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Abstract

An external strategy module for an agent-based micro sitoul@f traffic systems is
presented. This module callpthnomatmodifies activity durations and departure times
of activity plans, which are the agent-based represemtatioravel demand. The mod-
ule combines broad search for alternative timing deciswitis an optimization proce-
dure for a scoring function that evaluates daily activitgnd. The module is integrated
into the existing framework MATSIM, which simulates traféystems consisting of
several 100’000 agents entirely on activity level. In thaper, a test version of the Can-
ton Zurich is simulated, the biggest metropolitan area ot&sand. Main results are
relaxation of the whole simulation system to a better statip state than in previous
versions of the simulation framework. This is shown by dapararrival time distri-
butions. The number of required iterations was signifigaregtiuced to 100, which is
one-two orders of magnitude better than before.

Keywords

planomat, scoring function, time allocation, Large-s@gent-based micro-simulation
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1. Introduction

MATSIM is an iterative, agent-based micro-simulation fraonk of traffic systems
(Raney and Nagel, 2005). It mainly consists on one side of alatmon of traffic flow
and on the other side of different modules adapting travedadel to generalized travel
costs. They are called alternately until the system reaithestationary state, which
corresponds to user equilibrium in the case of traffic systeim MATSIM, travel de-
mand is represented by individual agents that follow arviigtplan (this is why it
is called a micro-simulation framework). Each activity iplia assigned a score. The
higher the score, the better is the plan. Convergence to éierstry state is, among
other measurements, judged by the development of the sggregated over the whole
agent population.

This paper is aboytlanomaj a flexible module which adapts the activity plans to travel
times the agent experiences during the subsequent siongatif traffic flow. Since
changing generalized costs of travel affect each aspectaedltdemand, it would be
desirable that this module was as comprehensive, allovangtfoice of activity dura-
tions, departure times, activity locations, modes, ane@mdesired attributes. In a first
implementation described henglanomatadapts activity durations as well as the trip
departure times.

The motivation for this work was to replace an existing "dufimmodule calledtime
allocation mutatorwhich produces unsatisfying results (see Raney and Nagéj, 20
p. 16). The main improvements planomatare the exploration of the complete search
space (instead of only a small part) and the use of a scormgjitin for goal-oriented
search for alternate plans (instead of random strategyrgtme). In the history of
the MATSIM project, this paper reports on the integratiorCbiarypar and Nagel'’s ap-
proach to strategy optimization into the framework (Charygad Nagel, 2005).

The paper is structured as follows. Our concept of an agasgd microsimulation of
traffic systems is presented in section 2. Details on the nedufeplanomatare given
in section 3. Section|4 describes input data, assumptioost &ztivity parameters
as well as algorithm details. Results concerning choice tifigctiming and system
performance are presented in section 5. Finally, an ouflogken in the last section.



planomat:
A comprehensive scheduler for a large-scale multi-agemtdportation simulation
March 15 - 17, 2006

2. Micro simulation framework

In this section, the concepts required for understandiagld@nomatfunctionality are
described briefly. For a comprehensive and more detailedeinsork description, see
Raney and Nagel (2005).

2.1 The activity plan concept

The representation of an agent’s travel demand is an acfilén, an alternating se-
guence ofctivitiesandtrips. As shown in the example in Figure 1, the framework uses
XML to store and exchange plans (W3C, 2006). The most impbXML elements
are the following.

person Each person is identified by ard by which its socio-economic attributes can
be found in the synthetic population. A person can hold sdy#ans.

plan Each plan can be assignedsaor e according to a scoring function (see sec-
tion/2.2). The attributesel ect ed="yes" states that the plan was chosen for
execution in the previous iteration of the traffic flow sintida.

activities Each activity<act > is characterized by a type, a hectare-based location
coordinate, an associated network link, and its temporentxdefined by two
of three attributest art _ti ne, end_ti ne, anddur (activity duration). The
start of the plan is defined as the end time of the first actiwvitshis cas®7: 35: 04.
In the example shown, first and last activity are the sameigc(" h", which
means home). The location coordinates refer to "Swiss Ghd"Swiss geodetic
reference system (Swisstopo, 2006).

trips The attributes of a trig<l eg> include a mode, a departure time and a duration.
A trip can be characterized by a route, which is a sequenceimibers of the
network nodes that are passed.

