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Abstract

Optimization problems due to noisy data are usually solved using stochastic programming or
robust optimization approaches. Both requiring the explicit characterization of anuncertainty
setthat models the nature of the noise. Such approaches tightlydepend on the modeling of the
uncertainty set.

In this paper, we introduce a framework that implicitly models the uncertain data. We define the
general concept ofUncertainty Features(UF) which are structural properties of a solution. We
show how to formulate an uncertain problem using theUncertainty Feature Optimization(UFO)
framework as a multi-objective problem. We prove that stochastic programming and robust
optimization are particular cases of the UFO framework. We present computational results for
the Multi-Dimensional Knapsack Problem (MDKP) and discussthe application to the airline
scheduling problem. Computational results show a stability of the solutions in variations of the
noise’s nature, unlike methods based on an explicit uncertainty set.

Keywords

Robust Optimization – Uncertainty

1This work was first presented at the CTW 2008 conference in Gargnano, Italy, in May 2008. See
http://ctw08.dti.unimi.it
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1 Introduction

Nowadays, Operations Research tools are widely used to optimize real world problems (without
loss of generality, we suppose we only deal with minimization problems). The major difficulty
the modelers are faced with is the noisy nature of the data most of the problems are due to.
As shown by Birge and Louveaux, 1997, Herroelen and Leus, 2005 and Sahinidis, 2004 and
references therein, a greedy solution neglecting the uncertain nature of the data leads to unstable
solutions: either we loose feasibility or the average performance of the solution in reality is poor.
The ability of a solution to remain feasible with respect to data changes is called therobustness
of the solution. In the case the solution is not robust, we define therecoverabilityof the solution
as the average performance of the solution including both original costs and the costs incurred
when modifying the solution to retrieve feasibility, whichare called therecovery costs. The
operation of repairing a solution is therecoveryalgorithm.

The existing methods for solving problems due to noisy data are divided in two distinct classes:
the reactiveand theproactivemethods. Reactive methods are also calledon-line algorithms.
Such algorithms re-compute a new solution each time the revealed data requires the solution
to be updated (mainly when feasibility is lost). The proactive approaches compute the solution
before any data is revealed. Such methods require some predictions on the future data outcome
to perform better than the greedy deterministic approach. The possible set of outcomes is
modeled by anuncertainty set. We distinguish two different proactive methods accordingto
way the uncertainty set is defined: theexpected-meanand theworst-casemethods. On the one
hand, expected-mean methods aim at finding the solution performing best in average and thus
require an explicit characterization of all possible data outcomes. We suppose that expected-
mean methods require a probabilistic distribution on the uncertainty set. On the other hand,
worst-case approaches are conservative methods seeking the stability of the solution even in
the worst possible configuration. The requirements of such methods are the characterization of
the worst case for any solution. The modeling of the uncertainty sets is the key to a proactive
method’s efficiency. Unfortunately, it is a difficult task and, as we show in this paper, errors
in the estimation of the uncertainty set might have dramaticconsequences, making the solution
even worse than the greedy deterministic solution.

The concept ofUncertainty Feature Optimization(UFO) is different from on-line, expected-
mean and worst-case approaches: it aims at finding a proactive solution but without the explicit
characterization of an uncertainty set. The fact that the problem is due to noisy data is consid-
eredimplicitly usingUncertainty Features(UF), which are structural properties of the solution
improving its robustness or recoverability.

The initial motivation for UFO comes from the airline scheduling problem, see Kohl et al., 2004
for a general survey. Airline scheduling requires a proactive method, because of the early pub-
lication deadlines of the schedule. In addition, due to manyunpredictable influencing fac-
tors, modeling the uncertainty set is a difficult task. Several works in the literature attempt
to model an uncertainty set, see for example Lan et al., 2006,Chebalov and Klabjan, 2004,
Policella, 2004. The main conclusion of the works using robust approaches are that the ob-
tained solutions exhibit a particular property such as the number of plane crossings (Klabjan
et al., 2002, Bian et al., 2004), a reduced length of plane rotations Rosenberger et al., 2004 or
increased idle time Al-Fawzana and Haouari, 2005. Remarkably, this also holds for models
aiming at an increase of the solution’s recoverability. Thestochastic model with recourse of
Yen and Brige, 2006 addresses the crew scheduling problem. Their solutions exhibit pairings
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with a reduced number of plane changes. The UFs corresponding to these structural properties
are the maximization of idle time, number of plane crossingsand number of plane rotations
satisfying the crew pairing constraints.

The contributions of this work are that UFO is a general framework for optimization under
uncertainty, where the implicit handling does not require the modeling effort of characterizing
an uncertainty set. The consequence is a gain of stability ofthe solutions’ behavior when
the noise’s nature changes. Furthermore, we prove that UFO is a generalization of existing
proactive methods for a particular choice of UFs.

The structure of the paper is as follows: section 2 summarizes the literature on methods for
optimization under uncertainty and discusses their benefits and drawbacks. Section 3 presents
the Uncertainty Feature Optimization (UFO) framework and section 4 demonstrates how to
derive existing proactive methods from the UFO framework. In section 5, we show practical
examples of UFO: we present simulation results on the Multi-Dimensional Knapsack Problem
(MDKP) and we discuss the application of UFO to airline scheduling in section (6). Finally,
section 7 concludes the paper with some future research issues.

2 Optimization under Uncertainty

For general surveys on optimization under uncertainty we refer to Herroelen and Leus, 2005
and Sahinidis, 2004 and references therein. Their main conclusions are that uncertainty should
not be neglected when solving an optimization problem due touncertainty.

Notice that for the remaining part of the paper, we suppose, without loss of generality, that we
are faced with a problem where the objective is to minimize a cost function. Moreover, we
decompose the survey into three parts corresponding to the three classes we identify: reactive,
stochastic and worst-case approaches.

