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1 Abstract

Activity-based travel demand models derive travel demand from people’s desire to pursue ac-
tivities in time and space. They generate activity-travel schedules for individual travellers or
homogeneous groups of travellers. Comprehensive activity-travel schedules hold information
on which activities are performed, in which order, where and for how long, and which travel
modes are used between the activities including corresponding routes. This paper presents
PlanomatX, a new scheduling algorithm based on Tabu Search that generates comprehen-
sively optimized all-day schedules. The paper furthermore presents a new concept of sched-
ule recycling that significantly reduces simulation runtimes by re-using schedules of opti-
mized travellers for other non-optimized travellers. Both PlanomatX and schedule recycling
are part of the agent-based microsimulation MATSim (Multi-Agent Transport Simulation,
http://matsim.org). MATSim’s utility function has been adapted to cope with the enhanced
functionality of PlanomatX and schedule recycling. First test results on the greater Zurich sce-
nario with more than 170,000 agents show that PlanomatX achieves significantly better op-
timization results than MATSim’s existing scheduling algorithms. However, it also leads to
disproportional simulation runtimes. Schedule recycling relieves this drawback and allows for
generating comprehensively optimized all-day schedules for large-scale scenarios at affordable

runtimes.

2 Introduction

Activity-based travel demand models emphasize travellers’ participation in out-of-home
activities as a source for travel demand. They understand travel demand as a derived demand
that arises from people’s desire to pursue activities in time and space (O1 and Shuldiner, [1962).
In comparison with classic transport models, activity-based models allow for an increased
recognition of the complexity of travel decisions, based on a more behaviourally sound model
framework (Cirillo and Axhausen, |[Forthcoming). Particular advantages are an improved
capability to model non-work and non-peak travel, an improved capability to move beyond
traditional explanatory variables (i.e. zone-based socio-economics, travel time and cost), and
an improved capability to deal with the effects of household interaction, age, lifestyle, etc. on
travel behaviour (Meyer and Miller, 2001).

Activity-based travel demand models generate activity-travel schedules for individual travellers
or homogeneous groups of travellers. Comprehensive activity-travel schedules hold informa-
tion on which activities are performed, in which order, where and for how long, and which

travel modes are used between the activities including corresponding routes. The fundamental
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problem of scheduling is the combinatorial size of feasible outcomes. The scheduling process
of a traveller may easily exceed millions of alternatives (Bowman and Ben-Akiva, |1996) so
that the problem is generally not solvable by complete enumeration. Travellers do not perceive
the immense magnitude of the solution space since they simplify their decision making
process. They consider just a few discrete alternatives they choose from. Modellers’ task is
to develop concepts that are capable of handling the immense solution space with acceptable

computational efforts but also in a way that matches the behaviour of the travellers.

We propose a new scheduling algorithm PlanomatX that generates comprehensively optimized
all-day schedules, i.e. optimal combinations of a schedule’s activity chain (number, type and
sequence of activities), activitiy timings, and the location, mode and route choices. Further-
more, we present the new concept of Schedule Recycling that significantly reduces simulation
runtimes by re-using schedules of optimized travellers for other non-optimized travellers.
Both PlanomatX and schedule recycling are part of the agent-based microsimulation MATSim
(Multi-Agent Transport Simulation Toolkit, MATS1im-T, 2008). MATSim’s utility function

has been adapted to cope with the enhanced functionality of PlanomatX and schedule recycling.

This paper first presents related work on the problem of activity-travel scheduling followed
by an introduction to MATSim and its core principles. Then, the new scheduling algorithm
PlanomatX 1s described including necessary adjustments of MATSim’s utility function and
a presentation of empirical results. Furthermore, we also illustrate the concept of schedule

recycling. The paper closes with a summary and outlook.

3 Related work

Scheduling in activity-based travel demand modelling follows three major lines of research
(Ettema and Timmermans, (1997; |Goulias, 2002; Timmermans), 2001}, 2003)):

“«

e Econometric models “... use systems of equations to capture relationships among at-
tributes” (Bhat et al., 2004). They are disaggregate and yield probabilities of choices. The
probabilities may be translated into specific schedule solutions through Monte-Carlo sim-
ulation. Recent contributions in the field of activity-based travel demand modelling are,
for instance, [Bhat| (1997, 11998)), Bowman and Ben-Akival (2001), and |Habib and Miller
(2008). Moreover, the journal of Transportation dedicated a Special Issue to modelling
intra-household interactions and group decision making (Bhat and Pendyala, |2005)) fea-
turing several econometric models (Srinivasan and Athuru, 2005} |Srinivasan and Bhat,

2005; |Bradley and Vovsha, [2005; \Gliebe and Koppelman, 2005). Econometric models
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bear the advantage that they are based upon a well-established statistical methodology
and economic theory. However, they tend to quickly become very complex and difficult
to estimate and operationalize. Modellers are required to apply levers like limiting the
level of detail of the model outcome (e.g., low temporal granularity, implicit location

choice, etc.), or neglecting temporal, institutional, or spatial constraints (Joh, 2004).