Read the example plan as follows:

e Agent No. 22018 is at home until 7:35:04. His home locatibh is at the
coordinates (703600;236900).
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Figure 1: Example activity plan

<person id="22018">
<pl an score="157. 72" sel ected="yes">

<act type="h" x100="703600" y100="236900" |ink="5757" end_tinme="07:35:04"

<l eg nun¥"0" node="car" dep_tine="07:35:04" trav_tinme="00: 16: 31">
<rout e>1900 1899 1897</route>
</l eg>
<act type="w' x100="702500" y100="236400" |ink="5749" dur="08:12:05" />
<l eg nun="1" node="car" dep_tine="16:03:40" trav_tinme="01:10: 22">
<rout e>1899 1848 1925 1924 1923 1922 1068</route>

</l eg>
<act type="l" x100="681450" y100="246550" |ink="2140" dur="01:20: 00" />
<l eg nun¥"2" node="car" dep_tine="" trav_tine="00:34:35">
<rout e>1067 1136 1137 1921 1922 1923 1924 1925 1848 1899</rout e>
</l eg>
<act type="h" x100="703600" y100="236900" |ink="5757" />
</ pl an>
</ per son>

e He leaves his home to drive to workw('). This trip takes 16 minutes and 31
seconds, using the route along the noti@80 1899 1897.

e The agent stays at work more than 8 hours, then leaves faswadeactivity (1" ).
The trip from the work location on rout&899 1848 1925 1924 1923
1922 1068 to the leisure location takes about 1 hour and 10 minutes.

o After leisure, the agent returns home after a trip<@4 minutes.

e Read the plan as a 24-hour wrap-around, so the end of the hdivi¢yas also
at 7:35:04 the next day.

e The plan has a score of 157€2

An activity plan can be interpreted in different ways: It dam either astrategyex-
pressing what the agents wants/plans to do, demand descriptionvhat an agent
actually did in a certain iteration. The character of a p&gven more general: Since
many attributes are not required, it is essentiallyaaking filein the demand generation
process.

lsee the DTD athttp://www. vsp.tu-berlin.de/projects/ Matsinfdata/dtd/
pl ans_v4. dtd

/>


http://www.vsp.tu-berlin.de/projects/Matsim/data/dtd/plans_v4.dtd
http://www.vsp.tu-berlin.de/projects/Matsim/data/dtd/plans_v4.dtd
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2.2 Scoring

The quality of an activity plan is measured by a score. Theesponding scoring func-
tion was introduced first by Charypar and Nagel (2005), andtlsslight modifications
also used in our current work on traffic micro simulation. STeubsection presents the
basic parts of the utility function, while subsection 2.3mbmstrates its use in the mi-
cro simulation framework. Since here is given a compresssdrgption, the interested
reader is referred to the original paper by Charypar and Nagel

The score of an activity plafi,.,, is given by the sum of the utilities of all performed
activitiesi, and the travel disutilities for trips necessary to get fimme activity location
to the other:

Uplan = Z?:l Uact (typeza Sta'/rtia dUTZ) + 2?22 Utrav(loci—la lOCi)

The utility of an activity: is the sum of four terms, each of which is modeling a certain
aspect of the utility function.

Uactﬂ' = Udur,i + Uwait,i + Ulate.ar,i + Uearly.dp,i + Ushort.dur,i

Uar; denotes the utility of executing an activity for a certairration, U, ; denotes
the (dis)utility of waiting for an activity to start (for ingnce waiting for a shop to
open),Ulate.ar; aNAUeqariy.ap; denote penalties for coming too late or leaving too early
that activity respectively, ant,+ 4. IS @ penalty if an activity is performed for too
a short time.

U« denotes the (dis)utility of traveling from the location atigity i — 1 to the location
of the current activity.

There is no penalty fonot performing an activity that might have been planned. Only
performed activities contribute to the plan score.