Reactive Algorithms Reactive algorithms are also known ason-linealgorithms. The concept
of an on-line algorithm is based on the wait-and-see strategy: there is, in general, no baseline
solution computed a priori, the solution being built iteratively according to a decision process
based on the revealed data; decisions are (potentially) taken each time new information is gath-
ered. The clear benefit is that, if it exists the policy eventually provides a globally feasible
solution once all data is revealed. There are however several drawback. The first is the lack
of stability of the solution, since it depends on the data realization. Moreover, the approach
does not allow for deriving a baseline schedule, and suffersfrom the real time requirements,
implying that the decision process must be determined in real time, excluding thereby sophisti-
cated decision processes for large-scale problems. Finally, it is difficult to derive a measure of
performance for such algorithms: thecompetitivity ratiois an a posteriori measure comparing
the obtained solution against the optimal solution with known data. In real world applications,
on-line algorithms perform at acceptable ranges in terms ofoptimality deviation, but one can
usually find scenarios for which the algorithms perform poorly. For a survey on reactive algo-
rithms, we refer to Albers, 2003 and Grötschel et al., 2002.

Stochastic Programing Stochastic optimization is a widely studied field and a standard ap-
proach to deal with uncertainty, see Birge and Louveaux, 1997. The main objective is to opti-
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mize theexpectedvalue of the objective over the whole set of uncertain data, i.e. the uncertainty
set: this implies the knowledge of a probabilistic measure on theuncertainty set. The clear ben-
efit of the approach is that the obtained solution is the one that performs best in average: if the
solution is carried out many times under the same conditions, then the average cost of the solu-
tion tends to the expected cost. The drawback is that stochastic programming (with or without
recourse) needs an explicit uncertainty set provided with aprobabilistic measure. In addition,
the approach requires the evaluation of the solution on the whole uncertainty set in order to
determine it’s expected cost, which is, in general, computationally hard. Finally, the computed
expected cost is only an estimator on the possible solution’s outcome: one cannot guarantee
the real cost matches the expected cost: the expected cost isa good indicator only when the
obtained solution is implemented many times under the same conditions, as then, the average
cost converges almost surely to the expected cost.

In stochastic optimization with recourseor multi-stage stochastic optimization(Birge and Lou-
veaux, 1997, Kall and Wallace, 1994, Herroelen and Leus, 2005), arecoursestrategy that refines
the reaction to take when information on a scenario is revealed is considered. The major ad-
vantages of this approach is that we consider two levels of information, namely the a priory
knowledge and the possible data outcomes along time: the solution thus provides the action to
take in case of significant information gain. The benefit of the approach is that the two deci-
sional levels lead to the best expected solution,including recourse costs, which is a much better
approximation on the real cost than the only expected cost (without the recourse costs). The
drawbacks are again the needs of the probabilistic uncertainty set. Moreover, the computational
complexity is increased by several orders, since one needs to solve the recourse problem for
each scenario in order to get only one solution’s expected recourse cost, and to consider all
scenarios in order to determine the one minimizing the totalexpected cost (the sum of first
level and recourse costs). In fact, for large scale problemswhere evaluation is not realistic, the
method needs either a closed form for any solution’s recourse costs or to formulate the recourse
problem as an underlying problem of the same complexity thanthe original problem. Note that
even in the case of a discrete uncertainty set for which the recourse problem can be expressed
as a set ofm linear functions given a solution, we get a problem with at leastn×m constraints,
wheren is the number of decisional stages at which recourse has to betaken.

Wort-Case Based Approaches The class of worst-case based approaches is mainly com-
posed of methods leading torobustsolutions, i.e. solutions that are feasible even in the worst
possible scenario. Many works use robust optimization; Soyster, 1973 was the first to intro-
duce a formal approach of robustness, and Bertsimas and Sim,2004 and Ben-Tal and Ne-
mirovski, 2001 give a more formal framework for different classes of problems. The main
advantage of a robust solution is that, if the uncertainty set is exhaustive and a robust solution
exists, then the methodology provides an upper bound to the cost. Moreover, as it is a worst case
based method, it doesn’t need a probability distribution onthe uncertainty set. The drawback is
that an exhaustive uncertainty characterization is still needed, although no probability distribu-
tion is required. In fact, the considered uncertainty set plays a crucial role, since it determines
the level of protection of the solution. But this is a major drawback, since if all scenarios are
considered, the solution might be way too conservative and lead to a solution with high costs for
most of the possible outcomes; neglecting part of the possible outcomes leaves the possibility
for the solution to become unfeasible. In this case, the costof the solution is no longer an upper
bound, and then the question arises whether the additional costs on the considered outcomes
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are worth it.

This leads to another type of worst-case based approach, namely therisk managementmethods,
see Kall and Mayer, 2005. For these methods, a probabilisticmeasure on the uncertainty set
is required, and the optimal solution is the one that has the best trade-off between expected
cost and probability to be infeasible. The probability to beinfeasible is modeled using quantile
functions, and the optimal solution is the one with lowest expected cost given a specific value
of the quantile function. The benefit of the approach is to findthe solution with lowest expected
cost and provide a probabilistic measure of infeasibility.The method suffers, however, from the
needs of a probabilistic uncertainty set as does stochasticprogramming. Moreover, the obtained
problem is computationally hard, such that only particularproblems are solvable. Note that risk
management also fits into the class of stochastic methods.

Lately, Fischetti and Monaci, 2008 introduce the concept oflight robustness, which can be seen
as an extension of Bertsimas and Sim, 2004. The aim of a light robust solution is to minimize
the constraint violation within a determined maximal deviation from the deterministic optimal
solution. The quality of a solution is defined as the worst violation in the basic Light Robustness
(LR) and the deviation from the average violation in the Heuristic Light Robustness (HLR)
approach. The originality of this work is that the authors fixa maximal optimality deviation
within which the LR or HLR measures of robustness have to be optimized. The study limits to
integer linear problems with the uncertainty set defined by Bertsimas and Sim, 2004.

