅ −

⋅
= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − =

− + − ⋅ +

⋅
= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −

− + −

( )

( )
( )

1

1

1 2

1 1

1 1 1
2 1 1

1 2 2 1 2

1

1 1
221

1 2 2

1

1 1

1 0
1

d

d

B

p B p

d p B p p B
Q B B

d p B p d p p B p

p B d p
Q B B

p B p pd

−

−

− −

− −

−

−

=
⋅ +

⋅ ⋅
= − ⋅ ⋅ ⋅ ⋅ ⋅ − =

− + − ⋅ +

⋅
= − ⋅ ⋅ ⋅ ⋅ + <

 ⋅ + − 

since 2 0g ς∂ ∂ > , 2 2 0g a∂ ∂ >  and 

Basically the influence of the parameters are interesting, since it has to examined which parameters

influences  ( )2 2X ς . This is important to know, since a shift of ( )2 2X ς  leads to the problem, that the

Maximum Likelihood function will not be differentiable, it there is  any observation within the interval

( )( )2 20..X ς . 

Next the influence of m  on ( )2 2X ς  is proven. This is done by 

( ) ( )
( )

2 2 2 2 1 2 1 2 2 2 2 2

2 2 1 2 1 2

, , , , , , ,
0

, , , , , , ,

X g y k p p d a a B B m X X X X

m g y k p p d a a B B m m

ς ς

ς ς ς ς

∂ ∂ ∂ ⋅∂ ∂ ∂ ∂ ∂ ∂
= − ⋅ + = − + =

∂ ∂ ∂ ⋅∂ ∂ ∂ ∂ ∂ ∂ , 

since 

etc...
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A 5 Calculating the observation probability for three goods without

fixed costs

In the following it is shown, how random variable of formula (1.4.17) is integrated out. 

First, for a simpler notation, (1.4.17) has to be rewritten as

( )( ) ( ) ( ) ( ) ( )
1 2 2 1 1 2 1 3|

=∞

∧

=−∞

= ⋅ − + ⋅ − + ⋅∫
x

X case z

x

E f z l z f V V x F V V x f x dxξ ξ ξ ξξ , (A 5.1)

where  ( )2 2
1 2

1 1

,
   − −

− =   
   

y p z y p z
V V z l z

p p
,  ( )1 1 0=V V  and 

( )

2

1

,
 −

∂  
 =

∂z

y p z
l z

p
l z

z

.

Now, the explicit expressions of  ( )1 2− +f V V xξ  and  ( )1 3− +F V V xξ  has to be plugged in and then

integral (A 5.1) has to be solved:

( )( )

( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( )( )( ) ( )

1 2

1 31 2 1 2

1 31 2 1 2

1 31 2 1 2

2 1

2

2

|

exp exp exp

exp 1

exp 1 .

∧

=∞
− − +− − + − − + − −

=−∞

=∞
− −− − − −− −

=−∞

=∞
− −− − − − − −

=−∞

=

= ⋅ − ⋅ ⋅ − ⋅ − ⋅ =

= ⋅ − + + ⋅ ⋅ ⋅ =

= ⋅ ⋅ − + + ⋅ ⋅

∫

∫

∫

X case

x
V V xV V x V V x x x

z

x

x
V VV V V Vx x

z

x

x
V VV V V V x x

z

x

E f z

l z e e e e e dx

l z e e e e e dx

l z e e e e e dx

ξ ξ

Now substitution ( ) ( ), , , 0− −= − = −∞ = −∞ ∞ =x xy e dy e dx y y  allows for simplifications. The new

integral limits are ( ) ( ), 0−∞ = −∞ ∞ =y y :

( )( )

( ) ( ) ( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )

1 2

1 31 2 1 2

1 31 2 1 2

1 31 2 1 2

2 1

0
2 1

0

2

0

2

|

exp 1

exp 1

exp 1 .