e Utility-based microsimulations apply a sequential decision making process. Employ-
ing complex search heuristics they iteratively narrow down the solution space. Rather
than a probability distribution, the result is always a precise solution alternative. Sig-
nificant contributions in the field of activity-based travel demand modelling are e.g.,
STARCHILD (Recker et al., [1986a,b), ORIENT (Axhausen, [1988)), PCATS (Kitamura,
1996 |[Kitamura and Fujii, [1998]; |Pendyala et al., [2005), CEMDAP (Bhat et al., 2004),
TRANSIMS (Hobeika, 2005; TRANSIMS, 2009), and MATSim (Balmer, 2007; [Meis-
ter et al., 2009; Balmer et al., |2008a). Also the works of Charypar and Nagel (2005])
and Meister et al.| (2005) fall into this line of research. Based upon the iterative pro-
cedure and the intensified employment of heuristics, utility-based microsimulations are
capable of reducing the complexity of econometric models. Moreover, they explicitly
model the variability of travel demand (“‘emergent behaviour”) rather than probability-
based average values, allow to explicitly include constraints along the sequential decision
making process, and allow to take into account “competition” that arises from modelling
the constraints (Vovsha er al.|, [2002).

o Computational process models (CPMs) try to overcome the drawback of utility-based
models, namely that travellers do not make “optimal” decisions but rather context-
dependent heuristic decisions (Joh, 2004). CPMs “... replace the utility maximising
framework with behavioural principles of information acquisition, information represen-
tation, information processing, and decision making” (Golledge et al., |1994). CPMs are
basically also microsimulations due to their disaggregate nature, the sequential decision
process and the use of heuristics. However, the heuristics employed by CPMs rather con-
sist of “if-then” rules than utility-maximizing decision criteria. Recent models in this line
of research are SCHEDULER (Golledge et al., [1994), AMOS (Pendyala et al., 1995} |Ki-
tamura, 1996; Kitamura and Fuji1, [1998), and ALBATROSS (Arentze and Timmermans,
2004).

Both the scheduling algorithm PlanomatX and the concept of schedule recycling break new
ground. PlanomatX does so because it generates comprehensively optimized all-day schedules
for large-scale scenarios. The above models either tackle only partial scheduling problems (e.g.,
choice of post home-arrival activity participation (Bhat, |1998), maintenance activity allocation
among household members (Srinivasan and Athuru, [2005), and so forth), or are comprehensive

all-day schedulers but produce very low temporal resolution (Bowman and Ben-Akival, 2001) or
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work on fictive small data sets (Charypar and Nagel, 2005; Meister et al., 2005). The schedule
recycling concept breaks new ground because it presents a way to re-use schedules of travellers

for other travellers. No such concept is known to the authors in the literature.

4 MATSim overview

PlanomatX and schedule recycling extend the utility-based microsimulation MATSim (Multi-
Agent Transport Simulation, Balmer, 2007; Meister et al. 2009; Balmer et all 2008a).
MATSim implements an activity-based approach to travel demand generation for large
samples. Unlike other transport simulation models MATSim is agent-based throughout and
produces individual activity schedules as input to the traffic flow simulation rather than
origin-destination matrices as typically used in dynamic traffic assignment (Illenberger
et al., 2007). Initial demand schedules are generated by disaggregating census data. The
schedules are executed and overall travel costs calculated using a suitable traffic flow mi-
crosimulation. Henceforward, the utility of the schedules is iteratively improved against the
background of overall travel costs (see figure [I)). Central to the improvement of the schedules
is MATSim’s replanning step where agents are allowed to learn and optimize their schedules.
Since always a certain share (e.g., 10%) of the overall set of agents do so simultaneously
MATSim’s simulation process is a co-evolutionary learning process. The co-evolutionary
learning process stops when none of the agents can further improve their schedule, or
at an externally given maximum number of iterations. MATSim is developped jointly by
TU Berlin, ETH Zurich and CNRS Lyon. It has been applied to several scenarios such as

Switzerland, Berlin-Brandenburg/Germany, Toronto/Canada, Padang/Indonesia, among others.

MATSim’s existing replanning step features algorithms to optimize the location choices (Horni
et al., 2008), the route choices (Lefebvre and Balmer, 2007)), and the mode choices together
with the activity timings (Balmer et al., 2008b). Both PlanomatX and schedule recycling inte-
grate into MATSim’s replanning step. PlanomatX enhances the replanning step with capability
to add the structure of the activity chains as a further dimension to the co-evolutionary learning
process. Schedule recycling enhances the replanning step reducing the need to optimize each

agent individually.

