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Abstract 
Travel time is an important network performance measure and it quantifies congestion in a 
manner easily understood by all transport users. In urban networks, travel time estimation is 
challenging due to number of reasons such as, fluctuations in traffic flow due to traffic signals, 
significant flow to/from mid-link sinks/sources, etc. In this research a methodology, named 
CUmulative plots and PRobe Integration for travel timE estimation (CUPRITE), has been 
developed, and validated for average travel time estimation on signalized urban network.  

The basis of CUPRITE lies in the classical analytical procedure of utilizing cumulative plots at 
upstream and downstream locations for estimating travel time between the two locations. The 
classical procedure is vulnerable to detector counting error and non conservation of flow 
between the two locations that induces relative deviation amongst the cumulative plots (RD). 
The originality of CUPRITE resides integration cumulative plots and probe vehicle data to 
address RD issue.  

CUPRITE is validated with real data collected from number plate survey at Lucerne, 
Switzerland. Two tailed t-test (at 0.05 level of significance) results confirm that travel time 
estimates from CUPRITE are statistically equivalent to real estimates from number plate 
survey.  

Keywords 
Average travel time, urban network, signalized network, cumulative plots, probe vehicle, 
detector error, mid-link sink, mid-link source 
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1. Introduction and literature review 

Travel time is the time needed to travel from point upstream (u/s) to point downstream (d/s) 
on the network. It quantifies congestion and is an important network performance measure. It 
has the potential to spatial temporal dissipation of congestion. Researchers have applied 
different techniques for travel time estimation based on the availability of data.   

A loop detector provides traffic flow characteristics at a specific location. They are the oldest 
and most widely used traffic data sources. Researchers have proposed a number of models, 
based on detector data, with various degrees of complexities ranging from simple regression 
(Wardrop, 1968, Young, 1988, Sisiopiku and Rouphail, 1994, Sisiopiku et al., 1994), traffic 
flow theory (Oh et al., 2003, Nam and Drew, 1999), pattern recognition (You and Kim, 2000, 
Bajwa et al., 2003, Robinson and Polak, 2005, Dailey, 1993, Coifman and Krishnamurthy, 
2007), to advance neural network (Park and Rilett, 1998, Chen et al., 2001, Liu et al., 2006) 
based.  

Data driven models such as, regression, pattern recognition and neural network based models, 
are non transferable. Regression based models define its parameters by best fitting the 
observed data and should not be applied for traffic conditions that are different from those 
assumed in the model’s formulation. They are simple and fast to compute and hence are 
favorable for transport planning and policy applications. Neural network based models utilize 
the data to build the model structure as well as its parameters and are more robust than 
regression based. They should be applied well within the limits for which it is trained. Pattern 
recognition models, such as k-NN technique, match the current traffic pattern with historical 
database and can fail to estimate travel time for traffic conditions absent in the database.  

Mobile sensors such as probe vehicle (e.g., taxi fleet) is a vehicle equipped with vehicle 
tracking equipment (e.g., GPS) and can provide data for the vehicles’ trajectory (time stamp 
and position coordinates) and hence its travel time. In practice, only few vehicles are 
equipped with mobile sensors and hence they represent the random sample from the 
population of the vehicles traversing the link. Therefore, average travel time for all the 
vehicles traversing the link can be estimated by statistical sampling techniques (Hellinga and 
Fu, 2002). Researchers (Srinivasan and Jovanis, 1996) have shown interest to determine 
minimum number of probes required for statistically significant travel time estimation. 

Researchers have also applied data fusion techniques (Berka et al., 1995, Westerman et al., 
1996, Choi and Chung, 2002, El Faouzi, 2004) to fuse data from different sources, 
specifically detector and probe vehicles, with the aim to improve the accuracy and reliability 
of the estimates. 
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Majority of the above research is limited to freeways, and cannot be applied to urban 
networks, where problem is rather more challenging due to number of reasons such as 
intersections, mid-link sources and sinks etc.  

In this paper we present a methodology named, CUmulative plots and PRobe Integration for 
travel timE estimation (CUPRITE) (Bhaskar, 2009). The methodology is based on classical 
analytical procedure for travel time estimation using cumulative plots. Analytical modeling is 
performed to integrate cumulative plots with probe vehicle data for accurate estimation of 
average travel time.  