∧

=
−− −− − − −

=−∞

=
− −− − − −

=−∞

=
− −− − − −

=−∞

=

= ⋅ ⋅ + + ⋅ ⋅ − ⋅ − =

= − ⋅ ⋅ + + ⋅ ⋅ =

= − ⋅ ⋅ + + ⋅ ⋅

∫

∫

∫

X case

y

V VV V V V

z

y

y

V VV V V V

z

y

y

V VV V V V

z

y

E f z

l z e e e y y y dy

l z e e e y y dy

l z e e e y y dy

ξ ξ
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Substitution 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 3 1 31 2 1 2

1 3 1 31 2 1 2

1 1

1 , 1 ,

1 , 1

− − − −− − − −

− −
− − − −− − − −

= + + ⋅ = + + ⋅

= + + ⋅ = + + ⋅

V V V VV V V V

V V V VV V V V

s e e y ds e e dy

y e e s dy e e ds

with the corresponding integration limits ( ) ( ), 0 0−∞ = −∞ =s s  yields further simplifications:

( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( )
( )

( ) ( )( )
( )

1 2

1 3 1 31 2 1 2 1 2

1 2

1 31 2

2 1

0
2 1

2

0

3

|

exp 1 1

exp .

1

∧

= − −
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=− −

− −− −
=−∞

=

= − ⋅ ⋅ ⋅ + + ⋅ ⋅ + + =

= − ⋅ ⋅ ⋅
+ +

∫

∫
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s
V V V VV V V V V V

z

s

sV V

z
V VV V

s

E f z

l z e s e e s e e ds

e
l z s sds

e e

ξ ξ

Integral ( )
0

exp
=

=−∞

⋅∫
s

s

s sds  is now be solved by integration by parts, ( )
= =

=

=
= =

′ ′= −∫ ∫
x b x b

x b

x a

x a x a

uv dx uv u vdx :

( )( )

( )
( )

( ) ( )( )
( )( ) ( )

( )
( )

( ) ( )( )
( )( )( )

( )
( )

( ) ( )( )
( )

( )
( )

( ) ( )( )

1 2

1 2

1 31 2
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1 31 2
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1 31 2
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1 31 2

2 1

0
0

3

0

3

3

3

|

exp exp

1

0 exp

1
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.

1

∧

=− −
=

=−∞− −− −
=−∞

− −
=

=−∞− −− −

− −

− −− −

− −

− −− −

=

 
= − ⋅ ⋅ ⋅ − = 

 + +

= − ⋅ ⋅ − =
+ +

= − ⋅ ⋅ − =
+ +

= ⋅
+ +

∫

X case

sV V
s

z sV VV V
s

V V
s

z sV VV V

V V

z
V VV V

V V

z
V VV V

E f z

e
l z s s s ds

e e

e
l z s

e e

e
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e e

e
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ξ ξ

The final result is therefore:

( ) ( )
( )

( ) ( )( )
1 2

2
1 31 2

2 3

1

− −

∧
− −− −

= ⋅
+ +

V V

X case z
V VV V

e
f z l z

e e
, (A 5.1)

where ( )2
1 1 2 2

1

,
 −

= = 
 

y p z
V V V V z

p
 and ( )3 3 0=V V .
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A 6 Calculating the observation probability for three goods when

there are fixed costs

In contrast to the case where there  are no fixed cost the probabilities for the different cases one to four

are not functions of closed form, but have to be calculated by simulation routine. Therefore, densities

have now to be determined conditional on a certain case:

( ) ( ) ( )
2 2 | 2iX case X case i

f z f z P case∧ = ⋅ (A 6.1)

Now for case 2, conditional probability density for 2X  (1.5.12) has to be proven. First, formulate the

density for l instead for z. 