S PlanomatX: Comprehensive schedule optimization

PlanomatX generates comprehensively optimized schedules, i.e. optimal combinations of a

schedule’s activity chain (number, type and sequence of activities), activitiy timings, and the
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Figure 1: MATSim structure: PlanomatX and schedule recycling being new algorithms of the
replanning step.
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5.1 Problem formulation

The optimality, or fitness, of a schedule is measured against its utility. Optimizing a schedule
means to maximize its utility. In MATSim, the problem of maximizing a schedule’s utility is

expressed by the following objective function, subject to the activity types’ opening times (see
Figure [3j):

max Utotal = max |:Z Uperf,i + Z Ulate,i + Z Utravel,i:| (1)
=1 =1 =1

where Uytq 15 the total utility of the given schedule; 7 is the number of activities/trips; Upe, f.; 18
the (positive) utility gained from performing activity ¢; Ujq.; is the (negative) utility gained
from arriving late at activity ¢; and Uy,q.e1; 1S the (negative) utility gained from travelling trip <.

Upery,i 1s a log function. Ujgse i and Uyyqqe; are linear functions.

The objective function formulates a mixed-integer, non-linear, non-convex problem. An
analytical, hence quick, solution approach is unknown for this class of problems. It may

thus “... not be possible to solve for an optimal solution. [...] It still is important to find a
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good feasible solution that is at least reasonably close to being optimal. Heuristic methods

commonly are used to search for such a solution” (Hillier and Lieberman, |2005]).

Moreover, the current utility function for the performance of activities is problematic. Its log
form leads to unrealistic results when we allow for changes in the number of activities in the
schedule. Due to the decreasing marginal utility, the log form would lead to schedules with a lot
of very short activities. In other words, a schedule of two 30 minutes activities of a certain type
would always be better than a schedule of once 60 minutes of the same activity. We therefore
need a utility function for the performance of activities that can cope with a flexible number of

activities in the schedule.

5.2 Heuristic solution algorithm

Charypar and Nagell (2005) and Meister et al. (2005) have shown that a Genetic Algo-
rithm (GA) is able to solve the above stated utility maximization problem. Their work has
led to the implementation of a GA that optimizes the mode choices and the activity timings
of a schedule (see Balmer er al., 2009, for more details). The extension of this algorithm
towards a comprehensive schedule optimization would be a straight-forward development
path. Yet “GAs are known as rather inefficient” (Charypar and Nagel, 2005). They relax
very robustly to a (nearly-)global optimum (e.g., Hillier and Lieberman, 2005; Hasan et al.,
2000) but risk spending a significant part of their search process in potentially unpromising
areas of the solution space. One reason is the missing cycling prevention, another the random
mutation operator (Rahoual and Saad, 2006). Considering MATSim’s requirements, a perfect
schedule optimization is desirable but not imperative. In fact, in many cases what people use

“«

as their schedules “... is far from being optimal” (Charypar and Nagel, 2005). The schedule
optimization rather needs to be “good” but not optimal, as long as the computational time is

kept low.

The class of Gradient Algorithms matches the above requirements. From any initial solution,
the Hill Climbing Algorithm just follows the steepest gradient of the objective function. It
stops when no further improvement is possible. It relaxes quickly but the solution is likely to
be a local optimum. The Tabu Search Algorithm (Glover, |1989) is a more elaborate Gradient
Algorithm that overcomes this drawback. It is equal to a Hill Climbing Algorithm until it
has found the first (local) optimum. It may then select inferior solutions till a better solution
has been found. A tabu list avoids cycling. The list stores the selected solutions of the ¢
last iterations. Moves are forbidden that would reach these solutions again. A stop criterion

(e.g., overall number of iterations or minimum improvement over n last iterations) lets the
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algorithm finish. The Tabu Search algorithm quickly reaches “ok”-solutions followed by

gradual improvement steps.

PlanomatX implements a Tabu Search heuristic. Given an arbitrary base solution, PlanomatX
tries to proceed towards the steepest gradient, or in more descriptive words, towards the steep-
est ascent of the utility mountain range. Considering MATSim’s scheduling problem, the util-
ity mountain range has not only two dimensions (north-south, east-west) but five: the activity
chain, the location, route and mode choices, and the activity timings. In order to master the
increased number of dimensions the PlanomatX algorithm solves the problem hierarchically

applying two nested optimization loops (see figure 2b):

e Quter loop, steps B/C/E: The outer loop implements the Tabu Search principle and solves
for the best activity chain. The loop steers the creation of a list N of K neighbourhood
activity chain solutions (number, type and order of activities), drops those neighbourhood
solutions that are tabu, scores the remaining neighbourhood solutions, selects the best
from among them, updates the tabu list with the best solution, and sets the best solution
as next iteration’s base solution. The activity chain neighbourhood solutions are created
from this base solution through insertion/deletion of an activity, change of the sequence

of activities, or change of the type of an activity.

e Inner loop, step D: For each created neighbourhood activity chain k, the inner loop op-
timizes the lower tier decisions of location, route and mode choices as well as of the

activity timings.

The nested loop structure facilitates the integration of MATSim’s existing replanning algo-
rithms dealing with the optimization of location, route, mode choices and activity timings.
Yet more importantly, the nested loop structure implies that, when choosing the best activity
chain, the outer loop in fact chooses the best schedule that is possible for the activity chain.
Hence, no neighbourhood solution requires in future outer loop iterations to be investigated for
different combinations of location, route, mode choices or activity timings. This quickly limits

the solution space and is a considerable reduction of complexity.