In both the (light) robust and the risk management methods, the user invests some additional
costs in order to gain feasibility within a determined set ofoutcomes. Bertsimas and Sim, 2004
calls it theprice of robustness.

We learn from the literature that all existing methods have some drawbacks: deriving an uncer-
tainty set is a difficult problem; erroneous uncertainty sets may dramatically impact the solu-
tion’s performance in reality; only few a priori information is known about the real outcome.
Additionally, stochastic programming approaches lead to computationally hard problems Birge
and Louveaux, 1997 and robust solutions might be too conservative.

The aim of the Uncertainty Feature Optimization (UFO) framework is to overcome the main
drawback of the existing a priori approaches: no uncertainty set required. This reduces the
modeling effort of the uncertainty characterization, makes the approach stable against errors in
the noise’s nature estimation and does not significantly increase the complexity of the original
problem. The inconvenient is that no a priori guarantee about future outcome is possible: only
simulation allows to test the approach’s performance.

3 UFO Framework

The general idea of Uncertainty Feature Optimization (UFO)is to save the modeling effort to
derive an uncertainty set, modeling the uncertainty implicitly with Uncertainty Features (UF).
An UF is a structural property of the solution that is proven to ameliorate the solution’srobust-
ness(capacity to remain feasible) orrecoverability(reduction of recovery costs when solution
is infeasible). Without loss of generality, we suppose the UF has to be maximized in order to
increase the solution’s robustness or recoverability.

Consider the general optimization problem(P ) that is prone to noise in the data, whose nature
is unknown:
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zP = min f(x) (1)

α(x) ≤ b (2)

x ∈ X (3)

An Uncertainty Feature(UF) is a functionµ : R
n → R that mapsx into a scalarµ(x). We

suppose that an increase ofµ(x) implies a better performance of the solutionx under noisy
data: there is a significant (inverse) correlation betweenµ(x) andf(x). Let M be the number
of considered uncertainty features.

We reformulate(P ) as a multi-objective optimization problem by adding the uncertainty fea-
turesµ(x). Objective (1) becomes:

[zP , z1, · · · , zM] = [min f(x), maxµ1(x), · · · , max µM(x)]. (4)

The obtained problem is then transformed into the followingproblem(P ′):

zP ′ =[maxµ1(x), · · · , µM(x)] (5)

α(x) ≤ b (6)

f(x) ≤ (1 + ρ)f ∗ (7)

x ∈ X (8)

wheref ∗ is the optimal solution of the deterministic problem(P ), andρ ≥ 0 is a scalar called
thebudget ratio. We call constraint (7) thebudget constraint. It limits the optimality gap with
respect to the deterministic optimal solutionf ∗.

Remarkably, the feasibility of solutionx according to(P ) remains: any feasible solution of
(P ′) is also feasible for(P ). Additionally, the noisy data the problem is prone to is implicitly
consider when maximizing the UFs.

We choose here to solve the multi-objective optimization problem (4) using the initial objective
relaxation with the budget constraint. The other possibilities of solving such a problem are
the exploration of the Pareto frontier or to optimize a weighted combination of the different
objectives. Although the choice seems arbitrary at this point, we show in the next section that
the budget constraint is particularly convenient: first of all, it is an intuitive approach, and it
allows to derive existing a priori methods as particular cases of the UFO framework.

The main difficulty of the UFO framework is to derive the UFs. We think there is no a priori way
to define them, only simulation reveals an UF’s efficiency: anefficient UF must be inversely
correlated with the initial objectivef(x).

When using several UFs, then(P ′) is still a multi-objective optimization problem. We suggest,
at this stage, to solve a weighted combination of the UFs, normalizing them according to their
respective correlation with the original objective.
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4 UFO as a Generalization

The aim of this section is to show that when an uncertainty setis provided, then existing methods
can be derived from the UFO framework using particular UFs: no assumption is made on the
nature of the UF, so it is possible to use an UF relying on the provided uncertainty set, call it
U . In addition, we supposeU is provided with a probabilistic measure. Moreover, when not
specified, we consider a deterministic problem of the form (1)-(3).

Light Robustness The formulation of Fischetti and Monaci, 2008 uses the same budget con-
straint. Their objective, however, is based on an uncertainty characterization: they seek for the
solution with lowest constraint violation in the worst case. UFO is clearly a generalization of
the approach, as the proposed LR and HLR violation measures can be regarded as UFs.

Stochastic Programing Consider the following uncertainty feature:

µStoc (x) = −EU (f(x)),

whereEU (f(x)) is the expected value off(x) over the uncertainty setU . Applying the UFO
framework, we get the following problem:

zStoc = min EU(f(x)) (9)

α(x) ≤ b (10)

f(x) ≤ (1 + ρ)f ∗ (11)

x ∈ X (12)

Whenρ = 0, the solution space reduces to the deterministic optimal solutions only, and the
valuez∗Stoch is the expected cost of the deterministic solution. Whenρ → ∞, all feasible
solutions are considered: the solution is the one minimizing the expected cost, i.e. the solution
of a the corresponding stochastic expected cost minimization problem.