From 
2

1

,
y p z

l l z
p

 −
= 
 

 and (1.5.12) follows 

( ) ( )1 1| 2,Lf l case f lξξ ξ= + . (A 6.2)

Applying rule 8 of appendix A 1 yields

( ) ( )( ) ( )
( )1 1 1 2

| 2 | 2,
1

l

L L
l

e
f l case E f l case f l

e
ξ ξξ ξ

−

−
= = + =

+
. (A 6.3)

From this, density of 2X  can be calculated:

( )
( )

( )
2 2

| 2
1

l

X z
l

e
f l case l z

e

−

−
= ⋅

+
, where ( ) ( )

z

dl z
l z

dz
= . (A 6.4) 
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=
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∑ ∑
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n
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Substituting 
1 1

1 , , ..0i i

n n
a ax x

i i

t e e dt e e dx t
− −− −

= =


= ⋅ + = − ⋅ = ∞

 
∑ ∑  yields

( )
( )

1

1 0

1 1

1

n

i

i i

n xn na
a n t

X i

i i x

E f X a e e t e dtξ
=

− + =−
− −

= = =∞

∑  
+ = − ⋅ + ⋅ ⋅ =  

  
∏ ∑ ∫
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1

1

1 0

1 .

n

i

i i

n xna
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i x

e e t e dt=

− + =∞−
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= =

∑ 
= ⋅ + ⋅ ⋅

 
∑ ∫  (A 6.5)

Integral 
0

x

n t

x

t e dt

=∞
−

=

⋅∫  has to be solved by integration by parts in a recursive way:

( )
0

1 1

1

0 0 0

1

x x x
t

n t n t n t n t

n nt
x x x

S t e dt t e n t e dt n t e dt n S

=∞ =∞ =∞
=− − − − − −
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 = ⋅ = − − ⋅ ⋅ − ⋅ = ⋅ ⋅ = ⋅ ∫ ∫ ∫ , where

0

0

0

1

x
t

t t

t
x

S e dt e

=∞
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=

 = = − = ∫ . From this follows

0

!

x

n t

n

x

S t e dt n

=∞
−

=

= ⋅ =∫ . (A 6.6)

By use of this result, equation (A 6.5) can be solved:

( )
1

1
1

1

!

1

n

i

i

i

a
n

X i n
n

i a

i

e
E f X a n

e

ξ

=

−

+
= −

=

∑


+ = ⋅
  

+ 
 

∏
∑

. (A 6.7)
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A 5 Two goods with fixed costs: Critical relative preference

In the following the critical relative preference where households switch from spending all budget for

good one to spending budget for both goods one and two, where good two is the good with fixed cost,

is computed. It will be proven, that critical value in the case where there are no fixed cost is lower,

than in the case where good  has positive fixed cost. As presented in section 1.3, roots of functions g1

and g2 are relevant, namely 

Since the density of  ς  is  known as  will  be  shown later,  the values  1ς  and  2ς  have now to be

calculated. Further it has to be proven that  ( )1
g ς  and  ( )2

g ς  have a unique solutions, means that

their first derivative is always negative. 

First, condition one is considered. The solution for 1ς  is:1

( ) ( ) 1
1 1

2

1 ln ln
 

= − ⋅ − − 
 

p
d B m

p
ς , where 

1 2
1

2 1 1

⋅
=

− + ⋅

p a
B

y k p a
. (A3.1)

Next it has to be proven, if this solution is unique. This is the case, when the first derivative of  ( )1g ς

does not change sign.2 

( ) ( )( )
( )

( )11
0

∂∂ ∂
= ⋅ >

∂ ∂ ∂

⌣
g Bg B

B

ςς ς

ς ς ς
, with ( ) ( )( )1 1g g Bς ς=

⌣
, (A3.2)

since 
( )( )

( ) ( )
( )1 22 1 1 2 2

12
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1 2

1 0−

−

∂ − + ⋅ + ⋅
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⋅ + ⋅ +

⋅
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A-17



The Determinants of Energy Demand of the Swiss Private Transportation Sector

  The Multiple Discrete-Continuous Extreme Value Model (MDCEV)__________________________January 18, 2008

( )
1

1
1

2

1 1
exp 0

1 1 1

−∂   + = ⋅ ⋅ = ⋅ >   ∂ − − −  

dB p m
B

p d d d

ς ς
ς

.

Therefore, solution 1ς  of condition one is unique. 