The algorithm stops when an externally given maximum number 7 of outer loop iterations has
been reached or when no more non-tabu neighbourhood solutions are available. The algorithm’s

opimization result is the highest-scored solution of the final tabu list.
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Figure 2: Process flows of the newly developped algorithms.
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5.3 Utility function

PlanomatX measures the optimality of a schedule against its utility. MATSim’s existing utility
function features a log form that, in combination with PlanomatX, would lead to schedules
with lots of very short activities due to the decreasing marginal utility of the log-form. What
we require is a utility function for the performance of activities that formulates some sort of
optimal activity duration by its functional form. Assuming an average value of time, the utility
function should feature segments where its value of time is below the average value of time, and
segments where it is above. The optimal activity duration will be found in the latter segments.

Joh| (2004) presents a utility function matching these requirements:

Uimax _ Uzmm
(147 - exp [Bi(es — tpers)]))

Uperf,i (tpe'rf,i> = Ulmm + (2)
The function is an asymmetric S-shaped curve with an inflection point, originally developped
in biological science (see figure 3 parameters set trying to match MATSim’s existing average

values of time).

5.4 Application tests and results

We applied the PlanomatX algorithm to the Greater Zurich Scenario (Balmer et al., 2009).
The scenario comprises a set of 172,598 agents. They are a 10% random draw from those
agents whose initial routes cross a 30 km circle around Zurich’s city centre. The road network
is represented by a model network of 60,000 directed links and 24,000 nodes. There are
1.3 million home locations and more than 380,000 out-of-home locations. We assume car
driver, public transport, and walk as the available transport modes. Ten activity types are
modelled (two work types, five education types, shopping, leisure, and home). Home must
always be the first and last activity type. In the initial demand generation, agents may have
been associated with further agent-specific “primary” activities (e.g., work at facility ). The
primary activities must be performed during the day. The agent is not allowed to drop them
from its schedule but the duration and the schedule position of the primary activities are still
flexible.

For all tests in this and the following chapter, we ran 50 MATSim iterations. Following
an extensive parameter analysis (Feil, [Forthcoming)), PlanomatX was set to 20 outer loop
iterations and a neighbourhood size of 10 solutions. Creating the neighbourhood solutions,
shares of 30% insertion/30% deletion of an activity, 20% change of the sequence of the activity
chain, and 20% change of the type of an activity were applied.
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Figure 3: New utility function for the performance of activities (adopted from Joh, 2004)).

(a) Parameters and constraints of the utility function.

Parameters Constraint
Activity type gmngmer g, B; i Opening times
(EUR) (EUR)
Home 0 60 6 1.2 1 00.00 - 24.00
All work types 0 55 4 1.2 1 08.00 - 18.00
All education types 0 40 3 1.2 1 18.00 - 22.00
Leisure 0 35 2 1.2 1 07.00 - 16.00
Shopping 0 12 1 1.2 1 10.00 - 18.00
(b) Plot of the utility function.
Utility
EUR
60 r Home
s | All work types
40 t All education types
Leisure
30 1
20
10 F Shopping
0 ﬁ m—

The following paragraphs demonstrate PlanomatX’s optimization impact. It is displayed against

a base test with MATSim’s existing replanning algorithms, i.e. optimization of activity timings

and mode, location, and route choices (c.p.). Hence, the base test involved all replanning di-

mensions of PlanomatX but the activity chain dimension.

5.4.1 Utility scores

Figure 4] displays the development of the average utility score of all agents’ executed schedules.

After 50 iterations, the base test attains a score level of 113 EUR. PlanomatX reaches a level
of 166 EUR. This is a plus by 47% against the base case. It becomes evident that the addi-

tional activity chain dimension has a major impact. This is reasonable when we look at agents’

optimized schedules.

10
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Figure 4: Development of average executed utility scores for PlanomatX, schedule recycling
and base test.
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5.4.2 Optimized schedules

The improvement of the utility scores can be tracked in the schedules of the agents. Columns 1
and 2 of table |l provide a macroscopic view of agents’ activity chains as a result of the base
test and of the PlanomatX test. In the base test, the activity chains are the initial demand chains
drawn from the census data. The activity chains are identical before and after the optimization
since none of the algorithms used in the test modifies the activity chains. Altogether, 2,762
different activity chains exist. The 20 most frequent activity chains account for 97,172 (56.3%)
of the 172,598 agents in the scenario. The average length of the activity chains is 4.92 activities.
For the PlanomatX test, the activity chains change from the initial demand chains (see base test)
to the optimized chains as displayed in table I} Now, the overall number of different activity
chains is 652 indicating that PlanomatX reduces the overall diversification of activity chains.
The 20 most frequent activity chains account for 156,124 (90.4%) of the 172,598 agents in the

scenario. The average length of the activity chains has increased to 5.38 activities.

