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Abstract

Optimization problems due to noisy data are usually solhsdgustochastic programming or
robust optimization approaches. Both requiring the expticaracterization of anncertainty
setthat models the nature of the noise. Such approaches tidgglgnd on the modeling of the
uncertainty set.

In this paper, we introduce a framework that implicitly mtzdde uncertain data. We define the
general concept dincertainty Feature$UF) which are structural properties of a solution. We
show how to formulate an uncertain problem usinguineertainty Feature Optimizatiofy FO)
framework as a multi-objective problem. We prove that s&stic programming and robust
optimization are particular cases of the UFO framework. \Wssent computational results for
the Multi-Dimensional Knapsack Problem (MDKP) and disctiss application to the airline
scheduling problem. Computational results show a stglafithe solutions in variations of the
noise’s nature, unlike methods based on an explicit uniogytaet.
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1This work was first presented at the CTW 2008 conference ing@amo, Italy, in May 2008. See
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1 Introduction

Nowadays, Operations Research tools are widely used tm@gtreal world problems (without
loss of generality, we suppose we only deal with minimizapooblems). The major difficulty
the modelers are faced with is the noisy nature of the data ofdbe problems are due to.
As shown by Birge and Louveaux, 1997, Herroelen and Leus5 20@ Sahinidis, 2004 and
references therein, a greedy solution neglecting the teioarature of the data leads to unstable
solutions: either we loose feasibility or the average penince of the solution in reality is poor.
The ability of a solution to remain feasible with respect &adchanges is called tih@bustness
of the solution. In the case the solution is not robust, wenggherecoverabilityof the solution
as the average performance of the solution including baginad costs and the costs incurred
when modifying the solution to retrieve feasibility, whielne called theecovery costs The
operation of repairing a solution is tinecoveryalgorithm.

The existing methods for solving problems due to noisy degalevided in two distinct classes:
thereactiveand theproactivemethods. Reactive methods are also catiadine algorithms.
Such algorithms re-compute a new solution each time thealegtedata requires the solution
to be updated (mainly when feasibility is lost). The proastpproaches compute the solution
before any data is revealed. Such methods require somepoedion the future data outcome
to perform better than the greedy deterministic approache possible set of outcomes is
modeled by aruncertainty set We distinguish two different proactive methods accordimg
way the uncertainty set is defined: tepected-meaand theworst-casanethods. On the one
hand, expected-mean methods aim at finding the solutiooeirig best in average and thus
require an explicit characterization of all possible datécomes. We suppose that expected-
mean methods require a probabilistic distribution on theeuainty set. On the other hand,
worst-case approaches are conservative methods seekirggathility of the solution even in
the worst possible configuration. The requirements of suethads are the characterization of
the worst case for any solution. The modeling of the uncatitasets is the key to a proactive
method’s efficiency. Unfortunately, it is a difficult taskdaras we show in this paper, errors
in the estimation of the uncertainty set might have dran@itsequences, making the solution
even worse than the greedy deterministic solution.

The concept ofUncertainty Feature OptimizatioUFO) is different from on-line, expected-
mean and worst-case approaches: it aims at finding a preadiution but without the explicit
characterization of an uncertainty set. The fact that tiedlpm is due to noisy data is consid-
eredimplicitly usingUncertainty Featureg$UF), which are structural properties of the solution
improving its robustness or recoverability.

The initial motivation for UFO comes from the airline schédg problem, see Kohl et al., 2004
for a general survey. Airline scheduling requires a preaatnethod, because of the early pub-
lication deadlines of the schedule. In addition, due to mangredictable influencing fac-
tors, modeling the uncertainty set is a difficult task. Salerorks in the literature attempt
to model an uncertainty set, see for example Lan et al., 200&palov and Klabjan, 2004,
Policella, 2004. The main conclusion of the works using sbapproaches are that the ob-
tained solutions exhibit a particular property such as timalmer of plane crossings (Klabjan
et al., 2002, Bian et al., 2004), a reduced length of plaretiosts Rosenberger et al., 2004 or
increased idle time Al-Fawzana and Haouari, 2005. Reméark#is also holds for models
aiming at an increase of the solution’s recoverability. Bhachastic model with recourse of
Yen and Brige, 2006 addresses the crew scheduling problémir $olutions exhibit pairings
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with a reduced number of plane changes. The UFs correspptalthese structural properties
are the maximization of idle time, number of plane crossiagd number of plane rotations
satisfying the crew pairing constraints.

The contributions of this work are that UFO is a general fran& for optimization under
uncertainty, where the implicit handling does not require thodeling effort of characterizing
an uncertainty set. The consequence is a gain of stabilithefsolutions’ behavior when
the noise’s nature changes. Furthermore, we prove that WFOgeneralization of existing
proactive methods for a particular choice of UFs.

The structure of the paper is as follows: section 2 summsiize literature on methods for
optimization under uncertainty and discusses their benafitl drawbacks. Section 3 presents
the Uncertainty Feature Optimization (UFO) framework aedtion 4 demonstrates how to
derive existing proactive methods from the UFO frameworkséction 5, we show practical
examples of UFO: we present simulation results on the Milttensional Knapsack Problem
(MDKP) and we discuss the application of UFO to airline sahiedy in section (6). Finally,
section 7 concludes the paper with some future researcésssu

2 Optimization under Uncertainty

For general surveys on optimization under uncertainty Vier @ Herroelen and Leus, 2005
and Sahinidis, 2004 and references therein. Their mainlgsioos are that uncertainty should
not be neglected when solving an optimization problem dustrtainty.

Notice that for the remaining part of the paper, we suppog@powt loss of generality, that we
are faced with a problem where the objective is to minimizest tunction. Moreover, we

decompose the survey into three parts corresponding tdntbe tlasses we identify: reactive,
stochastic and worst-case approaches.