Since for condition two an explicit solution of  2ς  does not exist and therefore needs to be calculated

numerically, it has to be proven that  ( )2
′g ς  is positive in the relevant range to assure for a unique

solution 2ς . Again the prove is done by derivation first with respect to B and then B with respect to ς :

( ) ( )( )
( )

( )22
g Bg B

B

ςς ς

ς ς ς

∂∂ ∂
= ⋅

∂ ∂ ∂

⌣

. (A3.3)

Since ( )B ς ς∂ ∂  is greater than zero as shown above, it is sufficient to prove ( )( ) ( )2 0g B Bς ς∂ ∂ >
⌣

.

Therefore,  expression  ( )2g i  has  first  to  be  expressed  as  a  function  of  B by  plugging  in

( ) 12

1

exp
dp

m B
p

ς −+ = ⋅ :3

( ) ( ) ( )1 12 2
2 1 2 2

1 1 1

d

d dd d dp y p
g B Q B B Q B B a

p p p

− −
= + ⋅ ⋅ − − ⋅ ⋅

 

⌣
, (A3.4)

with ( ) 2 1 1 2 2
1 1

1 2

y k p a p a
Q B

p B p
−

− + ⋅ + ⋅
=

⋅ +
 and ( ) 2 1 1 2 2

2

1 2

y k p a p a
Q B

p p B

− + ⋅ + ⋅
=

+ ⋅
.

Derivation ( )2g B B∂ ∂⌣
 yields now:4

3 ( ) ( ) ( )
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1
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( ) ( ) ( )( )2 2
2 2

1

1
dd d

dg B p
d B Q B a

dB p

−= − ⋅ ⋅ ⋅ −
⌣

. (1.3.30)

This  means  that  ( )2 0dg B dB >⌣
 for  1<B B  and  ( )2 0dg B dB ≤⌣

 for  1≥B B ,  respectively

( )2 0>dg dς ς  for 1<ς ς  and ( )2 0≤dg dς ς  for 1≥ς ς  and that ( )2 2g ς  is the minimum5 of function

( )2g ς . Therefore ( )1g ς  and ( )2g ς  diagram look about like:  

0

( )1g ς ( )2g ς

ς
1ς 2ς

Diagram A.3.1: The principle of calculating the probability of good two being zero

The prove 2 1>ς ς  is now as follows:

Since ( )2 1 0<g ς ,  ( )2 0dg dς ς >  and finite for any 1ς ς>  and ( )2lim g
ς

ς
→∞

= ∞ 6 it follows, that there

exists a unique 2ς , such that  ( )2 2 0=g ς  if and only if the income is greater than the fixed cost  
2k ,

2 1 1y k p a> − ⋅  where parameter 
1a  is assumed to be zero. Therefore in this case there exists a unique

solution for ( )2g ς  being zero, namely ( )2 2 0g ς = .

5

( ) ( ) ( ) ( )1 12 2
2 1 2 1 1 1 1 2 1 1 2

1 1 1

1 12 2 2 2
1 2 1 2

1 1 1 1 1 1

0.

d

d dd d d

d d d d

d d d d

p y p
g g B Q B B Q B B a

p p p

y k p y p y k y
B a B a

p p p p p p

ς − −

− −


= = + ⋅ ⋅ − − ⋅ ⋅ =

 

      − −
= + ⋅ ⋅ − − ⋅ ⋅ = − <      
      

⌣
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If the  income is smaller than the fixed cost 
2k  then household cannot consume good two independent

of its preference and therefore in this case probability of choosing a positive amount of good two is

zero. 

Therefore the probability of 
2X  being zero is

( ) ( ) ( ) ( )2 2 1 2 20 | , , | 1D Y YP X y y k p p F I Iςθ ς= = − = ⋅ + − , (1.3.31)

where 
12

2 2

1

ln dp
B m

p
ς − 

= ⋅ −
 

, where ( )2 2 0g B =⌣
, and 

2 1 1

2 1 1

: 1

: 0
Y

y k p a
I

y k p a

> − ⋅ 
=  

≤ − ⋅ 
.