Drilling down to a microscopic view, figure [5| shows, as an illustration, the initial demand
schedule and the optimized schedules of sample agent 1000914. In the base test, the score
has improved from 20.45 EUR to 41.10 EUR. The initial demand acitivity chain “home-
work_sector3-home-work_sector3-home” has, by definition, remained stable. The activity tim-
ings have slightly changed (e.g., the agent returns home at 6:49pm rather than at 7:40pm).
The agent continues using public transport. In the PlanomatX test, the utility score has risen
to 169.47 EUR. This is a plus of 312% compared to the base test. The activity chain has

11
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Table 1: Activity chain statistics for PlanomatX, schedule recycling and base test.

Base test Schedule
[= initial demand] FPlanomatx Recycling
Mumber of Mumber of Mumber of
Ranking  agents FRanking agents Rankine agents Activity chain
1 15500 &1 103 4E N home work_sectord hiome
2 14122 T3 Ta 448 T4 home leisure hiorme
2 11265 a0 53 [313 E2 home shop home
4 454 a4 43 [} 42  home work_sector hiame
5 T30 45 4z Ed 38 home education_primary hiome education_primary  home
E 7 o7 24 Th 28 home  work_sectord ko work_sector: horme
7 3EED L] 15 TE 26 home work_sector? home leizsure home
g a340 132 21 95 & home education_primary hiame
a az218 137 20 ar 17 home work_sectors leisure wark_sectors horme
10 2212 183 15 Th 28 home work_sector ko work_sectors horme
il 226 124 20 ar 17 home  shop home leizure home
12 2968 156 14 106 13 home leisure home leisure home
12 2423 140 12 ar 15 home work_sectors shaop home
14 2258 164 12 & 0 home  education_primary home education_primary home  leisure home
15 2094 B 10813 B 12690 home  education_primary hiame leizure horme
& 2066 132 g 103 12 home work_sector2 hiome leisure huorme
17 1914 164 1 Th 28 home work_sector? leisure wark_sector? horme
12 i3] 168 13 UL 12 home  waork_sector? leisure home
19 42 22 & 124 9 home leisure leisure home
20 14HE 21 [ k] 14 home work_sectord hiome shap horme
- - 1 24730 1 26004 home  work_sector? shop shop home  home
2 22624 2 23670 home  work_sector? shop home home
3 21737 3 23207 home  work_sectord shop shop home  home
4 14835 4 14313  home  education_other wark_sectord hame horme
13 12044 7 12377 home  wark_sector? shop home hiome
T 10057 |3 13367 home  education_other wark_sector? home horme
g G345 0 4776 home  education_higher work_sectord home hiorme
k| h243 g EO37  home home hiorme hiome
0 444 12 2748 home  education_primary shop shop shop  home  home
1 4201 1 2496 home home wark_zectord shop horme
12 3423 15 1632 home home wark_sector? shop shop  home
12 2261 a 8976 home  education_higher work_sector? home horme
14 2T & 1380 home  home work_sectar? shop shop  home
15 261 2B 73 home home work_sector? shop huorme
16 2223 12 3343 home education_secondary  work_sectord home horme
17 1735 14 2327 home  education_secondary  work_sectar2 home home
12 134 17 1334 home work_sectord hiame home
- - 13 100z 22 TE3  home education_primary shop shop home  home
gz 245 20 a07 27 EE2 home education_kindergarten home leisure horme
- F 156124 160785 Subtotal of agents For 20 most Frequent activitiy chains
21- 2762 Th42E  21-652 16474 21-457 1313
172598 172598 172598 Total of agents in scenario
4.92 5.38 5.30  Average length of activity chain

changed to “home-education_higher-work_sector3-home-home” (the last short home activity
can be considered as the start of the following day’s home activity). In light of the different
sequence of activities, all activity timings have changed, and the agent now uses the car (no

mode for last leg since the two home activities take place at the same facility).

5.4.3 Runtime

Both PlanomatX and base test were run on a high-end computer with 16 Itanium-2 Dual Core
processors. The overall runtime of the PlanomatX run was 11 days and 11:23 hours. Each
MATSim iteration took about 5:30 hours splitting into 15 minutes of traffic flow simulation
and 5:15 hours of PlanomatX replanning (1.095 seconds per agent). The overall runtime of
the base test was only 18:48 hours. Here, each MATSim iteration took about 22:30 minutes

splitting into 15 minutes of traffic flow simulation and 7:30 minutes of replanning runtime

12
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Figure 5: Initial demand schedule and optimized schedules after base test, PlanomatX and
schedule recycling for sample agent 1000914 (for the ease of illustration, locations
and routes are not shown).

Time | T I T I I T T 1 Utility score
(in EUR)
Iteration 0 20.45
(= initial demand) )
pt pt pt pt [ ] home
[ work_sector3
Base test after : :
41.10 I cducation_higher
50 MATSim iterations
pt pt pt pt
PlanomatX after
169.47
50 MATSim iterations -
car car car —
Schedule Recycling after 169.94
50 MATSim iterations
car car car —

(0.026 seconds per agent). One must conclude that PlanomatX’s better scoring results come at

a high runtime cost: While the scoring results have improved by 47%

e the overall runtime has increased by 1,350%, and

e the pure replanning runtime has increased by 4,100%.