Utility of performing an activity

All terms in the activity utility function excepl,,,. are modeled to be linear in time
needed for that activity aspect. The time performing anvagtis assumed to have a
logarithmic impact on activity utility to reflect diminisig marginal utility:
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Baur - t* - In(22) (o < taur)

Ugr =X 0 (0 < tgur < to) ,With
5neg.dur : |tdur| (tdur < 0)
to = t* - exp 10/t

t4. denotes the actual activity duratiort. is the so calledperating pointof the ac-
tivity, the duration at which the marginal utility equals,,.. So, the value of* can
be interpreted as the typical duration of an activity, wiitkeeffect in the activity plan
context is the following: The! yield the ratios of the durations of different activities in
equilibrium.

to is the activity duration at which the logarithmic curve hissriull. It is chosen pro-
portional to the operating point, and is influenced by thenis p of the activity. Usual
values forp are 1,2,3..., with 1 being the highest priority. The highmer priority, the
smaller will bet,. In busy plans, high-priority activities tend to stay in gplan while
low-priority activities will be dropped when for instanaaffic conditions worsen. In
the current state of our work on activity generation, we ugedfi revealed activity
chains, and activity dropping is not allowed. All activéibave the same priority= 1.
This is why this issue is not described in more detail here.

The utility of performing an activity with a positive durati cannot be negative. Due to
the interpretation of an activity plan as 24 hour-wrap rqundhe first iterations of the
micro simulation framework negative durations can occireylare penalized linearly
with B,.¢4.q4ur- This reflects a very undesired plan where it took the agemerti@an 24
hours to fulfil its plan.

Penalties

The penalty terms of the utility function are penalized éifg according to Vickrey's
model of departure time choice (e.g. Arnettal, 1993):

Utrav (ttr(w) = ﬁtrav : ttrava
Uw(zz’t (twait) - ﬁwait : twaita

ﬁlate.ar : (tstart - tlatest.ar) (tstart > tlatest.ar)
Ulate.ar(tstarta tlatest.a’r) =
0 (tstafrt S tlatest.a’r‘)
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(wheret,,, is the starting time of the activity ang,...;... the latest possible starting
time of that activity),

ﬁearly‘dp : (tearliest.dp - tend) (tend < tea'rliest.dp)

Uearly.dp(tenda tem‘liest‘dp) =
0 (tend Z tearliest.dp)

(wheret.,q is the ending time of the activity and,,;, 4, the earliest possible ending
time of that activity), and

ﬁshort.dur . (tshortest.du'r - (tend - tsta'rt)) (tend < tstart)

Us ort.dur ts ar >ten =
hort.dur (start, tend) { 0 (tend = tstart)

(Wheret g,,te5t.qur 1S the shortest desired duration for that activity).

Summary of parameters

The parameters of the utility function have the followindues:

6dur - 6€/h1
ﬁtrav - _6€/ha
ﬁwait == 0€/h1

Biate.ar = —18€IN,
Bearty.ap = 0€/N,
Bshort.aur = 0EIN,
Breg.dur = —18€IN.

The parameters for the penalty terms are chosen to refleceligons in Vickrey’s
model of departure time choice:

ﬂwait : ﬂtrav : ﬁlate.ar = 1 . 2 . 3

This relation is not obvious on first sight when looking at pfagameter values:

ﬁwait : ﬁtrav : Blate.ar =0:—-6:—18

Considering the opportunity costs bt performing an activity while waiting or trav-
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eling, one has to subtragf,,,. from (,.;; andg;..,. S0, the effective parameter values
are the following:

ﬁwait,eff : ﬁtrav,eff : 6late.ar,eff =—6:—-12: 18,

which means the Vickrey type model is yielded. These valueddferent from the
ones used in Charypar and Nagel (2005), who already disctlssessue of opportunity
costs.

Figure 2 demonstrates the utility calculation using thengxe activity plan shown in
Figure 1.

2.3 Simulation

The task of a simulation is to find the stationary state of yfs#esn modeled. In the case
of our transport system model, the stationary state is tte sthere an agent cannot
improve its score by altering the plan. So the objective fimnamf the simulation system
is to maximize the overall score:

max(d _, Upian,a), With n being the number of agents simulated.

As pointed out, an iterative approach is used to solve thigmmiaation problem. where
travel times as a representative for generalized travekca® the central feedback
element. The overall simulation system consists of thefahg steps:

1. Initial plans have to be generated as a first input to the traffic flow simarati
It contains all the assumptions about the agents’ persdtrdddes, as well as
approximations for the plan attributes. For instance girtimnes are directly pro-
protional to the physical distance without any network céyaeffects. For each
agent, a set of plans is generated and stored in the agebtdata

2. Theplan selection mechanisof the agent database chooses one plan per agent
for execution (usually one that was modified before, otheewandom selection).