A 6 Three goods with fixed costs: Probabilities for the four cases

In the following it is shown, how the probabilities for the case one to four depend on parameters and

economic variables. To remind, the cases are defined as follows:

Case 1: X1>0 X2=0 X3=0

Case 2: X1>0 X2>0 X3=0

Case 3: X1>0 X2=0 X3>0

Case 4: X1>0 X2>0 X3>0

Table A6.1: List of cases for the three good case

6
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d d
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In the following, first effects of changes of the economic  variables 2 2,k p  and y on probabilities of the

different cases are examined. This is done by illustrating how the sets of case one to four in ( )2 3,ξ ξ

space are changing compared to the baseline case with economic variables  ( ) ( )1 2 3, , 0,0.8,1.2k k k =  ,

10y = ,  ( ) ( )1 2 3, , 1,1,1p p p =  and  parameters  ( ) ( )1 2 3, , 0,0,0m m m = ,  ( ) ( )1 2 3, , 0,1,1a a a = ,

( ) ( )1 2 3, , 0.5,0.5,0.5d d d = . Random variable 1ξ  is set 1 0ξ = .

Note that the brighter boundaries always indicate the baseline case, while as the black boundaries

indicate the boundaries for he modified parameters and economic variables. 

Figure A6.1: Effect of a decrease of fixed cost of good three7

A decrease of fixed cost of good three shift point A in direction of the x- axis. This means that the

level of relative preference for good three where household switch from case one to case three is now

lower. Also the line separating case three and case two is now also shifting towards the x-axis. Over

all, the area for case 4 also becomes larger. In total, the following on probabilities can be summarized:

( )1P case ↓ ( )2P case ↓

( )3P case ↑ ( )4P case ↑

Table A 5.2 : Table of changes in probabilities for a decrease of fixed cost of good three

Next the case where price of good three decreases is examined.

7Fixed cost of good three, 
3k , has decreased from 1.2 to 1.0.
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Figure A6.2: Effect of a decrease of price of good three8

A decrease in price of good three leads to a shift of all boundary levels of preference towards the x-

axis. This implies, that probabilities both for case one and case two are decreasing. Probability of case

four  is  also  increasing,  since  the  area  of  case  four  is  shifted  towards  an  area,  where  density  of

probability  is  higher.9 Probability  of  case  three  is  increasing:  If  mileage  cost  for  the  big  car  is

decreasing, consumer tends to buy this type of car.

( )1P case ↓ ( )2P case ↓

( )3P case ↑ ( )4P case ↑↓

Table A 5.3 : Table of changes in probabilities for a decrease of marginal costs of good three

When income increases it can be expected that fixed cost matter less and therefore that probability of

case one decreases while as all other probabilities are increasing.

8Fixed costs of good three, 
3k , have decreased from 1.0 to 0.8.

9Assuming that 2ξ  and 3ξ  are standard Gumbel distributed and independent. This finding also holds for other distributions

with density centred around zero, like for instant Normal distribution with mean zero. For other distributions, this finding can

change. 
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Figure A6.4: Effect of a change in parameters m

For this change, an increase in  2m  and a decrease in  3m ,  the boundaries of the cases are shifted

towards the top left. This means that the probability for case three has decreased and that probability

for case two has increased. For the change in probabilities of case one and case four there the sign of

change will depend on the assumptions on the distribution of ( )2 3,ξ ξ .

( )1P case ↑↓ ( )2P case ↑

( )3P case ↑ ( )4P case ↑↓

Table A6.5 : Table of changes in probabilities for a change in parameters m

Next, all parameters d are decreased. That implies, that the decrease of marginal utilities of all goods

are getting smaller. Therefore spreading consumption over more goods tends to yield higher utility.

This change is equivalent to a shift of the boundaries of cases one to four towards smaller 2ξ  and 3ξ .
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Figure A6.5: Effect of a decrease of all parameters d11

Therefore probability of case one gets smaller and probability of case four gets higher. For case two

and three the sign of change will depend on the assumptions on the distribution of ( )2 3,ξ ξ .