5.5 Discussion

PlanomatX is a new Tabu Search algorithm that comprehensively optimizes activity-travel
schedules. It extends MATSim’s replanning functionality. Tests on the Greater Zurich Scenario
have demonstrated PlanomatX’s optimization performance. In comparison with the joint appli-
cation of MATSim’s existing replanning strategies (base test), PlanomatX reaches 47% higher
utility scores. This is possible since the structure of the activity chains is now a dimension of the
co-evolutionary learning process, too. However, in its current form, PlanomatX requires dispro-
portional runtimes (+1,350%/+4,100%). Aiming for reduced runtimes, the following chapter
will introduce a concept of schedule recycling that avoids running PlanomatX for each agent

individually.
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6 Schedule recycling

Schedule recycling is a concept to re-use schedules of optimized agents for non-optimized

agents. Aiming for reduced runtimes, it avoids running PlanomatX for each agent individually.

6.1 Problem formulation

PlanomatX successfully optimizes activity-travel schedules but leads to disproportional run-
times. A major reason for the heavily increased runtimes is the activity chain being a new di-
mension of MATSim’s co-evolutionary learning process. When analyzing table [[]evidence can
be found that many agents share the same or similar activity chains even if the activity chain
is flexible. A set of 652 different activity chains is sufficient to cover the activity chains of the
scenario’s more than 170,000 agents. The 20 most frequent activity chains already cover more
than 150,000 agents. Aiming for reduced runtimes, this motivates to establish a way to re-use,
or “recycle”, schedules of optimized agents for other non-optimized agents, without running
PlanomatX for each agent individually. The following problems arise: How may a process flow
of schedule recycling look like? Which elements of a schedule may be recycled? According to

which rule, or metric, agents may be assigned with those elements?

6.2 Solution algorithm

The schedule recycling algorithm (see figure[2p) is an alternating sequence of optimizing agents
individually (“PlanomatX”) and assigning the activity chains of optimized agents’ schedules to
non-optimized agents (“Assignment”). The core innovation of the algorithm is the assignment
module (steps D and F). For a non-optimized agent, the module selects the best matching
schedule from a set of individually optimized agents, assigns the non-optimized agent with
the activity chain of the schedule and finalizes the assigned schedule with regard to location,
route, and mode choices as well as activity timings. Figure 2 focuses on the process flow of

the assignment module. The selection of the best matching schedule comes in three stages:

o Check of activity type constraints (figure[2c, step 2): This first check verifies whether the
schedule of the optimized agent contains all primary activity types of the non-optimized
agent. This check also verifies whether the schedule of the optimized agent does not
contain activity types that are not eligible to the non-optimized agent. An example would

be “work” for a 10-years old child or “primary education” for a 50-years old adult.

o Check of discrete agents attributes (figure 2, step 3): Some agent attributes may prevent

an agent from receiving a recycled schedule from another agent. For instance, an agent
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without driver’s license may not adopt a schedule containing car trips. One may also
define that a schedule of a male agent may only be recycled for another male agent, and
so forth.

e Distance of continuous agents attributes (figure 2, step 4): From the set of individually
optimized agents, it is likely that several schedules will pass the first two checks. This
third check determines which of these schedules matches the non-optimized agent best.
It refers to the distance, or similarity, between the continuous attributes of the optimized

agent ¢ and the non-optimized agent j. The distance d is calculated as follows:
dij = Z |£Uzk - mj,k| Xy 3)
k=1

where Jj, is the weight coefficient of the continuous attribute k. Common continuous
attributes may, for instance, be the agents’ geographic distances between their primary
activities (e.g., home-work-home) or their age. The definition of the multidimensional

distance metric A = {01;...; O; ...; 8, } will be described below.

Having iterated through all optimized agents, the assignment module selects the schedule
that passed the two first checks and whose agent features the highest similarity with the
non-optimized agent. It assigns the non-optimized agent with that schedule, i.e. it copies the
activity chain of the schedule and pastes it into the new schedule of the non-optimized agent. It
then updates the home location, conducts a location choice for the further activities, finds best
routes between the locations, and optimizes activity timings and mode choices. We can see
that, for an agent that is assigned with a recycled schedule, location, route, and mode choices
and the optimization of the activity timings need to be conducted only once. This is opposite
to PlanomatX where they need to be conducted for each of the agent’s neighbourhood solution
of the Tabu Search.