Reactive Algorithms Reactive algorithms are also knownaslinealgorithms. The concept
of an on-line algorithm is based on the wait-and-see styatdégere is, in general, no baseline
solution computed a priori, the solution being built itéraly according to a decision process
based on the revealed data; decisions are (potentiallghtasich time new information is gath-
ered. The clear benefit is that, if it exists the policy evatijuprovides a globally feasible
solution once all data is revealed. There are however dederaback. The first is the lack
of stability of the solution, since it depends on the datdizeaon. Moreover, the approach
does not allow for deriving a baseline schedule, and suffera the real time requirements,
implying that the decision process must be determined irtiraa, excluding thereby sophisti-
cated decision processes for large-scale problems. ¥iitab difficult to derive a measure of
performance for such algorithms: tbempetitivity ratiois an a posteriori measure comparing
the obtained solution against the optimal solution withwnalata. In real world applications,
on-line algorithms perform at acceptable ranges in terngpamality deviation, but one can
usually find scenarios for which the algorithms perform fppdfor a survey on reactive algo-
rithms, we refer to Albers, 2003 and Grotschel et al., 2002.

Stochastic Programing Stochastic optimization is a widely studied field and a staddp-
proach to deal with uncertainty, see Birge and Louveauxy19%e main objective is to opti-

4
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mize theexpected/alue of the objective over the whole set of uncertain dag¢atie uncertainty
set: this implies the knowledge of a probabilistic measuréheuncertainty setThe clear ben-
efit of the approach is that the obtained solution is the oatglrforms best in average: if the
solution is carried out many times under the same conditibies the average cost of the solu-
tion tends to the expected cost. The drawback is that stbchmegramming (with or without
recourse) needs an explicit uncertainty set provided wighobabilistic measure. In addition,
the approach requires the evaluation of the solution on thelevuncertainty set in order to
determine it's expected cost, which is, in general, comparally hard. Finally, the computed
expected cost is only an estimator on the possible solgtiontcome: one cannot guarantee
the real cost matches the expected cost: the expected asgfasd indicator only when the
obtained solution is implemented many times under the samditions, as then, the average
cost converges almost surely to the expected cost.

In stochastic optimization with recourse multi-stage stochastic optimizatigBirge and Lou-
veaux, 1997, Kall and Wallace, 1994, Herroelen and Leus; R @ecoursestrategy that refines
the reaction to take when information on a scenario is redes considered. The major ad-
vantages of this approach is that we consider two levelsfofnmation, namely the a priory
knowledge and the possible data outcomes along time: thi@okhus provides the action to
take in case of significant information gain. The benefit & #dpproach is that the two deci-
sional levels lead to the best expected solutioduding recourse costsvhich is a much better
approximation on the real cost than the only expected caghd@wt the recourse costs). The
drawbacks are again the needs of the probabilistic unogytset. Moreover, the computational
complexity is increased by several orders, since one neesslve the recourse problem for
each scenario in order to get only one solution’s expectedurse cost, and to consider all
scenarios in order to determine the one minimizing the texplected cost (the sum of first
level and recourse costs). In fact, for large scale problehere evaluation is not realistic, the
method needs either a closed form for any solution’s re@cwsts or to formulate the recourse
problem as an underlying problem of the same complexity thamriginal problem. Note that
even in the case of a discrete uncertainty set for which tbeurse problem can be expressed
as a set ofn linear functions given a solution, we get a problem with aste x m constraints,
wheren is the number of decisional stages at which recourse hasttakba.

Wort-Case Based Approaches The class of worst-case based approaches is mainly com-
posed of methods leading tobustsolutions, i.e. solutions that are feasible even in the wors
possible scenario. Many works use robust optimization;s&wy 1973 was the first to intro-
duce a formal approach of robustness, and Bertsimas and28i@4, and Ben-Tal and Ne-
mirovski, 2001 give a more formal framework for differenasses of problems. The main
advantage of a robust solution is that, if the uncertaintyssexhaustive and a robust solution
exists, then the methodology provides an upper bound taotte Moreover, as it is a worst case
based method, it doesn’t need a probability distributioth@uncertainty set. The drawback is
that an exhaustive uncertainty characterization is stiélded, although no probability distribu-
tion is required. In fact, the considered uncertainty saygk crucial role, since it determines
the level of protection of the solution. But this is a majoawback, since if all scenarios are
considered, the solution might be way too conservative @ad to a solution with high costs for
most of the possible outcomes; neglecting part of the plessilicomes leaves the possibility
for the solution to become unfeasible. In this case, theadsie solution is no longer an upper
bound, and then the question arises whether the additiasét on the considered outcomes
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are worth it.

This leads to another type of worst-case based approaclely#mrisk managemennethods,
see Kall and Mayer, 2005. For these methods, a probabitist@sure on the uncertainty set
is required, and the optimal solution is the one that has #st tsade-off between expected
cost and probability to be infeasible. The probability tamfeasible is modeled using quantile
functions, and the optimal solution is the one with lowegiented cost given a specific value
of the quantile function. The benefit of the approach is to firedsolution with lowest expected
cost and provide a probabilistic measure of infeasibilitye method suffers, however, from the
needs of a probabilistic uncertainty set as does stoch@stigamming. Moreover, the obtained
problem is computationally hard, such that only particplablems are solvable. Note that risk
management also fits into the class of stochastic methods.

Lately, Fischetti and Monaci, 2008 introduce the conceigbt robustnesswhich can be seen
as an extension of Bertsimas and Sim, 2004. The aim of a lgghust solution is to minimize
the constraint violation within a determined maximal déaia from the deterministic optimal
solution. The quality of a solution is defined as the worslation in the basic Light Robustness
(LR) and the deviation from the average violation in the Heio Light Robustness (HLR)
approach. The originality of this work is that the authorsdixaximal optimality deviation
within which the LR or HLR measures of robustness have to biengged. The study limits to
integer linear problems with the uncertainty set defined egtmas and Sim, 2004.