( )1P case ↓ ( )( )2P case ↑↓

( )( )3P case ↑↓ ( )4P case ↑

Table A6.6: Table of changes in probabilities for a change in parameters m

Last an increase of parameter a3 is examined. An increase of parameter a3 is increasing (x3+a3) for

given x3. Therefore it will shift partial utility of good three towards a range, where marginal utility is

decreasing. This effect will lead to a situation where probability of choosing case three is decreasing. 

Figure A6.6: Effect of an increase of parameter a of good three12

Diagram above show, that the both boundaries fore cases two and three are sifted away from the x-

axis. Therefore probability for case two is increasing while as probability for case three is decreasing.

For distributions of ( )2 3,ξ ξ  that have most mass around zero, probability for case four is decreasing,

but for other distributions also more a increase could be possible.

( )1P case ↑ ( )2P case ↑

( )3P case ↓ ( )( )4P case ↓

Table A6.7: Table of changes in probabilities for a change in parameters m

11Parameter d changed from ( ) ( )1 2 3, , 0.5,0.5,0.5d d d d= =  to ( )0.3,0.3,0.3d = .

12Parameter a changed from ( ) ( )1 2 3, , 0,1,1a a a a= =  to ( )0,1,3a = .
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A 7 Three goods with fixed costs: Optimal consumption in case 4 

In the following, optimal consumption and utility for case 4 are computed. It is assumed, that solutions

will be interior.

First order conditions of Lagrangian

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2 3 3 3 3exp exp exp
d d d

L m X a m X a m X aξ ξ ξ= + ⋅ + + + ⋅ + + + ⋅ + +

( ) ( )( )1 1 2 2 3 3 2 2 3y p X p X p X I X k I X kλ+ ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − ⋅ (A7.1)

are as follows:

( ) ( ) 1
exp , 1,2,3.

d

i i i i

i

d
m X a i

p
ξ λ−

⋅ + ⋅ + = = (A7.2)

Setting these first order condition equal, yields:13

( )
1

1

, with exp .
1

d
j i j i j

i ij j j i ij

i

p m m
X B X a a B

p d

ξ ξ− − + − 
= ⋅ + − = ⋅  −  

(A7.3)

Using this result, budget restriction can be written as follows:

( )( ) ( )( )2 3 1 1 3 3 1 2 2 3 3 2 3 3j jy k k p B X a a p B X a a p X− − = ⋅ ⋅ + − − ⋅ ⋅ + − − ⋅ . (A7.4)

Solving for 3X  yields:14

( ) ( )2 3 1 13 3 1 2 23 3 2

3

1 13 2 23 3

y k k p B a a p B a a
X

p B p B p

− − − ⋅ ⋅ − − ⋅ ⋅ −
=

⋅ + ⋅ +
. (A7.5)

13

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

11
1111

11

1

11

1

1

1

exp exp

exp

exp
1

, with

dd

dd
i i i i j j j j

i j

d

i d
i i j i j i j j

j

d
j i j i j

i i j j

i

j

i i ij j j ij

i

d d
m X a m X a

p p

p
X a m m X a

p

p m m
X a X a

p d

p
X a B X a B

p

ξ ξ

ξ ξ

ξ ξ

−−
−−

−
−

−


⋅ + ⋅ + = ⋅ + ⋅ + ⇔     


⇔ + = ⋅ − + − ⋅ + ⇔ 

 

− + − 
⇔ + = ⋅ ⋅ + ⇔  −  


⇔ + = ⋅ + =



1

1

exp .
1

d
i j i jm m

d

ξ ξ− − + − 
⋅  − 

14

( ) ( )
( ) ( )

2 3 1 13 3 1 2 23 3 2 1 13 3 2 23 3 3 3

2 3 1 13 3 1 2 23 3 2

3

1 13 2 23 3

y k k p B a a p B a a p B X p B X p X

y k k p B a a p B a a
X

p B p B p

− − − ⋅ ⋅ − − ⋅ ⋅ − = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⇔

− − − ⋅ ⋅ − − ⋅ ⋅ −
⇔ =

⋅ + ⋅ +
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