Let us highlight the role of the three stages of selecting the best matching schedule: The
first two checks are responsible for the alternating sequence of optimizing agents individ-
ually (“PlanomatX”’) and assigning schedules of optimized agents to non-optimized agents
(“Assignment”). This is because an a-priori search for optimized schedules passing the two
checks for all non-optimized agents would be very cumbersome. It is much easier to just
select some agents randomly, optimize their schedules individually (step B) and see whether
these schedules pass the checks for the non-optimized agents (step F). Some non-optimized
agents will remain for which no schedule is assignable. They need to be optimized individually
(step G). This sequence would perfectly work but our algorithm refines it introducing steps D
and E. Step D tests for a limited number of non-optimized agents whether the optimized

schedules of step B pass the checks for these non-optimized agents. Those non-optimized
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agents for which no schedule is assignable are handed over to step E. Step E optimizes them
individually and adds them to the list of optimized agents of step B. Like this, they are
available for step F. Step’s F assignment now produces considerably less non-optimized agents
for which no schedule is assignable. As a consequence, the runtime of step G is shortened,
and the runtime reduction is very likely to be much higher than the runtime increase from
step E. In theory, one may introduce more instances of steps D and E. In the most advanced
case, every non-optimized agent for which no schedule is assignable is immediately optimized
individually and added to the list of optimized agents. However, this makes parallelization of
the algorithm extremely hard. We feel that the current setup of the algorithm is a good trade-off
(Feil, [Forthcoming)).

Distance metric A of check 3 is central to the quality of the assignment module. In fact,
check 3 conducts some sort of cluster analysis. It clusters the non-optimized agents around the
(assignable) optimized agents and, in each cluster, the non-optimized agents are assigned with
the schedule of the optimized agent. In conventional cluster analysis, the distance metric A is
given (Euclidean distance, Hamming distance, etc.) and attention is paid to the most efficient
way of clustering. In our case, the way of clustering is quite straight-forward (see above) but
the distance metric A is unknown. For example: Given the two earlier attributes geographic
distance between an agent’s primary activities and an agent’s age, we want to know to what
extent each distance, or similarity, between the attribute values of any two agents contributes to
the similarity d; ; of the optimized activity chains of those two agents 7 and j. If the similarity
of two agents’ distances between their primary activities were twice as important than the sim-
ilarity of their ages the distance metric would look like A = {Sgistance_primacts; Oage } = {2; 1}
If the similarities of the attributes were equally important the distance metric would look like
A = {Saistance_primacts; 0age} = {1; 1}, and so forth.

Solving the distance metric problem, we have developped a “reverse clustering” approach.
The solution algorithm forms two sub-groups of agents. Group 1 is a group of optimized
schedules (e.g., 100 agents). Group 2 is a group of non-optimized schedules (e.g., 500 agents).
Both groups may be chosen randomly from among the overall set of agents. After having
individually optimized the agents of group 1 through PlanomatX the algorithm assigns the
non-optimized test agents with optimized schedules according to an arbitrary distance metric,
e.g, Ay = {d1;...;0k;...;0,} = {1;...; 1;...; 1}. The new schedules of the agents will sum up
to a certain utility U; = Uyy,...1;..;13. The algorithm repeats the test assignment for x times.
Each time, a set of varying distance metrics A, is checked for the utility U, they would lead to.
The variation is done through increasing/decreasing each coefficient of the current metric by
an offset value (e.g., 0.5). The alternative for which the utility becomes highest is chosen as

the base metric for the following variation of coefficients. The variation undoing the previous
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variation is forbidden. Finally, the algorithm selects the distance metric A for which the utility
of the test agents’ schedules is highest across all = times of the test assignment, i.e. U; > Uy,
Vt # s.

6.3 Application tests and results

As for PlanomatX and the base test, we applied the schedule recycling concept to the greater
Zurich scenario. The following paragraphs compare the schedule recycling results with the

PlanomatX results.

6.3.1 Activity type constraints, discrete agent attributes and distance metric of continu-

ous agent attributes

The check of activity type constraints always ensures that an agent may only be assigned with
a schedule whose activity chain contains all primary activity types of the agent. Beyond that,
we have defined the following constraints for an agent’s eligibility of further activities:

e Children below 6 years may only be assigned with activity types of their initial schedule.

e Children between 6 and 17 years may be assigned with all available activity types but
education_kindergarten and education_higher. Further, they may not be assigned with
the work types except from if they hold them in their initial schedule.

e Adults from 18 years may be assigned with all available activity types except for educa-

tion_kindergarten, education_primary and education_secondary.

We have omitted the check of discrete agent attributes given that currently no such (data on)
discrete agent attributes exist that would prevent from recycling a schedule for any other agent.
For the distance calculation between agents, we have selected the continuous attributes of

e agents’ distances between their primary activities,

e agents’ ages, and

e agents’ home coordinates.

Based on these inputs, step C of the schedule recycling algorithm determined the distance

metric As - {5dismnceiprimacts; 5&96; 5h0me?coordinates} = {25; 107 15}
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6.3.2 Utility scores

The utility curves of PlanomatX and schedule recycling nearly overlap (figure [)). PlanomatX
reaches a score level of 166 EUR, schedule recycling reaches a score level of 164 EUR. The
difference of less than 2% is an excellent result. It demonstrates that our simple distance metric

already generates good utility scores.