In both the (light) robust and the risk management methdaspyser invests some additional
costs in order to gain feasibility within a determined sevofcomes. Bertsimas and Sim, 2004
calls it theprice of robustness

We learn from the literature that all existing methods hawae drawbacks: deriving an uncer-
tainty set is a difficult problem; erroneous uncertaintyssatly dramatically impact the solu-
tion’s performance in reality; only few a priori informatios known about the real outcome.
Additionally, stochastic programming approaches leadtomutationally hard problems Birge
and Louveaux, 1997 and robust solutions might be too coateev

The aim of the Uncertainty Feature Optimization (UFO) framag is to overcome the main
drawback of the existing a priori approaches: no uncegaset required. This reduces the
modeling effort of the uncertainty characterization, nsa#tee approach stable against errors in
the noise’s nature estimation and does not significantlsesse the complexity of the original
problem. The inconvenient is that no a priori guarantee ahuure outcome is possible: only
simulation allows to test the approach’s performance.

3 UFO Framework

The general idea of Uncertainty Feature Optimization (URQ) save the modeling effort to
derive an uncertainty set, modeling the uncertainty inighfievith Uncertainty Features (UF).
An UF is a structural property of the solution that is provemmeliorate the solutioni®bust-
ness(capacity to remain feasible) oecoverability(reduction of recovery costs when solution
is infeasible). Without loss of generality, we suppose tleHds to be maximized in order to
increase the solution’s robustness or recoverability.

Consider the general optimization problé¢i) that is prone to noise in the data, whose nature
is unknown:
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zp =min f(x) 1)
a(x) <b (2)
xeX 3)

An Uncertainty FeaturgUF) is a functiony : R” — R that mapsx into a scalan(x). We
suppose that an increase jofx) implies a better performance of the solutirrunder noisy
data: there is a significant (inverse) correlation betweeq and f(x). Let M be the number
of considered uncertainty features.

We reformulate P) as a multi-objective optimization problem by adding the entainty fea-
turesu(x). Objective (1) becomes:

[ZP7 21, 72M] = [min f(X), maX/’Ll(X)7 T 7maXHM(X>]' (4)

The obtained problem is then transformed into the followpngblem(P’):

zpr =[max pu(x), - -+, pina(x)] (5)
a(x) <b (6)
fx)<(@X+p)f (7)
xe X (8)

where f* is the optimal solution of the deterministic probléi), andy > 0 is a scalar called
thebudget ratio We call constraint (7) thbudget constraintlt limits the optimality gap with
respect to the deterministic optimal solutigh

Remarkably, the feasibility of solutior according to(P) remains: any feasible solution of
(P') is also feasible fofP). Additionally, the noisy data the problem is prone to is iigly
consider when maximizing the UFs.

We choose here to solve the multi-objective optimizatiaybpem (4) using the initial objective

relaxation with the budget constraint. The other possiegdiof solving such a problem are
the exploration of the Pareto frontier or to optimize a wégghcombination of the different

objectives. Although the choice seems arbitrary at thisfpeve show in the next section that
the budget constraint is particularly convenient: first ibfiis an intuitive approach, and it

allows to derive existing a priori methods as particulaesasf the UFO framework.

The main difficulty of the UFO framework is to derive the UFse Wink there is no a priori way
to define them, only simulation reveals an UF’s efficiency:effitient UF must be inversely
correlated with the initial objectivé(x).

When using several UFs, théR’) is still a multi-objective optimization problem. We sugges
at this stage, to solve a weighted combination of the UFsnabzing them according to their
respective correlation with the original objective.
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4 UFO asa Generalization

The aim of this section is to show that when an uncertaintisggbvided, then existing methods
can be derived from the UFO framework using particular Uksassumption is made on the
nature of the UF, so it is possible to use an UF relying on tleeided uncertainty set, call it
U. In addition, we supposF is provided with a probabilistic measure. Moreover, wheh no
specified, we consider a deterministic problem of the forja(8).

Light Robustness The formulation of Fischetti and Monaci, 2008 uses the samgét con-
straint. Their objective, however, is based on an unceytaimaracterization: they seek for the
solution with lowest constraint violation in the worst cas#~O is clearly a generalization of
the approach, as the proposed LR and HLR violation measareberegarded as UFs.

Stochastic Programing Consider the following uncertainty feature:

Pstoc (x) = —Eu(f(x)),

whereEy (f(x)) is the expected value ¢f(x) over the uncertainty séf. Applying the UFO
framework, we get the following problem:

Zstoc = MiIN EU(f(X>> 9)
a(x) <b (10)
fx) < (X+p)f (11)
xe X (22)

Whenp = 0, the solution space reduces to the deterministic optimatisos only, and the
value 2§, IS the expected cost of the deterministic solution. Wher> oo, all feasible
solutions are considered: the solution is the one minirgigne expected cost, i.e. the solution
of a the corresponding stochastic expected cost mininsizgioblem.

Suppose that we are provided with a recoveryrémoursé strategy: for each solutiox, let
g(x, &) be the recovery (fixed recourse) costs for soluttomhen the observed data outcome is
¢ € U. The corresponding deterministic equivalent program (B)Birge and Louveaux, 1997
formulation of a two-stage stochastic program with fixedrgse is:

2rec =min f(x) + Ey(g(x,§)) (13)
a(x)<b (14)
xe X (15)

We define the following UF:
MRec(X) = - [f(X) + EU(Q(Xa 6))] )

Applying UFO framework, we obtain formulation (13)-(15) tvithe additional budget con-
straint f(x) < (1 4+ p)f*. Again,p = 0 means only deterministic optimal are considered,
whereag — oo finds the solution of the D.E.P. Birge and Louveaux, 1997.

8
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Robust Optimization Consider the approach of Bertsimas and Sim, 2064 linear robust
optimization:

Zhop =minc’x (16)
Z ai;x; + Gi(x, ;) < b, (17)

J
xe X (18)

In this problem, only the matrix coefficients vary. The uncertainty séf is characterized by
the setJ; containing the indexed of the uncertain coefficients foheaevi = 1,--- ,n. Each
coefficient satisfies;; € [a;; — a;j, ai; + aijl.