3. Thesimulation of traffic flonexecutes the plans, that is it "moves" agent objects
through a model of the traffic network when trips are planrigtk result of this
are new travel times for each trip (attribute av_t i ne of element<| eg>).
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Additionally, the plans executed are scored (see secti@n & the stop criterion
of the simulation is met, go to step 6.

4. A subset of the agents is chosen for plan modification/riaw generation by so-
calledexternal strategy module3 hese modules, of whighlanomatis one, can
capture one or more travel behavior attributes. Curren@9p bf all agents are
considered for replanning and rerouting respectivelythir 10% for rerouting
only.

5. One or more external strategy modules are run. For eactt age plan is re-
turned. The new plan, considering the updated travel tilmetored in the agent
database. Return to step 2.

6. End of the simulation.

The stop criterion mentioned is the amount of improvemermvierall score after sub-
sequent iterations. If it falls under a certain valjehe stationary state is probably
found.

3. Methods of planomat

This section starts with a description of the functionadityd the shortcomings of the
module to be replaced. After that, the details of the curptamtomatimplementation
are described.

3.1 Old time allocation mutator

The first two paragraphs of this section are taken from RandyNagel (2005, p. 16).

The old replanning moduliéme allocation mutatotakes the existing times of the plan
and modifies them randomly. Note that there is no "goal” with thodule, that is, the
module does not try to improve any kind of score. Rather, thduteomakes a random
modification, and the plans selection mechanism in conjonatith the scoring will
make the agents improve toward better scores.
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The exact details of the time mutator are as follows. This m®deads the plans file,
and for each plan alters the end time of the first activity bgradom amount; uni-
formly selected in the ranga € [—30 min, 30 min]. Values that come before 00:00
(midnight) are reset to that time. It then alters the duratbeach activity except the
first and last by separate random values uniformly selected the same range. The
last activity does not need modification since it runs fromendver the agent arrives
until 24:00 (midnight). The modified plans are written back @ a file.

Simulations with théime allocation mutatoshow that the system converges despite the
random nature of time information mutation. This is due ® lgmarning framework of
the simulation which keeps good plans in its "brain" whilecdisling others. However,
two problems arise. First, visual inspection of departureetdistribution shows that
the stationary state found cannot be the global optimunwifrtitial plans are not close
to their optimal states (see Figure 4). This is because ofrthafficient exploration
within £30 min, although good activity durations and start times may behaway
from the initial solution. Second, the convergence speatlgitds an optimum which is
not the best possible) is unsatisfying. More, visual inipa®f the average fitness tells
it is still rising after >1000 iterations. This is far too mutor any practical use, since
one iteration takes about 40 minutes on a well equipped &G§U system. Simple
extension of the search range, edgf h for all time information, would probably find
a better optimum. Then, a multiple of the number of iteragiaras needed since the
search space would be fully enumerated bytime allocation mutatar

3.2 Implementation details

The idea is now to search new solutions in the entire seai@tesgnd find an optimum
in it using a scoring function. Here, the same utility funatias in the agent database is
used (see section 2.2).

For several reasons, the decision was made to use a GengtidtAin (GA) to find
good solutions in the sense of the utility function:

Experience The GA method proved to be successful in various experinienétivity
plan generation for individual agents or households (Crargpd Nagel, 2005;
Meisteret al, 2005b; Schneider, 2003). This paper is about the first aiteon
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integrate this approach into a multi-agent simulationeyst

Flexibility In the current setup of the module, a better time allocatmuictbe much
easier calculated. GAs are not the best choice to solvereanis problems like
this, they were designed to rather solve combinatorial lprab. A gradient-
based optimization procedure would probably be much fastewvever, the goal
is to extencplanomatto a comprehensive replanning module incorporating many
aspects of travel demand. Location choice, mode choice langdhoice of the
activity pattern are such combinatorial problems, whiaghraeant to be included
later.

The exact details gflanomatare as follows.