CUPRITE can be applied for performance evaluation and Level Of Service (LOS) for 
different intersections. The performance of the system can act as a feeback to the signal 
controller to optimise its parameters. It can also be used for ITS application such as advance 
traveller information system and public transport priority systems.  

2. Methodology 

2.1 Classical procedure for average travel time estimation 

The classical analytical procedure for travel time estimation is based on considering 
cumulative plots U(t) and D(t) at upstream and downstream locations, respectively (Daganzo, 
1997). Refer to Figure 1, if the vehicles represented from time t1 to t2 in U(t) and t3 to t4 in 
D(t) are same then the area between the plots is the total travel time from upstream to 
downstream. Average travel time is the total travel time divided by the number of vehicles 
departing.  

For travel time estimation the plots should be based on only those vehicles that traverse from 
upstream to downstream. But cumulative plots are defined based on the detector counts at a 
specific location. Due to detector counting error or loss or gain of vehicles between plots 
location, there is relative deviation (RD) amongst the plots (also termed as “drift”). The RD 
issue is critical in the application of classical procedure. For instance, in Figure 2 illustrates 
the application when upstream detector is overcounting, the error in the travel time estimation 
is represented as the shaded region, and if left unchecked can exponentially grow with time.   

Example of loss or gain of vehicles includes parking or side-street between upstream and 
downstream location. Detectors are not always perfect and one can easily observe 5% error in 
detector counting.  
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Figure 1 Classical analytical procedure for average travel time estimation 
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2.2 Cumulative plots and probes 

Here probe vehicles are vehicles equipped with vehicle tracking equipments. We assume that 
the time when the probe vehicle is at upstream (tu) and downstream (td) locations is accurately 
obtained. The travel time of this vehicle is td – tu.  

We define the rank of the probe vehicle in the cumulative plots as D(td) and define a 
parameter Δt (1), which is the difference in time when the probe is represented in U(t) (given 
that we fix its rank as D(td)) to the time when it is actually at upstream location.  

 1( ( ))d ut U D t t−Δ = −  (1) 

If all the vehicles in U(t) and D(t) are same then tΔ∑ from all the vehicles should be zero. 

This is an important property and is the explanation for the area between the plots is the total 
travel time. 

Probe is random sample from the population of vehicles, and we make a hypothesis that we 

can reduce the RD by redefining U(t) such that tΔ∑ from all the probes is zero. 

2.3 Virtual probe 

Virtual probe is defined as a virtual vehicle that, during undersaturated traffic flow, departs 
from the downstream at the end of signal green phase and its travel time is free-flow travel 
time of the link. The probe is not real and is defined with the aim of reducing RD. 

For undersaturated traffic conditions vehicle queue should vanish at the end of each signal 
green phase (tGE). Travel time for the vehicle entering the intersection at time tGE should be 
close to free-flow travel time (tff) of the link. Therefore, during undersaturated traffic 
conditions we can define virtual probe such that it is observed at upstream and downstream at 
time tGE - tff and tGE, respectively (i.e. for virtual probe tu = tGE - tff and td = tGE.). Note: virtual 
probe is only defined if the following conditions for virtual probe are satisfied: 

2.3.1 Conditions for virtual probe 

i. As the travel time of a virtual probe is defined as free-flow travel time of the 

link, therefore on the study link the sources for significant mid-link delay such 

as, mid-link intersections and on-street bus stop should be absent 

ii. There should not be any leftover queue at the end of signal green phase. 

iii. There should be presence of RD i.e., the following equation should be satisfied: 
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 1 ( ( )) [ , ]GE GE ff ffU D t t t tδ δ− − ∉ − +  (2) 

Where δ is a calibration parameter taking into account the variation in the 

estimation of tff. It can be considered equal to the standard deviation of the 

estimate of tff. 

2.4 Architecture of CUPRITE 

The summary of the algorithm (see Figure 3) is as follows: 

Step 1 Cumulative plots are defined by integrating signal controller data with 

detector data (Refer to Bhaskar et al., (2008)).  

Step 2 Probe vehicle data (list of [tu] and [td]) is defined. If the conditions for 

virtual probe are satisfied then the list [tu] and [td] is appended with 

additional elements corresponding to the virtual probe i.e., tu= tGE-tff; 

td = tGE, where tGE is the time corresponding to the end of signal green 

interval.  

Step 3 Points through which U(t) should pass are defined.  