Given a solutiorx, the worst coefficient realization at raws given by

Ty,

% aFi = Ai' j Fz_ Fz Ai~ ) 19
ﬂ (-CE ) {SzU{tz}‘SzEJz%?ﬁiLFsztzGJz\SZ} {jes a/j ‘ -CE] | _'_( |_ J)a ti } ( )

wherel’; is an upper bound on the number of coefficient allowed to vanyikaneously. We
define the complementary function 8f(x, I';):

Bz‘ (X7 FZ)

{SiU{ti}|Si€v]iy‘Si|: LJFFZ-J ,tiE,]i\Si}

min {Zazj |2y | +(1 = Ti+ |, | 2, }
JES;

Theorem (Complementarity)
If 5, and3, are defined as above, then

Bi(x, J;) = B;(x, 1) + Bi(x,T;).
The proof of the theorem is left in Appendix A. Note also thatiy3; and3; are positive valued

functions.

As robust optimization aims at feasible solutions, we begth the original feasibility problem
(F') as:

(F) zp =min{f(x)}
= min {max; (f;(x))}
= min {maxi (Z?ZI aijxr; + Bi(x, Ji) — bi) }

°REMARK: Bertsimas and Sim, 2004 use a maximisation probleentransform it to a minimisation problem
to match our framework.
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The uncertain set (ff") is U, i.e.
ai; € lai; — ij, aij + ai],Vj € i =1, .

f(x) is to the value of the most violated constraint in the worshseio when all theJ; coef-
ficients of row: vary, i.e. the unbounded worst case. A solution witlx) < 0 is a solution
that is feasible on the whole uncertainty S@ft;) is thus the feasibility problem that seeks the
solutionx that is closest to be feasible for all scenarios or, i.e. asbbolution.

We define the URu(x) = —cTx, the original cost function with negative sign. Clearly,
and f are inversely correlated because of firece of robustnes8ertsimas and Sim, 2004.
Additionally, the UF increases the performance of the sotutthe cost is decreased.

If a solution of(F") such that}. < 0 exists, at least one robust solution exists. Using the UFO
framework with budget constrairftx) < 0 (p = é—; ISz}, # 00orp=0if 23, = 0) leads to the
robust solution that has lowest cost, which is what is saught

Suppose thus that. > 0, i.e. no robust solution exist din. We define the budget ratjpas:

p = max {Lfi(x*) — 1}

“F
wherep; is defined as the ratio:

= ) AR A #0
0 otherwise.
fi(x*) = aa} + Bi(x*, J;) — b; is the deviation of constraintin the optimal solution* of
problem (F"), which is a deterministically known value whe¢#') is solved. The additional
budget constraint when applying the UFO framework is thus

fxX)<(A+pf = miin {Bi(x, F,)} )

The ratio(1 + p) corresponds to the maximal proportion the- T'; least varying coefficients
represent at the optimal solution(@f): it is capturing how far the solution is from being robust
when at most’; coefficients vary.

A negative value op implies f* < 0, Vi, i.e. the solution is robust, which contradicts the
hypothesis;j. > 0.

If the ratio isp > 0, theng,(x,T;) > f > 0. This implies that the solution space is extended:
the solutions are no longer required to be feasible on thdenlnacertainty set/. Robustness

is required on a subset a@f, for which the number of simultaneously varying coefficeerg
bounded.

(F") is obtained by re-ordering the budget constraint:

25 =minc’x (20)
> aia; + Bi(x, J;) — min B,(x, T) < by (21)

j
xecX (22)

10
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Due to the complementarity theorem, we have that everyisalgatisfying constraint (21) also
satisfy constraints (17).F") is a tighter formulation than problem (16)-(18), as it isusbfor
more data variation.

Applying the procedure iteratively leads either to the it®olution of formulation (16)-(18)
or proves that the problem is unfeasible, i.e. no robustsolwith the proposed; exists.

At each iteratiork we consider the problem
P =1 it {1 B, 5 = T =) = P ), T < g -1}

wherex; is the solution minimizing

(k) (x) = ®)(x) = ) (k=1)y _p,.
fP(x) = max f;"(x) gg§{2azgxg+ﬁz(x,Fz ) bz}.

J

FE"”) is, at each iteration, the maximal number of varying coedfits at rowi. It is bounded
by the number of varying coefficienty* ) from the previous iteration, i.el'*) < T*~Y.

This procedure is repeated until eitheér < 0 or all ng) = 0. In the first case, we find a
robust solution, and the maximal allowed valueg'p8uch that a robust solution exists. In the
latter, we prove that the problem has no feasible solutien,the initial problem (16)-(18) is
infeasible. The proof of the convergence of the method tsefkppendix B. In the casg; are

integer, the method converges in at mesk n iterations.

Remark that the methodology we develop here has many sinelgwith the light robustness of
Fischetti and Monaci, 2008. The main difference is the apgno Fischetti and Monaci, 2008
start from the original cost minimization problem, aiminigranimizing the constraint violation,
whereas the current approach starts from violation miration and aims at cost minimization.
Additionally, Fischetti and Monaci, 2008 measure chargtehe worst violation according to
the deterministic optimum; this is not correct, since theswvoase is solution dependent.

Summary The UFO framework can be seen as a generalization of exigstgifpods using
particular uncertainty features. The point of interesha an UF isanyfeature expected to im-
prove the solution’s performance in reality, and it is leftlie user to decide the complexity and
computational effort to invest in the estimation of the fetoutcome. Additionally, we show
that the UFO framework leads to an algorithm determiningauggounds on th&; coefficients

in Bertsimas and Sim, 2004; no such consideration was fautfuei literature so far.