Suppose that we are provided with a recovery (orrecourse) strategy: for each solutionx, let
g(x, ξ) be the recovery (fixed recourse) costs for solutionx when the observed data outcome is
ξ ∈ U . The corresponding deterministic equivalent program (D.E.P) Birge and Louveaux, 1997
formulation of a two-stage stochastic program with fixed recourse is:

zRec =min f(x) + EU (g(x, ξ)) (13)

α(x) ≤ b (14)

x ∈ X (15)

We define the following UF:

µRec(x) = − [f(x) + EU(g(x, ξ))] ,

Applying UFO framework, we obtain formulation (13)-(15) with the additional budget con-
straintf(x) ≤ (1 + ρ)f ∗. Again, ρ = 0 means only deterministic optimal are considered,
whereasρ → ∞ finds the solution of the D.E.P. Birge and Louveaux, 1997.
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Robust Optimization Consider the approach of Bertsimas and Sim, 20042 for linear robust
optimization:

z∗ROB =min c
T
x (16)

∑

j

aijxj + βi(x, Γi) ≤ bi (17)

x ∈ X (18)

In this problem, only the matrix coefficientsA vary. The uncertainty setU is characterized by
the setJi containing the indexed of the uncertain coefficients for each row i = 1, · · · , n. Each
coefficient satisfiesaij ∈ [aij − âij , aij + âij].

Given a solutionx, the worst coefficient realization at rowi is given by

βi(x, Γi) = max
{Si∪{ti}|Si∈Ji,|Si|=⌊Γi⌋,ti∈Ji\Si}

{

∑

j∈Si

âij | xj | +(Γi − ⌊Γi⌋)âiti | xti |

}

, (19)

whereΓi is an upper bound on the number of coefficient allowed to vary simultaneously. We
define the complementary function ofβi(x, Γi):

βi(x, Γi) = min
{Si∪{ti}|Si∈Ji,|Si|=⌊Ji−Γi⌋,ti∈Ji\Si}

{

∑

j∈Si

âij | xj | +(1 − Γi + ⌊Γi⌋)âiti | xti |

}

.

Theorem (Complementarity)
If βi andβi are defined as above, then

βi(x, Ji) = βi(x, Γi) + βi(x, Γi).

The proof of the theorem is left in Appendix A. Note also that bothβi andβi are positive valued
functions.

As robust optimization aims at feasible solutions, we beginwith the original feasibility problem
(F ) as:

(F ) z∗F = min {f(x)}
= min {maxi (fi(x))}

= min
{

maxi

(

∑n

j=1 aijxj + βi(x, Ji) − bi

)}

2REMARK: Bertsimas and Sim, 2004 use a maximisation problem;we transform it to a minimisation problem
to match our framework.
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The uncertain set of(F ) is U , i.e.

aij ∈ [aij − âij , aij + âij ], ∀j ∈ Ji, i = 1, · · · , n.

f(x) is to the value of the most violated constraint in the worst scenario when all theJi coef-
ficients of rowi vary, i.e. the unbounded worst case. A solution withf(x) ≤ 0 is a solution
that is feasible on the whole uncertainty set;(F ) is thus the feasibility problem that seeks the
solutionx that is closest to be feasible for all scenarios or, i.e. a robust solution.

We define the UFµ(x) = −c
T
x, the original cost function with negative sign. Clearly,µ

and f are inversely correlated because of theprice of robustnessBertsimas and Sim, 2004.
Additionally, the UF increases the performance of the solution: the cost is decreased.

If a solution of(F ) such thatz∗F ≤ 0 exists, at least one robust solution exists. Using the UFO
framework with budget constraintf(x) ≤ 0 (ρ =

z∗
F

|z∗
F
|
is z∗F 6= 0 or ρ = 0 if z∗F = 0) leads to the

robust solution that has lowest cost, which is what is sought.

Suppose thus thatz∗F > 0, i.e. no robust solution exist onU . We define the budget ratioρ as:

ρ = max
i

{

ρifi(x
∗)

z∗F
− 1

}

,

whereρi is defined as the ratio:

ρi =

{

βi(x,Γi)
fi(x∗)

if fi(x
∗) 6= 0

0 otherwise.

fi(x
∗) = aijx

∗
j + βi(x

∗, Ji) − bi is the deviation of constrainti in the optimal solutionx∗ of
problem(F ), which is a deterministically known value when(F ) is solved. The additional
budget constraint when applying the UFO framework is thus

f(x) ≤ (1 + ρ)f ∗ = min
i

{

βi(x, Γi)
}

.

The ratio(1 + ρ) corresponds to the maximal proportion theJi − Γi least varying coefficients
represent at the optimal solution of(F ): it is capturing how far the solution is from being robust
when at mostΓi coefficients vary.

A negative value ofρ implies f ∗
i < 0, ∀i, i.e. the solution is robust, which contradicts the

hypothesisz∗F > 0.

If the ratio isρ > 0, thenβi(x, Γi) > f ∗
i ≥ 0. This implies that the solution space is extended:

the solutions are no longer required to be feasible on the whole uncertainty setU . Robustness
is required on a subset ofU , for which the number of simultaneously varying coefficients is
bounded.

(F ′) is obtained by re-ordering the budget constraint:

z∗F ′ =min c
T
x (20)

∑

j

aijxj + βi(x, Ji) − min
i

βi(x, Γi) ≤ bi (21)

x ∈ X (22)
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Due to the complementarity theorem, we have that every solution satisfying constraint (21) also
satisfy constraints (17).(F ′) is a tighter formulation than problem (16)-(18), as it is robust for
more data variation.

Applying the procedure iteratively leads either to the robust solution of formulation (16)-(18)
or proves that the problem is unfeasible, i.e. no robust solution with the proposedΓi exists.

At each iterationk we consider the problem

Γ
(k+1)
i = Γ

(k)
i − inf

Γ≥0

{

Γ | βi(x
∗
k
, Ji − Γ

(k)
i − Γ) ≥ f

(k)
i (x∗

k), Γ ≤ Ji − Γ
(k)
i

}

.

wherex∗
k is the solution minimizing

f (k)(x) = max
i,x∈X

f
(k)
i (x) = max

i,x∈X

{

∑

j

aijxj + βi(x, Γ
(k−1)
i ) − bi

}

.