Step 4 U(t) is redefined by a) first vertical scaling and shifting the plots so that it 

passes through the above defined points (Step 3).  

Step 5 Finally, for each estimation interval average travel time is estimated using 

classical analytical procedure. 
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Figure 3 Architecture for CUPRITE. 

 

2.4.1 How to define the points from where U(t) should pass 

Say, we have n probe vehicles and the database for the probe is defined as list of [tu] and list 
of [td]. These lists are appended with additional elements satisfying the conditions for virtual 
probe. If the conditions are satisfied, then tGE is appended to the list [td]; and (tGE - tff) is 
appended to the list [tu].  

Following are the steps to be followed to define the points from where U(t) should pass: 

Step 1 Sort list [td] in ascending order of its values.  

Step 2 Sort list [tu] in ascending order of its values.  

Step 3 The required points through which U(t) should pass are (tuj, D(tdj)); where 

tuj and tdj are jth value in the sorted list of [tu] and [td], respectively. 
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2.4.2 How to redefine U(t) 

Say, we have: a) a reference point (tRef, U(tRef)), i.e., the point in which we have confidence 
that it is a correct point on the plot; and b) point (tp, Yp) through which U(t) should pass. Then, 
refer to equations (3), (4) and (5); we redefine U(t) by applying correction on it such that all 
points on the plot:  

i. Before time tRef have no correction; 

ii. Between tRef to tp are scaled vertically; and 

iii. Beyond tp are shifted vertically so that the redefined curve is parallel to U(t) and 

is continuous with the points before time tp. 

 ( ) ( )U t U t Correction= +  (3) 

 Ref

Ref

0

( 1) * ( ( ) ( ) )

( 1) * ( ( ) ( ))

Ref

Ref p

p p

t t

Correction scale U t U t t t t

scale U t U t t t

⎧ ∀ ≤
⎪

= − − ∀ < <⎨
⎪ − − ∀ ≥⎩

 (4) 

 
Ref

Ref
Ref

Ref

( )
( ) ( )

( ) ( )

1 ( ) ( )

p
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p

p
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if U t U t
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if U t U t

−⎧
≠⎪ −=⎨

⎪ =⎩

 (5) 

Reference point 

U(t) and D(t) are initially two independent cumulative plots. When the traffic condition is 
free-flow (for instance during night) then counts for cumulative plots can be initialized to 
zero. This is the initial reference point (P0). Say [P1, P2, P3, …, Pn] is the list of n points from 
where U(t) should pass then for redefining U(t) for point Pi, the reference point is Pi-1. 

2.4.3 Average travel time estimation 

The classical procedure (see section 2.1) is applied between redefined U(t) and D(t) to 
estimate average travel time.  

3. Validation 

CUPRITE is validated on real data collected at Lucerne city, Switzerland. The signal control 
at the site is equipped with VS-PLUS signal controller (VS-PLUS). The signals are controlled 
centrally and the data from the controller is logged and stored by the Lucerne City Transport 
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Authority (StadtLuzern). The detector counts and signal timings for CUPRITE are obtained 
from VS-PLUS data.  

Ground truth, individual vehicle travel time, is obtained from manual number plate (license 
plate) survey. It was performed on 15th April, 2008 (Tuesday, working day) from 3:00 p.m. to 
6:00 p.m. The survey period captures both undersaturated and oversaturated traffic conditions. 
The required probe vehicles for CUPRITE were randomly selected from the survey data. 

Figure 4 systematically illustrates the steps involved in the validation procedure. Prior to the 
application of the CUPRITE, both VS-PLUS data and number plate survey data need to be 
cleansed (Section 3.1). The cleaned data is the input to CUPRITE and it provides estimated 
average travel time (Section 3.2) which is finally, statistically validated with ground truth 
average travel time obtained through survey (Section 3.4).  
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Figure 4 Framework for CUPRITE validation. 

 



Swiss Transport Research Conference 
 ________________________________________________________________________________ Sept  9 - 11, 2009 

11 

3.1 Data cleansing 

3.1.1 Number plate survey data 

A manual number plate survey was performed and first four digits of the vehicle number plate 
and the corresponding time stamp when the vehicle enters the intersection were obtained. The 
number plate at upstream and downstream stations is matched and individual vehicle travel 
time is obtained. Due to human error or two vehicles having similar first four digits of the 
number plate or other reasons, there may be observed travel time much different from the 
neighbouring traversing vehicles. These deviant travel time values are considered as outliers 
and are not be considered for the validation procedure. Here, the box-and-whisker plot 
technique is employed to filter the outlier travel time values.  

