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Abstract

The logging of GPS data is quickly becoming an important source of data
for travel behavior researchers. Post-processing these data requires to match
the GPS data stream to the coded map of the transportation network. The
output of the map-matching process is the identification of the routes that
were actually taken. This paper presents an innovative map-matching algo-
rithm that relies only on the GPS coordinates and on the network topology.
Examples are provided on a large data set for the Zurich area. The paper
demonstrates the efficiency of the algorithm in term of accuracy and compu-
tational speed.
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1 Introduction

The usage of Global Positioning Systems (GPS) is getting increasingly popular
among travel behavior researchers to collect reliable data [1, 3, 5, 9]. More specif-
ically, GPS data loggers allow to record accurately the spatial displacements of
travelers and to improve activity-based analysis by enhancing classical travel di-
aries. Off-the shelf devices available nowadays can record the position of a traveler
every second and for extended periods that span several hours or even days. The
computing power of GPS loggers only allows for a limited amount of real-time pro-
cessing. The raw data have to be downloaded and post-processed off-line at the
end of the measurement. Given their relatively low cost of set-up, large volumes of
data can be generated for a single study. In a companion paper [2], we describe how
2.5 millions of points were collected in a three week experiment to monitor driving
speeds in the Zurich area. The purpose was to measure network performances with
floating cars. Larger experiments led in Sweden and in Denmark [10, 4] recently
collected respectively about 250, 000 trips and 500, 000 trips during record peri-
ods from six months to two years. The size of the data available in these studies
amounts to a billion of GPS points. An important step of the post-processing of
the data consists in matching these points to the coded map of the transportation
network to identify the routes which were taken. Therefore, efficient map-matching
algorithms are required to handle such large data volumes in reasonable computa-
tion times. Intuitive methods such as nearest-node search or nearest-link search are
quite fast but do not insure the consistency of the whole route since they ignore
the correlation between subsequent points. This paper describes first an algorithm
that achieves high performances. The algorithm takes into account the network
topology to overcome the route consistency problem using the multiple hypothesis
technique. Second, tests are presented on the experiment in Zurich.

2 Problem statement

The goal is to identity the route taken by a traveler equipped with a GPS data
logger. Assuming that the traveler is moving along a transportation network, we
can restrict ourselves to a network representation of the spatial environment. The
network is coded as a set of nodes connected by directional links. A path is a set
of connected links. The map-matching problem consists in finding the path that is
the best estimation of the route that was actually taken by the user. There are two
sources of errors. First, the GPS data loggers have their own limitations depending
on the environment (e.g. canyon streets, tree canopies, etc.) and their accuracy.
Second, the coded network is but an approximation of the physical world: it can be
sparse because roads are missing and the description of the roads themselves (i.e.
curvature and location) has a limited resolution.

Most of the existing map-matching algorithms and their limitations have been re-
viewed and described in recent papers [8, 7]. It has been recurrently noted in these
papers that efficient map-matching should integrate the information about the net-
work topology. The multiple hypothesis technique (MHT) allows to keep track of
several positions or paths at once and to select eventually which candidate is the
best. MHT has been proposed by [6] for on-line map-matching with embarked GPS
logger and Dead Reckoning (DR) device. However, these previous works were more
focused on the accuracy than on the computational speed of the algorithms. The
aforementioned paper [4] recognizes that the algorithms developed so far are not
tractable for map-matching large data sets. Therefore, our concern is slightly differ-
ent from the existing literature. First, we assume in this paper that the only source
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of data concerning the traveler is a stream of 2D coordinates collected by a GPS
logger embarked in a car. In particular, we do not use a DR device as in [7, 6] and
we do not use information about the heading nor the speed of the vehicle. Second,
the measurement of the overall error as the distance between the GPS points and
the coded network is not transferable from one study to another, since it highly
depends on the resolution of the coded network. Therefore, the comparison of the
algorithms can only be performed on the same data sets. Ideally, the performance
of the algorithms should be measured as the ratio of routes that were correctly
matched, which in turn would require a tedious manual checking (e.g. using street
names). For these reasons, we focus only on the operational performance of the
algorithms, that is how much faster that real-time they can process large volumes
of data with reasonable matching errors (i.e. the routes are checked visually on
a map). Note that most embarked GPS navigation systems have map-matching
abilities. The algorithms are often proprietary and have different purposes and
constraints than we do. The processing power of these devices is limited but they
do not have to perform faster than real-time. As is, they are inadequate to our
problem.