6.3.3 Optimized schedules

Columns 2 and 3 of table [T| contrast the activity chains statistics of the two tests. A first em-
phasis should be placed on the overall number of different activity chains: While PlanomatX
has generated 652 different chains the schedule recycling produces only 457 different chains.
This is reasonable since, in the schedule recycling mode, there is much less opportunity to
produce activity chains than in the pure PlanomatX mode. It is in line with this finding that the
20 most frequent activity chains cover 160,785 agents (93.1% of all agents in the scenario).
When we look at the frequency rankings of the activity chains we can observe that the 17 most
frequent PlanomatX activity chains are within the 20 most frequent schedule recycling chains.
The average length of the activity chains is similar being 5.38 activities for PlanomatX and

5.30 activities for the schedule recycling.

For sample agent 1000914, the PlanomatX and the schedule recycling activity chains are iden-
tical which is an excellent result (figure [5]). The activity timings are very similar and, in both
schedules, the agent uses the car throughout the day. The utility scores (169.47 EUR and
169.94 EUR) differ only in the decimal places.

6.3.4 Runtime

The runtime of the schedule recycling test was 45:04 hours. Each MATSim iteration took about
54 minutes splitting into 15 minutes of traffic flow simulation and 39 minutes of replanning run-
time (0.134 seconds per agent). This is a massive runtime reduction compared to the PlanomatX
test. The overall runtime has reduced by 84%, the replanning runtime has reduced by 88%.
Moreover, the runtime has become more proportional with the initial base test’s runtime: the
additional activity chain dimension now leads to a replanning runtime increase of only 415%,

as opposed to the 4,100% increase in the PlanomatX test.
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6.4 Discussion

Schedule recycling is a concept to re-use schedules of optimized agents for other non-optimized
agents. It avoids running PlanomatX for each agent individually and reduces the runtime by
more than 80% compared to the pure application of PlanomatX. The diversification of activity
chains after the schedule recycling is lower than after the PlanomatX optimization. However,
the average executed utility score of the recycled schedules is only less than 2% worse than
the score of the individually optimized PlanomatX schedules. This slight quality loss seems af-
fordable, particularly given that only schedule recycling allows to handle large-scale scenarios

such as the Greater Zurich Scenario at reasonable runtimes.

7 Conclusion and outlook

This paper presented the new scheduling algorithm PlanomatX as well as a new concept of
schedule recycling. Both are part of the agent-based microsimulation MATSim. PlanomatX
generates comprehensively optimized all-day schedules, i.e. optimal combinations of a sched-
ule’s activity chain (number, type and sequence of activities), activity timings, and the loca-
tion, mode and route choices. It is based upon Tabu Search. Tests on the large-scale Greater
Zurich Scenario with more than 170,000 agents have shown that PlanomatX successfully op-
timizes agents’ schedules. In comparison with the joint application of MATSim’s existing re-
planning strategies (base test), PlanomatX has reached significantly higher utility scores. This
has been possible since the structure of the activity chains has been a dimension of MATSim’s
co-evolutionary learning process, too. However, PlanomatX requires disproportional runtimes.
Aiming for reduced runtimes, we have developped a concept of schedule recycling that avoids
running PlanomatX for each agent individually. Schedule recycling rather re-uses schedules of
optimized agents for other non-optimized agents. It significantly reduces simulation runtimes
at affordable quality losses. Figure [6] summarizes utility scores and runtimes of PlanomatX,

schedule recycling and reference base test.

We enhanced MATSim’s existing utility function for the performance of activities. The existing
function would have led, in combination with PlanomatX, to schedules with a lot of very short
activities due to the decreasing marginal utility of its log-form. We have replaced the function
by an asymmetric S-shaped curve with an inflection point, as presented by Joh! (2004). The
new function can cope with a flexible number of activities in the schedule as it formulates an

optimal activity duration by its functional form.

Our future research will concentrate on improving the schedule recycling’s distance metric as
well as the utility function. Considering more agents attributes will increase the explanatory

power of the distance metric. Furthermore, a more sophisticated search algorithm may enhance
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Figure 6: Overview of utility score and runtime performances of the different tests.

Final average utility score of Replanning runtime per agent
executed schedules (in EUR) (in seconds)
113 Base test } 0.026
164 Schedule Recycling j 0.134
166 PlanomatX 1.035

the definition of the distance metric. With regard to the utility function, we will

e disaggregate the existing attributes of the function (e.g., more activity types, differentia-

tion of the travel disutility by mode, etc.),
e incorporate new attributes (e.g., monetary cost of travelling), and

e empirically estimate the parameters of the utility function.

The results underpin that the last point will be central. The current utility function parameters
together with the flexible activity chain dimension lead to a quite low variance in activity
chains. The empirical estimation will better calibrate the parameters and set the results up for

a comparison with real traffic counts.

Finally, an extension of PlanomatX and schedule recycling to optimize not only individual
agents but entire households will be tackled in line with MATSim’s overall ability to handle
households.
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