In the box-and-whisker plot technique a set of data is represented in: a) median; b) lower 
quartile (LQ) i.e., 25th percentile; and c) upper quartile (UQ) i.e., 75th percentile. The 
difference between the upper quartile and lower quartile is Inter Quartile Range (IQR) and it 
defines the scatter of the data. The Lower Bound Value (LBV) and Upper Bound Value 
(UBV) are: 

 1.5*LBV LQ IQR= −  (6) 

 1.5*UBV UQ IQR= +  (7) 

 IQR UQ LQ= −  (8) 

Any point lying below LBV or above UBV is regarded as an outlier and is disregarded.  

Figure 5 represents an example. Figure 5a represents the raw date. To filter the outlier, a 10 
min time window (5 min before and 5 min after) around the data point under consideration is 
defined. Box-and-whisker plot is obtained for all the data points within the time window. If 
the data point under consideration (see Figure 5b) is below LBV or above UBV then it is 
defined as outlier. The process is repeated for all the data points. Note: all the points 
(including those earlier defined as outliers) within the time window are considered for 
defining box-and-whisker plot. Figure 5c represents the final cleansed data with outliers 
removed.  
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Figure 5 Example of filtering the outlier using box-and-whisker plot. 
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3.1.2 VS-PLUS data 

VS-PLUS provides pulse data for each detector and signal phase, i.e., value ‘1’ or ‘0’ and 
corresponding time stamp. If we plot the values versus time, then a pulse can be defined as the 
portion of the graph represented by value of one (see Figure 6). Due to different reasons, 
sometimes there is noise in the pulses (unexpected fluctuations) which need to be filtered out. 
The noise can be due to pulse breakup.  

Filter for VS-PLUS detector data 

The values of ‘1’ and ‘0’ indicate the presence and non-presence of a vehicle on the detector, 
respectively. Therefore: a) the time length for a pulse represents the occupancy time (OT) of 
the vehicle on the detector; b) the time difference between the end of the leading pulse and 
start of the following pulse is represents of the gap (G) between the vehicles; and c) the time 
difference between the start of two consecutive pulses is the representative of the headway 
between vehicles (see Figure 6). Ideally, a pulse should correspond to a vehicle and hence the 
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vehicle by vehicle count can be obtained. However, due to noise in the pulse there can be 
overcounting of vehicles. To avoid this we define minimum accepted occupancy time (OTmin) 
and minimum accepted gap (Gmin). The filter is applied such that: a) if the gap between two 
consecutive pulses is less than Gmin then both the pulses are merged, representing only one 
count for two pulses; and b) if the occupancy time is less than OTmin then pulse is disregarded. 
The value of OTmin and Gmin used in the present analysis is 0.3 s, each.  

Figure 6 Pulse data representation for VS-PLUS detector data. 
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The above filter of minimum occupancy and minimum gap can only remove noise in the 
pulse. This does not resolve the problem of detector counting error due to closely spaced 
vehicles, cross-talk etc. For instance, if the gap between vehicles is small and detector is not 
able to differentiate two consecutive vehicles then a long pulse, instead of two pulses is 
obtained. This results in undercounting. CUPRITE addresses this issue of detector counting 
error. 

Filter for VS-PLUS signal data 

The values of ‘0’ and ‘1’ indicate the start of display red light and display green light for the 
signal phase, respectively and hence the corresponding displayed signal red time and 
displayed signal green time. Ideally, a displayed green or red should be more than some 
minimum value but due to noise in the data there are periods where we have pulses close to 
each other. Analogous to the previous filter for VS-PLUS detector data, we consider the 
minimum red and green time to be 3 s and pulse or gaps less than 3 s are ignored.  
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3.2 CUPRITE application  

As the survey vehicle data is available for a fixed time period and the probe data required for 
CUPRITE application is randomly selected from the survey vehicle data. Therefore, for each 
estimation interval CUPRITE is applied for nC times (10) with different values of the seed for 
random number generator to randomly selecting probe vehicles. Hence, the application of 
CUPRITE provides different travel time estimates for a given estimation interval. Say for an 
estimation interval the mean and standard deviation of the estimates be CX  and SC, 
respectively. Then we apply the sampling theory and confidence bounds for the travel time 
estimate by CUPRITE are defined by:  

 /2, 1 /2, 1C C

C C
C n C C n

C C

S S
X t X t

n nα α
μ− −

− ≤ ≤ +  (9) 

Where: 

µC is the mean of the population of estimates from CUPRITE application; 

/ 2 , 1Cntα − is the t-statistic at α level of significance and nC-1 degrees of freedom; 

nC is defined as follows:  

 !
( , 20); assuming

!( )!
s

C s
s

n
n Min n N

N n N
= ≥

−
 (10) 

ns is number of survey vehicles in the estimation interval.  