Γ
(k)
i is, at each iteration, the maximal number of varying coefficients at rowi. It is bounded

by the number of varying coefficientsΓ(k−1)
i from the previous iteration, i.e.Γ(k)

i ≤ Γ
(k−1)
i .

This procedure is repeated until eitherρk ≤ 0 or all Γ
(k)
i = 0. In the first case, we find a

robust solution, and the maximal allowed values ofΓi such that a robust solution exists. In the
latter, we prove that the problem has no feasible solution, i.e. the initial problem (16)-(18) is
infeasible. The proof of the convergence of the method is left in Appendix B. In the caseΓi are
integer, the method converges in at mostm × n iterations.

Remark that the methodology we develop here has many similitudes with the light robustness of
Fischetti and Monaci, 2008. The main difference is the approach: Fischetti and Monaci, 2008
start from the original cost minimization problem, aiming at minimizing the constraint violation,
whereas the current approach starts from violation minimization and aims at cost minimization.
Additionally, Fischetti and Monaci, 2008 measure characterize the worst violation according to
the deterministic optimum; this is not correct, since the worst case is solution dependent.

Summary The UFO framework can be seen as a generalization of existingmethods using
particular uncertainty features. The point of interest is that an UF isanyfeature expected to im-
prove the solution’s performance in reality, and it is left to the user to decide the complexity and
computational effort to invest in the estimation of the future outcome. Additionally, we show
that the UFO framework leads to an algorithm determining upper bounds on theΓi coefficients
in Bertsimas and Sim, 2004; no such consideration was found in the literature so far.

5 Illustration on the Multi-Dimensional Knapsack Problem

Consider the Multi-Dimensional Knapsack Problem (MDKP):

z∗MDKP =max c
T
x

m
∑

j=1

aijxj ≤ bi ∀i = 1, · · · , n

xi ∈ Z+ ∀i = 1, · · · , n

11
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We suppose that all coefficientsaij may vary. In the context of robust optimization, the set
varying coefficients isJi = {1, · · · , m}. No assumption is made on the uncertainty set, i.e. the
possible outcomes of the coefficientsaij is made.

The corresponding UFO formulation is:

zMDKP ′ = maxµ(x)
m

∑

j=1

aijxj ≤ bi ∀i = 1, · · · , n

c
T
x ≥ (1 − ρ)z∗MDKP

xi ∈ Z+ ∀i = 1, · · · , n

The xi variables are the number of times objecti is taken in the solution. Since we have a
maximisation problem, the budget constraint is multipliedby 1 − ρ: the optimality deviation is
a loss of revenue instead of a direct cost.

We derive four different UFs for the problem:

µMTk = 1 − maxi=1,··· ,n{
xi

u∗
}, the Maximal Taken object;,

µDiv =
∑

i=1,··· ,n(min{xi,1
n

}), the Diversification of the taken objects;
µIR = 1 − maxi=1,··· ,n{

aijxi

bi
}, the maximal Impact Ratio of a taken object;

µ2Sum = 1 − maxi,j 6=k{
aijxi+aikxk

bi
}, the maximalsizeof two objects in a same constraint;

The robust formulation of Bertsimas and Sim, 2004 is referred to as the UFµRob.

The derived UFs follow intuition: taking many times a same object i is risky, as if any of its
coefficientaij increases, the solution becomes more likely to be infeasible. The negative sign of
µMTk ensures the maximal taken object is minimized. Having a diversified solution is another
potentially improving property: we do not expect that all coefficients increase at the same time,
and the increase of some coefficients might be compensated bythe decrease by some others.
Finally, the IR and 2Sum capture the fact that it is risky to take objects with high coefficients in
the constraints.

Note that the definition of the UFs ensure their optimal (i.e.maximal) value is 1. We also
normalize the robust problem in order to set its optimal value to 1. As all UFs are normalized,
the combination of multiple UFs is handled using the arithmetic mean of the considered UFs.
The value ofzMDKP ′ is thus the average value of the (potentially) different considered UFs.

5.1 Simulation Description

The used instances are generated by the MDKP-simulator3. The generated instances can be
solved by any combination of the UFs proposed in the previoussection. The user the chooses
the simulation parameters to test the solution.

The generation parameters we use are similar to the ones of Pisinger, 1995, which also uses
cost-weight correlation and different densities for the marginal costs (the ratiobi

ci
). We refer to

the marginal cost density as thedegenerationof the solution.

3A beta version of the simulator will be available soon. See http://transp-or.epfl.ch for updates.
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We generate a total of 3240 instances with 50 objects. Each instance is defined by the cost and
right hand side vectorsc,b, the constraint matrixA and the standard deviation matrix̂A, which
characterizes thereal uncertainty set the instance is due to. 5 instances are generated for each
combination of the following parameters:

Number of constraints 1, 5 and 10;
Marginal Cost Correlation cost and weights are/are not correlated;
Data Distribution uniform or gaussian distribution;
Degeneration clustered, medium and wide marginal cost distribution;
Deviation Matrix average coefficientâij is proportional toρaij with ρ ∈ {0.2, 0.5, 0.8};
Deviation Distribution deterministic, gaussian or uniform distribution ofÂ;
Γ Γi = 2, ∀i or Γi = 50, ∀i.

The marginal cost degeneration refers to the degeneration of the solution. A clustered instance,
for example, is such that the marginal costsâij

bi
have a low standard deviation. The instances

with Γi = 50 are instances where, in the robust model of Bertsimas and Sim, 2004, all coeffi-
cients are allowed to vary: robustness is guaranteed. In thecaseΓi = 2, the robust approach
is underestimating the number of varying coefficients: infeasibility might occur. The choice of
Γi = 2 is motivate by the fact that in the knapsack problem, only fewobjects are taken in the
optimal solution.