Input data and alternative creation

For each agent, the selected plan and the recently expedédravel time information
are read in. While former comes from the agent database, tiee taomes from the
result of the previous run of the traffic flow microsimulatidrhis information is struc-
tured in so-callegdventssmall data packages containing what agent did what at which
time in which place. From departure and arrival events, tténeet times can easily be
computed. In previous versions of planomat, different @gprsources for travel time
information were used (compare Meisgtral., 2005a).

The start time of the plan, that is the end time of the firswgtiis uniformly selected
between 00:00 and 24:00. The same is done for each activigitidn. All other at-
tributes are kept as they came from input (as describedegindirent state of the work
planomat only optimizes time allocation).

Recombination and mutation

The crossover operator recombines two existing plans tevaone by randomly choos-
ing start time and activity durations from one of the parenthe mutation operator
alters each time information in a certain range parameténvith themutation proba-
bility p,,u:-

10
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e A new start time is chosen by adding an amaouahiformly selected from range
S € [Pmut - —12h, Pt - 120]. Values that come before 00:00 (midnight) are reset
to that time.

e An activity duration is multiplied with a factad = ¢* with X being uniformly
selected from the rang® € [—p,ut/2, Pmut/2)-

After both the creation and the recombination/mutationrapens, the new plan is
stretched/compressed to a duration of 24 hours to be cotvipat@ its competitors
in the GA population.

Selection and output

Every time a new activity plan was created by the GA, it is eatdd with the scoring
function. Since the number of plans held in the GA populaéibaone time is constant,
good plans are kept while bad ones are dropped. After a fixethauof recombina-
tion/mutation operations, the optimization is canceletie Dest plan currently in the
population is chosen as a new strategy for the given agedtsargiven back to the
agent database.

GA parameters
Table 1 gives a brief overview of the various GA parameteasilave to be configured.

All these parameters have to be chosen according to theenafuhe problem to be
solved. This is often done on a gut level, so is in this case.

4. Canton Zurich Scenario

The scenario setup includes a regional definition of theystuda, the demand gener-
ation process, the specification of the traffic network anistaof assumptions about
activity-related behavior as well as temporal constraints

11
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Table 1: GA parameters

Variable  Description Value
popsize  Constant population size. 50
Ngen Number of generations. Here, if,, individu- 1’ 000

als were generated by the crossover/mutation oper-
ations, the optimization is canceled.
Dmut Probability that one element of an activity will mudnitial: 0. 30,
tate according to its respective mutation operator. exponentially
decreasing to
0. 07
Tonut Each time a new indivdual was inserted into the pop-
ulation,p,,.; is adapted. The highery,..;, the quicker
Pmut dECreases.
mindiff Minimum fitness difference between two individu9. 10
als. If a new plan with almost the same score is gen-
erated, it will be dropped in favor of the one that is
already present.

4.1 Study area: Canton Zurich

The case study used for testing gplanomatis a simulation of the Canton Zurich, the
biggest metropolitan area in Switzerland. The demand @g¢inerprocess, as well as
the framework used for it, is described in detail in Balratal. (2006).

First, a synthetic population of the Canton Zurich is geregtatising data from the
Swiss National Population Census. Itis a liskgdf’200'000 agents with individual at-
tributes like age or sex, and a hectare-based home loc#timk @nd Axhausen, 2004).
Each agent is assigned an activity chain based on the Swisod#nsus on travel
behavior (Rieser, 2004). These activities are distributegpiace by several location
choice modules (Marchal and Nagel, 2005). The network madedt for the assign-
ment with a microscopic traffic flow simulation is the Swisstidaal Traffic Network
model (Vrticet al,, 2002).

For test reasons, the traffic of only a 1% sample of the whodaggopulation is simu-
lated. In order to produce comparable results to full saenvanere 46% of alle agents
are simulated, the network capacity was reduced tgproz2%. So, some congestion

12
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Table 2: Activity parameter values

ACt|V|ty type abbreviation t* [h] tshonest.dur [h] 2flatestur tearliest.dp

home h 12 8 — —
work w 8 6 9: 00 —
work1l wil 4 2 9: 00 —
work?2 w2 4 2 — _
work3 W3 8 6 — _
education e 6 4 9:00 —
educationl el 3 1 9:00 —
education2 e2 3 1 — _
education3 e3 6 4 — —
shop S 2 1 — _
leisure I 2 1 — —

All activities have the same priority = 1.