This means that, for an estimation interval, if N number of probe vehicles is required, then 
CUPRITE is applied by randomly selecting different combinations (without repetition of 
same combination) of N probe vehicles, or for 20 times, whichever is the minimum. For 
instance, say 2 (=N) probe vehicles in an estimation interval are required. If number of survey 
vehicles are 10, then there can be 45 different combinations of two probe vehicles. In this 
case, CUPRITE is applied 20 times by randomly selecting (without repetition) a combination 
each time. However, if there are 5 survey vehicles then only 10 combinations of two probe 
vehicles is possible. In this case, CUPRITE is applied 10 times and all the combinations are 
considered.  

3.3 Ground truth travel time 

The number plate survey captures the sample of vehicles traversing the link. We are interested 
in actual average travel time for all the vehicles departing the link during travel time 
estimation interval. Say the mean and standard deviation of the travel time obtained from the 
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survey be sX  and Ss, respectively. We estimate the confidence bounds in the actual average 
travel time (µs) of the vehicles as:  

 /2, 1 /2, 1s s

s s
s n s s n

s s

S S
X t X t

n nα αμ− −− ≤ ≤ +  (11) 

Where: / 2 , 1sntα −
is the t-statistic with α level of significance and ns-1 degrees of freedom; ns is 

number of survey vehicles in an estimation interval.  

3.4 Validation indicator 

We present the results: graphically by overlapping the time series of travel time from survey 
and CUPRITE application; and qualitatively as statistical test of hypothesis and significance.  

3.4.1 Graphical presentation of results 

Figure 7 illustrates an example for the presentation of results. For each estimation interval, the 
black box represents the confidence bounds for the ground truth average travel time 
(see Figure 7a) and the orange box represents the confidence bounds for the travel time 
estimates from the CUPRITE (see Figure 7b).  

Accuracy of the estimates from CUPRITE is defined as following:  

 ( )
i i

i

s C

i
s

X X
Error

X

−
=  (12) 

 
1

i

i ton

Error
MAPE

n=

=∑  (13) 

 (%) 1Accuracy MAPE= −  (14) 

Where: Errori is the absolute percentage error for ith estimation interval; isX and iCX are the 

mean of survey travel time and mean of travel time estimates from CUPRITE application 
during ith estimation interval, respectively; n is the number of estimation intervals; and MAPE 
is the Mean Absolute Percentage Error obtained from the CUPRITE application for different 
estimation intervals during survey period.  
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Figure 7 Systematic representation of the results for CUPRITE validation. 
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3.4.2 Statistical test 

We perform statistical test so as to make qualitative decisions about the CUPRITE validation. 
The intension is to determine whether there is enough evidence to “reject” a (null) hypothesis 
about the CUPRITE validation. Here, two different processes: a) number plate survey and b) 
CUPRITE application; provide dataset for average travel time. We are interested to know if 
these two processes provide statistically similar results, i.e., the mean of the two processes are 
the same.  

We make a null hypothesis H0 (15): that the true mean of the first process (µs) is equal to the 
true mean of the second process (µC). Or in other words the two sets of data (number plate 
and CUPRITE) with sample means sX and CX , respectively are both part of the same 
population so that their population means are equal. Null hypothesis is tested against the 
alternate hypothesis (Ha) that the two means are not equal (16).  

 ( )0 s   :  CNull Hypothesis H µ µ=  (15) 

 ( ) s   :  a CAlternative Hypothesis H µ µ≠  (16) 

If we “do not reject” the null hypothesis (H0), then we are saying that despite the fact that the 
travel time estimates come from two different processes there is not enough evidence to say 
that they are not part of the same overall population.  
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The statistical test to make the above decision is t-test to compare two sample means 
(two-tailed t-test). We form the test statistics assuming that the true standard deviations for the 
two processes are not equivalent (NIST).  