The used UFs are the ones described in the previous section. The name of a solution is followed
by the allowed budget ratio:MTk_0.1 is the solution obtained with the Maximal Taken object
UF and a budgetρ = 0.1. Det refers to the deterministic problem. In the case the robust model
of Bertsimas and Sim, 2004 is used, we differentiate which uncertainty characterization is used
when solving the problem:Rob_Â uses the real uncertainty set.Rob_A_r uses an approxi-
mated uncertainty characterization derived from the original constraint matrixA by multiplying
each coefficient byr .

When we compare different UFs, their value is normalized such that the optimal value (when
ρ = 1) is 1. When values of combined UFs are presented, we alway show the average value.

Each solution is then evaluated on a certain number ofscenarios, which is defined by one
realization of the constraint matrix̃A. The solutionx∗ is feasible for the scenario if̃Ax

∗ ≤ b

and the optimality gap is the gap between the solution’s cost(which is constant) and the optimal
value of the scenario.

For each of the following simulations, we randomly generate5 scenarios with uniform distri-
bution, for each instance:

Â 75, 100 Ã has mean proportional to 75% or 100% timesÂ;
A 10, 25, 50 Ã has mean proportional to 10%, 25% or 50% timesA;
R 10, 20, 30 Ã is randomly generated with mean value of 10, 20 and 30.

We thus have a total of 3240 instances and129, 600 scenarios; we test a total of 22 different UF
combinations.
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5.2 Computation Results for MDKP

In this section, we detail only the most relevant results. The remaining results are described
qualitatively at the end of the section.

Selected Detailed Results The detailed results show the average performance of one solution
over a set of simulations. It shows the normalized UF value (when meaningful), the number of
infeasible scenarios, the percentage of feasibility failure, the average and maximal optimality
gaps (between solution and the scenario’s optimal value) and the maximal number of violated
constraints.

Tables 1-3 summarize the average results of the 180 instances with cost-correlation clustered
degeneration and 10 constraints.

Table 1: Simulation results for instances with 10 constraints.

The UF value is the same for the different simulations: indeed, the UF value is the one of the
computed solution, which does not change for different scenarios. The deterministic model
performs extremely bad: the solution is infeasible for morethan 91% of the scenarios. The rare
scenarios for which the solution is feasible are the ones equivalent to the deterministic instance,
for which the solution is optimal, explaining the low optimality gaps.

The robust solution Rob_̂A is performing best when the scenario is generated accordingto the
real deviation matrixÂ. Infeasibility for theRob_Â$ is due to the instances whereΓi = 2
is too low to guarantee complete robustness. The robust solution is, however, the only one
with decreasing performance when the noise’s characterization is erroneous:Rob_Â$ is the
only solution having less feasibility success in theA tests than thêA tests. TheRob_A_0.1
solutions use the same matrix that is used to generate the scenario. The results are not accord-
ingly better: the randomness of the scenarios makes the estimation erroneous. In bothRob_Â
andRob_A_0.1 , the solution significantly looses in feasibility success when the scenario is
generated randomly (R simulations).
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The IR_30 model clearly outperforms the robust model in terms of feasibility even for the case
where the exact deviation matrix is used: this is due to the choices ofΓi. This shows that even
with the correct uncertainty characterization, the estimation of theΓi strongly influences the
solution’s performance.

As expected, the UF solutions are less sensitive to the noise’s nature. Remarkably, the budget
ratio seems a decent estimator of the average optimality gap. This becomes more relevant when
looking at Table 2, that shows the simulation results on the same instances than Table 1 for the
globally best two UFs in our tests.

Table 2: Sentibility to increasing budgetρ.

An increase ofρ clearly ameliorates the performance of the shown UFs in terms of robustness.
The results are coherent with the statement of Bertsimas andSim, 2004: an increase of robust-
ness comes at a certain price. The differences of the UF values for the two UFs seem identical:
they are not, but it is not clear because of rounding effect.

Table 3 shows the effect of combining the different models. We use a complete budget relax-
ation (ρ = 1) for the model combiningRob_A_Div . The reason is that the budget constraint
may contradict with the revenue maximization objective of theRob model.

The table shows that the combinationMTk_2Sumis very efficient, leading to robust solutions
with low optimality gaps, outperforming all other methods for the shown simulations. In ad-
dition, combining the Rob model with the Div UFO shows an impressive improvement: the
Rob_0.2 model is clearly outperformed by the combined models, both in terms of feasibility
and optimality gaps.

Qualitative Analysis Tables 1-3 show the results for only one out of 18 classes. We describe
here in a qualitative way the content of the remaining tests4.

4The complete results are available on written demand to niklaus.eggenberg@epfl.ch
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Table 3: Combination effect of different UFs.

Interestingly, the results show that the number of constraints is a crucial parameter, especially
for the performance of theDet solutions: feasibility is lost in only 37.01% of all the scenarios
with 1 constraint, for83.72%for 5 constraints and more than 91% with 10 constraints, with
the cost-correlated and clustered degeneration instances. The other solutions show a similar
behavior. The reason is that the more a problem is constrained, the more it is sensitive to
variations.

The next observation is that theRob model performs much better than the UFs when the de-
generation becomes lower. The global statistics show that the robust solution is, in average,
feasible around twice as often as the solutions of the best UFs (22.6% of infeasible scenarios
for the robust model for around50.3% for theMTk_2Sum). The main difference comes from
the instances with low and medium degeneration (i.e. 66% of the instances), where the robust
solutions clearly outperforms the UF ones. The reason is that there is no optimality deviation re-
striction for theRob solution. In the medum and low degeneration instances, the budget ratioρ
might not be sufficient to significantly extend the solution space, leading to solutions very sim-
ilar to the deterministic one. No clear pattern can be identified for the robust solution according
to variation of degeneration; for the UF solutions, a significant increase in the number of infea-
sible scenarios occurs when decreasing the degeneration. For IR_0.3 for example, 29.01%
scenarios are infeasible in the clustered instances, for 54.93% in the medium and 62.67% in the
low degeneration case. The same remark holds for the cost correlation. The robust solutions
are less sensitive to cost correlation than the UF solutions, for the same reasons.