5 Illustration on the Multi-Dimensional Knapsack Problem

Consider the Multi-Dimensional Knapsack Problem (MDKP):

m
Z&Z’jl'j sz VZ:L ,n
j=1

x; € Ly Vi=1,---,n

11
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We suppose that all coefficients; may vary. In the context of robust optimization, the set
varying coefficients is/; = {1,--- ,m}. No assumption is made on the uncertainty set, i.e. the
possible outcomes of the coefficients is made.

The corresponding UFO formulation is:

ZMpK P = Max [1(X)
m
E CLZ‘jIijZ' VZ:L,’TL
j=1

c'x > (1= p)Zypip
x; € Ly Vi=1,---,n

The x; variables are the number of times objéds taken in the solution. Since we have a
maximisation problem, the budget constraint is multipligd — p: the optimality deviation is
a loss of revenue instead of a direct cost.

We derive four different UFs for the problem:

pvrk =1 —maxi—i .. o{:%}, the Maximal Taken object;,
D SN L o ) the Diversification of the taken objects;
IIR =1—max;_y,.. , {1, the maximal Impact Ratio of a taken object;

fosum = 1 —max; ;. {=7—*=2},  the maximakizeof two objects in a same constraint;
The robust formulation of Bertsimas and Sim, 2004 is retetoeas the URi g,y

The derived UFs follow intuition: taking many times a samgeoty is risky, as if any of its
coefficienta;; increases, the solution becomes more likely to be infeasidie negative sign of
warrk €nsures the maximal taken object is minimized. Having ardifted solution is another
potentially improving property: we do not expect that akffiwients increase at the same time,
and the increase of some coefficients might be compensatételgecrease by some others.
Finally, the IR and 2Sum capture the fact that it is risky taetabjects with high coefficients in
the constraints.

Note that the definition of the UFs ensure their optimal (ineaximal) value is 1. We also
normalize the robust problem in order to set its optimal gatul. As all UFs are normalized,
the combination of multiple UFs is handled using the aritho@ean of the considered UFs.
The value ofzy; px pr IS thus the average value of the (potentially) differentssdared UFs.

5.1 Simulation Description

The used instances are generated by the MDKP-simdlafine generated instances can be
solved by any combination of the UFs proposed in the prevsaation. The user the chooses
the simulation parameters to test the solution.

The generation parameters we use are similar to the onesioer, 1995, which also uses
cost-weight correlation and different densities for thegial costs (the ratir%). We refer to
the marginal cost density as tdegeneratiorof the solution.

3A beta version of the simulator will be available soon. Seép:Htransp-or.epfl.ch for updates.

12
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We generate a total of 3240 instances with 50 objects. Eatéarnioe is defined by the cost and
right hand side vectors b, the constraint matrixl and the standard deviation matrix which
characterizes theeal uncertainty set the instance is due to. 5 instances are @eddor each
combination of the following parameters:

Number of constraints 1,5 and 10;

Marginal Cost Correlation cost and weights are/are noetated;

Data Distribution uniform or gaussian distribution;

Degeneration clustered, medium and wide marginal cogilalision;

Deviation Matrix average coefficient; is proportional tgpa;; with p € {0.2,0.5,0.8};
Deviation Distribution deterministic, gaussian or unifodistribution of A;

r [, =2,Viorl; = 50, Vi.

The marginal cost degeneration refers to the degenerdititye solution. A clustered instance,
for example, is such that the marginal co%@shave a low standard deviation. The instances
with T; = 50 are instances where, in the robust model of Bertsimas andZ5i6d, all coeffi-
cients are allowed to vary: robustness is guaranteed. Ioakel’; = 2, the robust approach
is underestimating the number of varying coefficients: asfbility might occur. The choice of
I'; = 2 is motivate by the fact that in the knapsack problem, only édjects are taken in the
optimal solution.

The used UFs are the ones described in the previous sectiemaime of a solution is followed
by the allowed budget ratidiTk_0.1 is the solution obtained with the Maximal Taken object
UF and a budget = 0.1. Det refers to the deterministic problem. In the case the robastah
of Bertsimas and Sim, 2004 is used, we differentiate whiaetainty characterization is used
when solving the problemRob_A uses the real uncertainty sékob_A r uses an approxi-
mated uncertainty characterization derived from the nabconstraint matrixd by multiplying
each coefficient by .

When we compare different UFs, their value is normalizedhgbat the optimal value (when
p = 1)is 1. When values of combined UFs are presented, we alway gfeaverage value.

Each solution is then evaluated on a certain numbesceharios which is defined by one
realization of the constraint matriA. The solutionx* is feasible for the scenario #x* < b
and the optimality gap is the gap between the solution’s(@asich is constant) and the optimal
value of the scenario.

For each of the following simulations, we randomly genefaseenarios with uniform distri-
bution, for each instance:

A 75,100 /:1 has mean proportional to 75% or 100% timés
A 10, 25,50 A has mean proportional to 10%, 25% or 50% times
R 10, 20, 30 A is randomly generated with mean value of 10, 20 and 30.

We thus have a total of 3240 instances apgl 600 scenarios; we test a total of 22 different UF
combinations.
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5.2 Computation Resultsfor MDKP

In this section, we detail only the most relevant resultse Témaining results are described
gualitatively at the end of the section.

Selected Detailed Results  The detailed results show the average performance of ongol
over a set of simulations. It shows the normalized UF valugefwmeaningful), the number of
infeasible scenarios, the percentage of feasibility failthe average and maximal optimality
gaps (between solution and the scenario’s optimal value Xtaen maximal number of violated
constraints.

Tables 1-3 summarize the average results of the 180 instamtie cost-correlation clustered
degeneration and 10 constraints.