The different work and education activity types can be argld as follows. If an activity chain includes
two work or educationactivities, it is assumed that their typical activity dimatis half the complete-
activity duration and will be renamaslork1 andwork?2 resp. educationlandeducation2 An example
would beh-wl-1-w2-h. If a work or education activity is not the first an the actvihain, it is
renamedwvork3 or education3without the desired start time at 9:00, but all other atteélsuequal. An
example of that would bk- s- W3- h.

occurs and sensitivity of timing decisions to experiencadel times can be observed.

4.2 Activity parameters and constraints

The scoring function requires several parameters, eitttesity or location specific.

Each activity is characterized by a typical duratibna mimimum duratiort ., sest.dur
and desired start/end timéS;cs;.ar, teariiest.ap- While the typical duration is a manda-
tory parameter to the utility function, the minimum duratiand desired time windows
are optional. Table 2 is a list of parameter values used ssttenario.

Furthermore, there exist temporal constraints for the @xaa of activities, represented
here by opening hours. An agent will fail to perform an atyiutside these opening
hours, and will have to wait instead. In this case, it doegaih any score or even loses

13
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Table 3: Opening hours as temporal constraints

Activity type opening time closing time
home f) — —
work (w, wl, w2, w3) 7:00 18: 00
education ¢, el,e2,e3) 7:00 18: 00
shop 6) 8: 00 20: 00
leisure () 6: 00 24: 00

some in case df,.;; < 0. The temporal constraints are an attribute of a specifitiiaci
In this setup, they are the same all over the modelled reggoalse more detailed data
about opening hours was not available yet. This is why th@geapactivity-specific in
Table 3.

For analysis, the activity chain types are summarized ineodroups:

education-dominated chain types heeh, heh

leisure-dominated chain types hl h, hl' | h, hl sl h

shop-dominated chain types hsh, hssh

wor k-dominated chain types hwh, hwl wh, hwswh, hwwh

other chain types hel h, hesh, hl eh, hl sh, hl wh, hsl h, hswh, hweh, hwl h, hwsh

5. Results

The results presented in this section recur on the probleatsatose with the usage of
the simple "dumb" replanning module (compare section 3.hjs | why each results
figure is of aplanomatvs. time allocation mutatokind.

Figure 3 shows the development of the average score acmahtile agent population.
Both curves show tendency towards a limiting value. Fomptla@omatsetup, the slope
is no more visible after 100 iterations, converging at anmaye score value 6£160€.
Thetime allocation mutatoiconfiguration has a rising curve still visible after >1000

14
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generations (not shown). It is not clear if it converges togame value. This improve-
ment is in the range of one-two orders of magnitude regarttiagequired number of
iterations.

Figure 4 shows the departure time distributions at the lmginof the simulation and
after 400 generations, for each setup. The main differemaethe distribution of the
leisure-dominated activity chain types. While in time allocation mutatosetup, most
leisure activities take place in the morning, thlanomatdistributes them all over the
day. The latter is the expected result, sifgisuretype activities are only constrained
within 6:00 and 24:00. One would expect a bigger evening gealeisure activi-
ties. It is not that pronounced because opening time contgrare probably too lax,
e.g. cinemas and bars usually don’t open at 6:00 AM but in ftexreoon, and also
close later. A similar effect can be observed for the shappiominated activity chain
types, where the arrival/departure times at/from the sggsgbute in the opening hour
window 8:00-20:00. Furthermore, the afternoon commutakpe more pronounced
(regard work-dominated activity chain types).

The suboptimal time allocation distribution in ttime allocation mutatosetup doesn’t
change after >1000 iterations (not shown). We think that thithe reason for the
suboptimal average score development. It has its cause imshfficient exploration
of timing alternatives only withint30 min per iteration. It is probable that the better
solution could have been found with the "dumb” module alsbefinitial distribution
of departure times and activity durations had been clost#rdstationary state. But as
we lacked data about realistic distributions, we assumatfarm choice of departure
time between 6:00 and 8:00 in the morning. But as the statyostate found should
be independent of the initial conditions, this demonssréte necessary step taken with
the introduction oplanomat

6. Discussion and outlook

6.1 System requirements

All following figures apply to a Pentium IV Xeon system, 2.4 g4 GB RAM, SuSE
Linux 9.2, gcc version 3.3.5. The entire simulation systeespnted here was run using
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only one CPU.