Remarkably, unlike the robust or deterministic approaches, the UF solutions tend to be stable
for the different simulation types, whatever the instance type. Surprisingly, this also holds for
the number of constraints. The reason is that the robust approach is based on an uncertainty
characterization. The robust solutions are only better when their information is sufficient and
when the solution is degenerated enough for the UF to have increased solution space.
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Synthesis The simulations show that the UF are competitive (sometimeseven much better)
for problems with clustered degeneration and cost-correlation, which is the case of most of
the complex real world optimization problems. Additionally, UF solutions are not sensitive to
changes in the noise’s nature, unlike the robust approach. The simulations also show that even if
a robust method benefits from the exact uncertainty characterization, the method might still lead
to inefficient solutions because of it’s parameters. In the case of low or medium degeneration,
UF perform worse when the budget ration is too small to allow significant extension of the
search space.

6 Extension to Airline Scheduling

The Airline Scheduling Problem (ASP) is a huge problem involving many complex regulations,
see Kohl et al., 2004 for a survey. The many facets of the problem (route choice, fleet assign-
ment, tail assignment, crew pairing and crew roistering) represent a combinatorial challenge for
operations research scientists Clausen et al., 2004.The additional problem is that the computed
schedules have to be carried out in a rapidly varying environment influenced by many factors
such as weather, human factors (strikes, illness, . . . ) and economical factors. The complexity of
the environment makes it extremely difficult, if not impossible, to derive a complete and correct
characterization of its behavior.

Being already a hard problem in its deterministic form, it seems not realistic to use proactive
methods for solving the ASP: it is a good candidate for the UFOframework. This does not hold
uniquely for the ASP problem: Fischetti and Monaci, 2008 successfully applies light robustness,
which is computationally similar to UFO, to the train tabling problem, showing impressing
computational time savings, in addition to competitive solutions in terms of robustness.

As discussed in section 1, some possible uncertainty features to increase robustness of an airline
schedule are idle time, plane crossings or number of plane routes matching the worker’s union
constraints. As it is unlikely that a robust solution exists, it is appealing to search for increased
recoverability as well.

In Eggenberg et al., 2008, the authors present a Column Generation (CG) algorithm to solve
the Aircraft Recovery Problem. The advantage of the technique is that it is flexible enough to
be applied for crew and a combination of aircraft routing, crew and passenger recovery. The
algorithm is based onrecovery networks, encoding eachunit’s (aircrafts, crew or passengers)
feasible route. The performance of the recovery algorithm is directly linked with the structure
of the recovery networks. This can be exploited at the ASP phase, using UFs based on the
recovery networks’ structure in order to increase recoverability.

As an example, a promising UF is to minimize the number of successive airports where no
maintenance can be performed: a plane requiring an unpredicted maintenance at an airport that
does not support maintenance operations must be re-routed to an airport where the maintenance
can be done; the number of potentially canceled flights is linked with the number of succes-
sive flights visiting unequipped airports. Similarly, if maintenance is performed only at a base
airport, the UF is equivalent to minimize the length of the rotations.

UFO is a promising framework for computationally hard problems due to uncertain data such
as the ASP for two reasons: the first is that, as long the used UFs are of the same nature than
the original objective, then the computational difficulty is equivalent to solving twice a problem
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of same difficulty than the initial objective: once to get thelower boundf ∗ and once to solve
the UFO problem (5)-(8). The second reason is that the characterization of uncertainty sets for
such problems is a crucial but hard problem that is not required for general UFs. The major
difficulty is the validation of an UF: it requires large simulations. We believe, however, that any
scheduling approach should be validated by simulation.

7 Conclusion

In this paper, we address the problem of optimization prone to noisy data. Unlike most of
the existing methods, the Uncertainty Feature Optimization framework does not require the
explicit characterization of an uncertainty set, i.e. the possible outcomes of the data: the UFO
framework models the uncertainty implicitly.

We show that existing methods such as stochastic optimization or robust optimization are spe-
cial cases of UFs, supposing the uncertainty set provided. The proof of the generalization for
the robust approach of Bertsimas and Sim, 2004 leads to an algorithm computing upper bounds
on the method’s parameter to guarantee a robust solution exists.

Computational results on the Multi Dimensional Knapsack Problem (MDKP) show that the
UFO approach is competitive against the robust approach. The results show the stable behavior
of UFO with respect to variations on the noise’s nature, unlike the robust approach: the exact
knowledge of the noise’s nature is a benefit, but when the nature is erroneously approximated, it
might annihilate a method’s efficiency. Additionally, as show our results, the only knowledge of
the noise’s nature is not sufficient for the robust approach:the parameters of the method clearly
influence the performance of a robust solution.

The future research directions are to test the approach on more complex problems. Indeed, the
results show that the performance of UF solutions increasesfor more constraining problems.
The airline scheduling problem seems an appropriated candidate: the problem is computation-
ally hard and well studied with stochastic and robust methods to benchmark the performance of
UFO, and simulation tools already exist for this problem.

Another research is to derive an UF generation framework, enabling the elaboration of an un-
certainty feature based on a problem’s structure. The generation framework may require a
problem classification, where UF’s would depend on the classa problem belongs to. It is not
clear though whether a classification uniquely based on mathematical properties (such as num-
ber of constraints, variables, . . . ) is possible, or if the nature of the problem is relevant. The
underlying question is whether it is possible to classify problems according to their difficulty
with respect to uncertain data.
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A Complementarity Theorem

Theorem (Complementarity)
If βi andβi are defined as in section 4, then

βi(x, Ji) = βi(x, Γi) + βi(x, Γi).