Det Rob_A Rob A 0.1 | MTk 0.2 Div_0.1 IR_0.3 2Sum_0.1

UF value - - - 0.974 0.610 0.962 0.932

= ? # Infeas. 1642 166 1014 914 1199 85 1174

S § Infeas [%] 91.22 9.22 56.33 50.78 66.61 4.72 65.22

0 g Avg Opt Gap [%] 0.56 20.93 4.72 10.53 5.29 31.04 5.56

- Max Opt Gap [%] 25.21 68.36 38.91 49.81 50.47 59.53 41.99
Max # Violated 9 3 7 4 5 1 5

UF value - - - 0.974 0.610 0.962 0.932

a = # Infeas. 2404 489 1232 1141 1544 76 1566

n‘ E Infeas [%] 89.04 18.11 45.63 42.26 57.19 2.81 58.00

9: § Avg Opt Gap [%] 0.56 18.13 5.09 11.38 6.03 30.04 6.03

< o Max Opt Gap [%] 34.03 57.07 40.47 47.12 40.39 52.16 40.19
Max # Violated 8 6 7 3 5 2 5

UF value - - - 0.974 0.610 0.962 0.932

2 ? # Infeas. 2616 1079 2100 1506 1974 171 1962

g § Infeas [%] 96.89 39.96 77.78 55.78 73.11 6.33 72.67

S g Avg Opt Gap [%] 0.45 17.32 3.36 11.24 5.36 33.33 5.53

« 8 Max Opt Gap [%] 46.67 62.71 51.87 57.25 51.81 61.33 51.65
Max # Violated 8 7 8 4 6 2 6

Table 1: Simulation results for instances with 10 constgin

The UF value is the same for the different simulations: ingélee UF value is the one of the
computed solution, which does not change for different ages. The deterministic model
performs extremely bad: the solution is infeasible for ntben 91% of the scenarios. The rare
scenarios for which the solution is feasible are the onewalgunt to the deterministic instance,
for which the solution is optimal, explaining the low optilityagaps.

The robust solution Robd is performing best when the scenario is generated accotditig
real deviation matrixA. Infeasibility for theRob_A$ is due to the instances whefe = 2

is too low to guarantee complete robustness. The robusti@olis, however, the only one
with decreasing performance when the noise’s charactinés erroneousRob_A$ is the
only solution having less feasibility success in théests than thel tests. TheRob_A 0.1
solutions use the same matrix that is used to generate tharszeThe results are not accord-
ingly better: the randomness of the scenarios makes theat#tin erroneous. In botRob_A
andRob_A 0.1 , the solution significantly looses in feasibility succedsew the scenario is
generated randomly{ simulations).
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The IR_30 model clearly outperforms the robust model in teofifeasibility even for the case
where the exact deviation matrix is used: this is due to tloécels ofl";. This shows that even
with the correct uncertainty characterization, the edfiomaof the I'; strongly influences the
solution’s performance.

As expected, the UF solutions are less sensitive to the 'saiaéure. Remarkably, the budget
ratio seems a decent estimator of the average optimalityldap becomes more relevant when
looking at Table 2, that shows the simulation results on #mesinstances than Table 1 for the
globally best two UFs in our tests.

2Sum_0.1 2Sum_0.2 2Sum_0.3 IR_0.1 IR_0.2 IR_0.3
UF value 0.932 0.958 0.962 0.932 0.958 0.962
o ’E # Infeas. 1174 528 a0 1220 528 85
'-‘:i 3 Infeas [%] 65.22 29.33 5.00 67.78 29.33 4.72
L8 Avg Opt Gap [%] 5.56 16.17 30.60 5.13 16.24 31.04
< 3 Max Opt Gap [%] 41.99 52.36 59.53 42.18 48.58 59.53
Max # Violated 5 3 1 5 3 1
UF value 0.932 0.958 0.962 0.932 0.958 0.962
K ? # Infeas. 1566 579 84 1671 592 76
fuj § Infeas [%] 58.00 21.44 3.11 61.89 21.93 2.81
8‘ § Avg Opt Gap [%] 6.03 16.85 29.57 5.4 16.83 30.04
<o Max Opt Gap [%] 40.19 46.95 46.75 40.39 46.99 52.16
Max # Violated 5 3 2 5 3 2
UF value 0.932 0.958 0.962 0.932 0.958 0.962
b=+ e # Infeas. 1962 997 174 2001 996 171
2‘ § Infeas [%] 72.67 36.93 6.44 74.11 36.89 6.33
5 § Avg Opt Gap [%] 5.53 16.73 32.93 5.33 16.81 33.33
e o Max Opt Gap [%] 51.65 57.11 60.71 51.81 57.15 61.33
Max # Violated 6 3 2 5 4 2

Table 2: Sentibility to increasing budget

An increase op clearly ameliorates the performance of the shown UFs inderfmobustness.
The results are coherent with the statement of Bertsima$and2004: an increase of robust-
ness comes at a certain price. The differences of the UF v&bu¢he two UFs seem identical:
they are not, but it is not clear because of rounding effect.

Table 3 shows the effect of combining the different modele Wk a complete budget relax-
ation (p = 1) for the model combiningRob_A_Div . The reason is that the budget constraint
may contradict with the revenue maximization objectiveh&fRob model.

The table shows that the combinatibiTk_2Sumis very efficient, leading to robust solutions
with low optimality gaps, outperforming all other methods the shown simulations. In ad-
dition, combining the Rob model with the Div UFO shows an iegsive improvement: the
Rob_0.2 model is clearly outperformed by the combined nmmdmith in terms of feasibility

and optimality gaps.

Qualitative Analysis Tables 1-3 show the results for only one out of 18 classes. &¥eribe
here in a qualitative way the content of the remaining fests

4The complete results are available on written demand t@nskeggenberg@epfl.ch
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MTK_25um_0.3 —Rob_A_0.1 Rob_A_0.1 Rob_A_0.2
- - Div_1.0 - - - -
UF value 0.969 1.475 - -
o2 # Infeas. 102 514 1014 643
28 Infeas [%] 5.67 28.56 56.33 35.72
28 Avg Opt Gap [%] 33.02 16.47 4.72 10.93
<3 Max Opt Gap [%] 30.03 53.41 38.91 44.15
Max # Violated 2 5 7 5
UF value 0.969 1.475 - -
e # Infeas. 111 542 1232 700
w 3 Infeas [%)] 4.11 20.07 45.63 25.93
S § Avg Opt Gap [%] 31.90 16.93 5.09 11.59
< Max Opt Gap [%] 76.44 51.97 40.47 45.34
Max # Violated 2 5 7 5
UF value 0.969 1.475 - -
Qe # Infeas. 209 969 2100 1503
S 3 Infeas [%)] 7.74 35.89 77.78 55.67
) § Avg Opt Gap [%] 34.94 17.16 3.36 9.18
xS Max Opt Gap [%] 30.20 61.17 51.87 55.81
Max # Violated 3 5 8 6

Table 3: Combination effect of different UFs.