The degree of freedom (df) is estimated using the Welch-Satterthwaite approximation (17). 

  

2 2
21 2

1 2
4 4

1 2
2 2

1 1 2 2

( )

( )
( 1) ( 1)

s s
n n

df
s s

n n n n

+
=

+
− −

 (17) 

  1 2

2 2
1 2

1 2

test statistics
X X

t
s s
n n

−
=

+

 (18) 

Where: Xi, si and ni is the mean, standard deviation and number of observations, respectively 
for the two processes. X1 = sX ; X2 = CX  ; s1 = Ss and s2 = SC; n1 = ns (number of survey 

vehicles during the estimation interval); n2 = nC (10).  

For α level of significance we reject the null hypothesis Ho, if:  

 /2,test statistics dft tα≥  (19) 

Else we do not reject the null hypothesis and reject the alternate hypothesis.  

Where: tα/2,df is the upper critical value of the Student’s-t distribution at α level of significance 
with df degree of freedom.  

 “Do not reject H0” indicates there is not enough evidence to reject the assumption that: 
CUPRITE estimates are statistically equivalent to the real travel time from the number plate 
survey.  

Note: Statistically, both the indicators defined in the previous subsections are connected. If 
the confidence bounds of the CUPRITE application (defined in Section 3.4.1) contain the 
mean of the survey travel time then we do not reject the null hypothesis (defined in Section 
3.4.2).  
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3.5 Site Description 

The data is collected on eleven consecutive signalized intersections (intersections A to K) as 
shown in the Figure 8. It consists of three legs: 

i. Intersection A to intersection D in which the flow is from a freeway (Freeway 

number E35) with minor mid-link sinks and sources;  

ii. Intersection D to intersection I, which passes through the city centre and the 

bottleneck mainly at intersection F and intersection I. This leg also carries 

traffic to the railway station; and  

iii. Intersection I to intersection K, where there is no mid-link sink or source, but 

significant amount of mid-link delay due to pedestrians. Link from intersection 

I to intersection K is along the lake side with significant number of tourists.  

Figure 8 Number plate survey site. 
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3.6 Validation results  

Here, travel time estimation interval is for five signal cycles. As signals are adaptive therefore 
the cycle time is not fixed. Fixed number of probes per estimation interval (Sn) is considered. 
Two tailed t-tests were considered significant at (α=) 0.05.  

Here, the results of time series of travel time and statistical decision from t-tests are presented 
in the same figure (see Figure 9). For each estimation interval: a) Orange and black boxes are 
as defined in Section 3.4.1; b) Green circle represents, “not enough evidence to reject H0”; 
and c) Red triangle represents “Reject Ho”.  

For A→DLft the results obtained for one, two and three probes per estimation interval are 
illustrated in Figure 9a, Figure 9b and Figure 9c, respectively. Similary, the results for 
A→DThru are illustrated in Figure 9c, Figure 9d and Figure 9e. In most of the estimation 
intervals, the null hypothesis cannot be rejected. Indicating that our initial assumption (Mean 
estimated from CUPRITE is statistically equivalent to that of number plate survey.) is not 
rejected at 0.05 level of significance. The orange box overlaps with black box, indicating that 
the CUPRITE can estimate the true actual travel time. It can be seen that even the short term 
oversaturation in the system can be accurately estimated. For instance, in Figure 9: fourth, 
fifth, sixth and seventh estimation intervals (time from 15:30 hr to 16:00 hr) are congestion 
build up, and there is significant variation in average travel time between the three periods. 
This fluctuation is also captured accurately by CUPRITE. 

For A→DLft the accuracy (14) of the CUPRITE model increases from 92.3% to 94.6% with 
increase in number of probes from one probe per estimation, respectively. Similar results are 
obtained for other routes and are illustrated in Figure 10. The route from A→I and A→K is 
not considered. This is because there is a bypass from intersection D to intersection I (see 
Figure 8), which is used by drivers to avoid the congestion through the city centre. The 
vehicle observed at both A and I or A and K can be the one traversing through the bypass. 

The validation of CUPRITE has demonstrated that it can be successfully applied for accurate 
and reliable travel time estimation on urban networks 
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Figure 9 Results for A→DLft and A→DThru. 
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Figure 10 Comparative results for different route. 
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