Proof:

For a givenx, let S∗
i ∪ {ti} be the optimal set maximizingβi(x, Γi) andS

∗

i ∪ {ti} the optimal
set minimizingβi(x, Γi).

Suppose that we order theJi changing coefficients in increasing order of the valueâ1j | xj |.
Then, the⌊J − Γi⌋ first ones are inS

∗

i . Similarly, the⌊Γi⌋ biggest ones are inS∗
i . Remains to

check the fractional part of variablexti : first of all, if Γi is integer, then there is no fractional part,
so supposeΓi is non-integer. Clearly,ti = ti, namelyti is the variable in position⌊Ji −Γi⌋+1.

Let us sum all terms ofS
∗

i andS∗
i , recalling that, asJi is integer andΓi in non-integer, then

⌊Ji − Γi⌋ = Ji − 1 − ⌊Γi⌋.
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βi(x, Γi) + βi(x, Γi) =
∑

j∈S
∗

i

â1j | xj | +(Ji − Γi − ⌊Ji − Γi⌋) | xti +
∑

j∈S∗

i

â1j | xj | +(Γi − ⌊Γi⌋) | xti

=
∑

j 6=ti

â1j | xj | + | xj | +(Ji − Γi − (Ji − 1 − ⌊Γi⌋) + Γi − ⌊Γi⌋) | xti |

=
∑

j 6=ti

â1j | xj | + | xj | +xti |

=
∑

j

â1j | xj |

= βi(x, Ji)

�

B Convergence Proof

Proposition 1
Using the definitions in section 4, we have that:

βi(x, Ji) ≤ βi(x, Ji − Γi) + βi(x, Γi).

Proof:

By definition,

βi(x, Ji − Γi) = max{Si∪{ti}|Si∈Ji,|Si|=⌊Ji−Γi⌋,ti∈Ji\Si}

{

∑

j∈Si
âij | xj | +(Γi − ⌊Γi⌋)âiti | xti |

}

≥ min{Si∪{ti}|Si∈Ji,|Si|=⌊Ji−Γi⌋,ti∈Ji\Si}

{

∑

j∈Si
âij | xj | +(Γi − ⌊Γi⌋)âiti | xti |

}

≥ βi(x, Γi)

As by definitionβi(x, Γi) = min{Si∪{ti}|Si∈Ji,|Si|=⌊Ji−Γi⌋,ti∈Ji\Si}

{

∑

j∈Si
âij | xj | +(Γi − ⌊Γi⌋)âiti | xti |

}

.

Invoking the complementarity theorem we get:

βi(x, Ji − Γi) + βi(x, Γi) ≥ βi(x, Γi) + βi(x, Γi) = βi(x, Ji),

which proves the proposition.

�

Theorem (Convergence)
Consider the sequence of problems for increasingk defined in section 4:

Γ
(k+1)
i = Γ

(k)
i − inf

Γ≥0

{

Γ | βi(x
∗
k
, Ji − Γ

(k)
i − Γ) ≥ f

(k)
i (x∗

k), Γ ≤ Ji − Γ
(k)
i

}

.
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wherex∗
k is the solution minimizing

f (k)(x) = max
i,x∈X

f
(k)
i (x) = max

i,x∈X

{

∑

j

aijxj + βi(x, Γ
(k−1)
i ) − bi

}

.

Then the sequence either converges to a problem withf (k)∗ ≤ 0 or proves that there is no
solution satisfying

∑

j aijxj ≤ bi for all i.

Proof:

First of all, notice thatβi(x
∗
k
, Γ) is a decreasing function for increasingΓ (see the complemen-

tarity theorem). Thus, if no solution exist for

βi(x
∗
k
, Ji − Γ

(k−1)
i − Γ) ≥ f

(k−1)
i (x∗

k),

this holds in particular forβi(x
∗
k
, 0) = β(x∗

k, J), again using the complementarity theorem.

This leads to
∑

j

aij(xj)
∗
k + β(x∗

k, Γ
(k−1)) − bi > β(x∗

k, J).

As β(x∗
k, J) ≥ β(x∗

k, Γ
(k−1)), this means

∑

j aij(xj)
∗
k + β(x∗

k, Γ
(k−1)) > bi, i.e.x∗ is infeasible

for the original problem.

We first prove that the sequence is not stationary; suppose itis, i.e. thatΓ(k+1)
i = Γ

(k)
i for all i.

In particular, this is also true fori∗, which is the index of the maximal valued functionf
(k)
i (x∗

k).
In this case, clearly, we have that

βi∗(x
∗
k, Ji∗ − Γ

(k)
i∗ ) ≥ f

(k)
i∗ (x∗

k).

Invoking Proposition 1, we end up with

f (k)(x∗
k) = f

(k)
i∗ (x∗

k) =
∑

j

ai∗j(xj)
∗
k − bi∗ ≤ 0

i.e. we have converged.

For a non stationary solution, we have thatΓ
(k+1)
i < Γ

(k)
i for at leasti∗. Moreover, we know

that a solution ofΓ(k+1)
i∗ exists, otherwise we would have proved that no solution satisfying the

set of equationsAx ≤ b exist.

Now, at iterationk + 1, all functions satisfyf (k+1)(x) ≤ f (k)(x) for all x ∈ X, the inequality
being strict at least fori∗. The functionf (k)(x) is thus strictly decreasing as well.

Thus, the method eventually converges either to a solution with f (k)∗ ≤ 0, or we haveΓ(k)
i = 0

for all i, meaning no solution forAx ≤ b exist, which proves the theorem.

�
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