Interestingly, the results show that the number of constisas a crucial parameter, especially
for the performance of thBet solutions: feasibility is lost in only 37.01% of all the segios
with 1 constraint, for83.72%for 5 constraints and more than 91% with 10 constraints, with
the cost-correlated and clustered degeneration instarides other solutions show a similar
behavior. The reason is that the more a problem is consttathe more it is sensitive to
variations.

The next observation is that tliob model performs much better than the UFs when the de-
generation becomes lower. The global statistics show Heatdbust solution is, in average,
feasible around twice as often as the solutions of the best@F6% of infeasible scenarios
for the robust model for aroun@).3% for the MTk_2Sun). The main difference comes from
the instances with low and medium degeneration (i.e. 66%efristances), where the robust
solutions clearly outperforms the UF ones. The reason tshibee is no optimality deviation re-
striction for theRob solution. In the medum and low degeneration instances,utigdt ratiop
might not be sufficient to significantly extend the solutipase, leading to solutions very sim-
ilar to the deterministic one. No clear pattern can be idiectifor the robust solution according
to variation of degeneration; for the UF solutions, a sigatfit increase in the number of infea-
sible scenarios occurs when decreasing the degeneratwrnRF0.3 for example, 29.01%
scenarios are infeasible in the clustered instances, {88%4in the medium and 62.67% in the
low degeneration case. The same remark holds for the cagl@aton. The robust solutions
are less sensitive to cost correlation than the UF solutfonshe same reasons.

Remarkably, unlike the robust or deterministic approacties UF solutions tend to be stable
for the different simulation types, whatever the instarygeet Surprisingly, this also holds for
the number of constraints. The reason is that the robusbappris based on an uncertainty
characterization. The robust solutions are only bettematheir information is sufficient and

when the solution is degenerated enough for the UF to haveased solution space.
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Synthesis The simulations show that the UF are competitive (sometievess much better)
for problems with clustered degeneration and cost-cdroglawhich is the case of most of
the complex real world optimization problems. AdditioyalUF solutions are not sensitive to
changes in the noise’s nature, unlike the robust approdut simulations also show that even if
a robust method benefits from the exact uncertainty charaaten, the method might still lead
to inefficient solutions because of it's parameters. In #seof low or medium degeneration,
UF perform worse when the budget ration is too small to allagynificant extension of the
search space.

6 Extension to Airline Scheduling

The Airline Scheduling Problem (ASP) is a huge problem ima many complex regulations,

see Kohl et al., 2004 for a survey. The many facets of the prol§foute choice, fleet assign-
ment, tail assignment, crew pairing and crew roisteringjesent a combinatorial challenge for
operations research scientists Clausen et al., 2004.Thiecal problem is that the computed
schedules have to be carried out in a rapidly varying enwemt influenced by many factors

such as weather, human factors (strikes, iliness, . ..) emdamnical factors. The complexity of

the environment makes it extremely difficult, if not impdssi to derive a complete and correct
characterization of its behavior.

Being already a hard problem in its deterministic form, gr®s not realistic to use proactive
methods for solving the ASP: it is a good candidate for the Wa@ework. This does not hold
uniquely for the ASP problem: Fischettiand Monaci, 200&sssfully applies light robustness,
which is computationally similar to UFO, to the train talgiproblem, showing impressing
computational time savings, in addition to competitivaugioins in terms of robustness.

As discussed in section 1, some possible uncertainty festarincrease robustness of an airline
schedule are idle time, plane crossings or number of plamesonatching the worker’s union
constraints. As it is unlikely that a robust solution exigtss appealing to search for increased
recoverability as well.

In Eggenberg et al., 2008, the authors present a Column &@me(CG) algorithm to solve
the Aircraft Recovery Problem. The advantage of the tealiq that it is flexible enough to
be applied for crew and a combination of aircraft routinggverand passenger recovery. The
algorithm is based orecovery networksencoding eachinit's (aircrafts, crew or passengers)
feasible route. The performance of the recovery algorithihriectly linked with the structure
of the recovery networks. This can be exploited at the ASRB@hasing UFs based on the
recovery networks’ structure in order to increase recdviéta

As an example, a promising UF is to minimize the number of essiwe airports where no
maintenance can be performed: a plane requiring an unpeeldicaintenance at an airport that
does not support maintenance operations must be re-raugddirport where the maintenance
can be done; the number of potentially canceled flights lgelihwith the number of succes-
sive flights visiting unequipped airports. Similarly, if mgenance is performed only at a base
airport, the UF is equivalent to minimize the length of th&atmns.

UFO is a promising framework for computationally hard peybk due to uncertain data such
as the ASP for two reasons: the first is that, as long the usedatd-of the same nature than
the original objective, then the computational difficulyeiquivalent to solving twice a problem
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of same difficulty than the initial objective: once to get tbever boundf* and once to solve
the UFO problem (5)-(8). The second reason is that the ctaization of uncertainty sets for
such problems is a crucial but hard problem that is not reguior general UFs. The major
difficulty is the validation of an UF: it requires large simtibns. We believe, however, that any
scheduling approach should be validated by simulation.

7 Conclusion

In this paper, we address the problem of optimization pranedisy data. Unlike most of
the existing methods, the Uncertainty Feature Optiminafitamework does not require the
explicit characterization of an uncertainty set, i.e. tbegible outcomes of the data: the UFO
framework models the uncertainty implicitly.