The most critical requirement of the currgoilanomatimplementation is computing
time, scaling linearly with the number of agents to be repégh The replanning per-
formance is atz100 agents/s. For the 1% Canton Zurich scenario describedandans
a runtime ofx13s. In the full scenario, where a fixed car-mode-share of 46%il
agents is assumed, replanning takes almost 10 minutese Fleasd-alone figures are
difficult to evaluate, since the goal is to minimize overahtime. Itis influenced by the
runtime of the external strategy modules, the simulatiomadfic flow, and the number
of iterations required for a satisfying level of convergenc

The traffic flow simulation used mainly scales with networkesionly little with the
number of agents (Cetin, 2005). In our single-CPU setup, gda815 minutes to
simulate the whole day (including 1/0). So, while in the 19%&dhe computing time
required for planomat can be neglected, it is of consideralzie when all car-driving
agents are simulated. The minimization of computing timeve as the number of
iterations required is a main focus of our further work. Clpanet al. (2006) perform
experiments with Evolutionary Strategies as optimizatreethod to reduce computing
time.

Memory requirements are no limiting factor to performarsiece optimization is done
agent by agent. Plans information as well as simulationteveformation are streamed,
which means 1/O data takes virtually no memory at all. Moshmagy is required by
the GA population of max. 50 activity plans which requitez1MB of RAM.

6.2 Improvement of the location choice concept

One upcoming modeling goal is the improvement of the locatiooice concept. The
basic difference will be that location choice for secondagtivities will be part of the
replanning process, instead of its currently limited ra@greprocess to initial demand
generation (Marchal and Nagel, 2005).

At first, we will improve the data basis. Up to now, the numbkowerall workplaces
in a spatial aggregate was assumed as predictor for thiy gidined there, regardless
of the activity type. This is insufficient because the fuoctl organization typical for
urban areas is not considered at all. We create an activigysit of facilities based on
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landuse information available on hectare-level for allt3ailand, called the Swiss Na-
tional Enterprise Census provided by the Swiss Federals8¢tatii Office (BfS, 2001).
Opening time windows will be no more activity-specific, batétion-specific. Data
about opening times still have to be imputed/revealed. Heunmore, the synthetic fa-
cilities will have an activity-specific capacity which inethiirst run will be proportional
to the number of workplaces. An open question is how to irellatation capacity
constraints into the agents’ decision making.

For each agent, a choice set of locations is generated. lderapproach based on
revealed activity spaces is chosen. Refeadtvity spaceas a continuous spatial rep-
resentation of the locations visited by a person in a cetiaia range. We will use ac-
tivity space generation algorithms developed in Vatal. (2005). It is then task of the
planomatto find the best location for each activity in the sense of ttwgiag function.
The complexity of the search space is thus extended with ssoalar dimensioactiv-
ity location Earlier GA experiments show that this task is feasiblé&aalgh it will take
more time than the comparably simple time allocation prob{€harypar and Nagel,
2005; Meisteret al, 2005b).
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Figure 2: Utility plot of example activity plan

200 U T T T T T T
plan — |
Udur """"""
| “trav
150 uWait
UIate.ar
early.dp
100 %short.dur
o
]
—_— 50 o
3
o
)
0
50
-100 i i

0 2 4 6 8 10 12 14 16 18 20 22 24
time of day [h]

The graphUy,,,, represents the plan score depending on time of day as tmsnzla canceled at that
certain time of day. One clearly sees positive utility ofidtt performance (log-shape graphs), the
various penalties (linear graphs starting on the x-zers)as well as the overall plan score yielded at
24:00.

The very low score value between 8:00 and 10:00 can be erglas follows: On one hand, only
the home activity and a small part of the work activity indhgithe (penalized) home-work trip were
performed. On the other hand, the penalties for early degli, ..., 4, and short activity performance
Ushort.dur are very hlgh

The activity parameters used here are listed in Table 2, lwisigpart of the scenario description in
section 4.

For explanatory reasons, in this figusg,,1y.ap = Bshort.aur = —6€/h, instead ob€/h.
Based on (Balmer, 2005, p.15 ff.).
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Figure 3: Comparison of average scores
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Figure 4: Comparison of departure times by activity chairetyp
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