We show that existing methods such as stochastic optiraizati robust optimization are spe-
cial cases of UFs, supposing the uncertainty set providée. proof of the generalization for
the robust approach of Bertsimas and Sim, 2004 leads to antalg computing upper bounds
on the method’s parameter to guarantee a robust solutistsexi

Computational results on the Multi Dimensional Knapsac&hbiem (MDKP) show that the
UFO approach is competitive against the robust approachrddults show the stable behavior
of UFO with respect to variations on the noise’s nature,kenthe robust approach: the exact
knowledge of the noise’s nature is a benefit, but when the@aderroneously approximated, it
might annihilate a method'’s efficiency. Additionally, a®shour results, the only knowledge of
the noise’s nature is not sufficient for the robust appro#ieh parameters of the method clearly
influence the performance of a robust solution.

The future research directions are to test the approach oa coonplex problems. Indeed, the
results show that the performance of UF solutions increftsesiore constraining problems.

The airline scheduling problem seems an appropriated datedithe problem is computation-
ally hard and well studied with stochastic and robust mestiodenchmark the performance of
UFO, and simulation tools already exist for this problem.

Another research is to derive an UF generation frameworkblamy the elaboration of an un-

certainty feature based on a problem’s structure. The génarframework may require a

problem classification, where UF's would depend on the cdagsoblem belongs to. It is not

clear though whether a classification uniquely based onenadltical properties (such as num-
ber of constraints, variables, ...) is possible, or if theuraof the problem is relevant. The
underlying question is whether it is possible to classifgljems according to their difficulty

with respect to uncertain data.
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A Complementarity Theorem

Theorem (Complementarity)
If 3; and 3, are defined as in section 4, then

Bi(x, J;) = B;(x, 1) + Bi(x,T;).

Pr oof:

For a givenx, let S U {t;} be the optimal set maximizing;(x, I';) andS; U {Z;} the optimal
set minimizing3;(x, T;).

Suppose that we order the changing coefficients in increasing order of the valyg| z; |.
Then, the|.J — I;] first ones are irf;. Similarly, the|T';| biggest ones are if*. Remains to
check the fractional part of variabte : first of all, if I'; is integer, then there is no fractional part,
so suppose€; is non-integer. Clearly, = ¢;, namelyt; is the variable in positiohJ; — T'; | + 1.

Let us sum all terms of;, andS?, recalling that, ag; is integer and’; in non-integer, then
| i =Ty =J,—1—|L}].
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8,06, 1) + Bi(x, 1) = >y |y | +(Ji = Ti= [ i = Ta)) [, + >y | 2y | +(T — [Ti)) | 2,
jEST Jesy
= i w4 wy |+ =T = (i = 1= [T3)) + T = [T4)) | m,
J#t;

= i@y |+ |z |+,
J#t;

= ||
j

= ﬂi(X, Ji)

B Convergence Proof

Proposition 1
Using the definitions in section 4, we have that:

Bi(x, Ji) < Bi(x, Ji — I) + Bi(x, ).

Pr oof:

By definition,

ﬁi(x> Ji — Fi) = MAX{S;U{t; }|Si€J:,|Si|=[Ji—Ts ) t:€Ji\ S} {ZjeSi dij | L ‘ +(Fi - LFZJ )&iti ‘ T,

J
@, \}

> min{SiU{tiHSz’GJiy‘Si‘:LJi*FiJ7ti€Ji\Si} {Zjesi dij ‘ T | +(Fi - LFZJ)dth
Z Bz (Xu Fz)

As by definition@(x, FZ) = min{giu{ti}‘gieJiJSH:LJi,FiLtiEJi\Si} {ZjeSi dij | Z; ‘ +(Fi — LFlJ)&th | Ty,

Invoking the complementarity theorem we get:

Bi(x, Ji — Ty) + Bi(x,Ty) > B;(x, 1) + Bi(x, T:) = Bi(x, Ji),

which proves the proposition.

Theorem (Convergence)
Consider the sequence of problems for increasidgfined in section 4:

P =1 = inf {1 | B g = T =) = fP), T < -1
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wherex; is the solution minimizing

i,xeX i, X€X

f(k)( ) = max f( = max {Z ai;r; + Bi(x ) } :

Then the sequence either converges to a problem ittt < 0 or proves that there is no
solution satisfying _; a;;z; < b; for all 4.

Pr oof:

First of all, notice tha3,(x;, ') is a decreasing function for increasifigsee the complemen-
tarity theorem). Thus, if no solution exist for

Bi(xg Ji =TV 1) > £V (x),

this holds in particular fop, (x}, 0) = 3(x}, J), again using the complementarity theorem.
This leads to

> ()i + BOLTED) = b > B, ).
j
As B(x;, J) = B(x;, THY), this means ™ ag;(z;); + B(x;, T*Y) > by, i.e. x* is infeasible
for the original problem.

We first prove that the sequence is not stationary; suppasd.e. thatFEk“) = ng) for all <.

In particular, this is also true fat, which is the index of the maximal valued functigﬁﬁ) (x5)-
In this case, clearly, we have that

B (x5, Joe — Ty > £ (x).

Invoking Proposition 1, we end up with
FOG) = F20q) = Y ais(a)i = b <0
j

i.e. we have converged.

For a non stationary solution, we have tiidi"" < I'*) for at leasti*. Moreover, we know

that a solution of (F+1) exists, otherwise we would have proved that no solutiorsfarig the
set of equat|onslx < b exist.

Now, at iterationk + 1, all functions satisfyf*+1(x) < f*) (x) for all x € X, the inequality
being strict at least for*. The functionf*)(x) is thus strictly decreasing as well.

Thus, the method eventually converges either to a solutitm f#*)* < 0, or we havel“gk) =0
for all 7, meaning no solution foAx < b exist, which proves the theorem.
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