To summarize, we have 1) a standard network representation of the transportation
system with nodes, directed links and “polylines” describing their curvature and
2) a stream of GPS coordinates recorded for every second. The problem is to find
the path in the network that is the closest to the GPS points and in a minimum
amount of computations.

3 Proposed algorithm

3.1 Distance between a point and a road segment

Let G (V,E) be the directed graph describing the road network. V is the set of
vertexes or nodes and E is the set of edges or links. Let Qi be the set of points
given by the GPS data stream i = 1..T . Each GPS point consists of a pair of
coordinates (xi, yi) and a time-stamp ti. To measure the distance between a GPS
point Q and an oriented link AB, we use the distance as introduced in [8]. Let Q′

be the projection of Q on line AB. The distance is defined as follows:

d (Q,AB) =
{

de (Q,Q′) if Q′ ∈ [AB]
min {de (Q,A) , de (Q,B)} elsewhere ,

where de denotes the euclidean distance. With this definition, dQ,AB = dQ,BA and a
point is equally distant from the two opposite directed links of a given road segment.
For this reason, a small shift perpendicular to the link direction is introduced,
according to the driving side of the studied area. Therefore, in the computation
of the distance, an oriented link AB is replaced by A′B′ where A′ = A + λ1⊥
and B′ = B + λ1⊥ and 1⊥ ⊥ AB, λ is chosen to reflect the average physical
distance between the middle of the road and the middle of the driving lanes (in our
application, λ = 3m). The computation of the distance between a point and a road
segment is illustrated on Figure 1 where Q,Q1 and Q2 are equidistant to AB.
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Figure 1: Distance between a point and a road segment
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3.2 Score of a path

Let P {E1, E2, . . . , Ep} denote the path composed of the p subsequent links E1, E2, . . . , Ep.
The absolute score F of path P in matching the sequence Qi is defined as

F =
p∑

j=1

T∑
i=1

d (Qi, Ej) δij , (1)

where δij = 1 if Qi was matched by link Ej and δij = 0 otherwise. The problem is
to find the path P ∗that minimizes F . The relative score Fr is defined as Fr = F

T .
Fr will be used as a surrogate for the estimation of the error of the algorithm. Note
that Fr is highly dependent on the resolution of the coded network. Each point is
matched by only one link of the path, so that

p∑
j=1

T∑
i=1

δij = T .

3.3 Initialization

The algorithm is initialized by finding the set S of the N nearest links from the first
GPS point Q1. Note that we could use in practice a few more GPS points so that
the initialization is more robust and less dependent on potential initial error in the
measurement. For each link in the set, we create a one-link path with the initial link.
The path P1, P2, . . . , PN are ranked according to their scores: F1 ≤ F2 ≤ . . . ≤ Fn.
Technically, they are stored in a sorted set. Alphabetical rank is used to discriminate
paths that are different but that have the same score. Searching for the nearest link
can be accelerated using a quad-tree storage for the links. Experiments done on a
network with 400, 000 links showed performances of about 1 million of points per
minute on a PC clocked at 2Ghz.

3.4 Breaking routes into paths

In most cases, a whole route will not be matched by a single continuous path because
of interruptions in the GPS data stream. These interruptions can be due to tunnels,
tree canopy, poor signal, etc. Therefore, a route will often be matched by a sequence
of paths. We do not address here the problem of connecting these paths together.
The outer loop of the algorithm processes the GPS points sequentially. Assume Qi

is the next data point to be processed. If the GPS device is searching for the signal,
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the point is discarded. If de (Qi−1, Qi) is bigger than a given threshold (e.g. 300
meters) or if ti−1−ti is longer than a given period (e.g. 30 seconds), the matching is
stopped for the current path and a fresh initialization is started with Qi. Obviously,
this procedure could be improved to be less sensitive on outliers.

3.5 Following the network topology

Given a new point Qi, the following procedure is applied for each of the path P in
the set S.

1. Assume that Qi is matched by the last link Ep, that is δip = 1.

2. Update the score of path P using (1).

3. Insert P in a new sorted set V .

4. Check if the route has reached the next intersection (i.e. the destination of
Ep).

5. If yes, create the new paths PFS
k that correspond to the forward star of Ep.

6. Update the score of paths PFS
k using (1).

7. Insert PFS
k in the new sorted set V .

When the condition is met on step 4, new paths are created depending on the
network topology. However, it is not obvious to determine if the vehicle has reached
the end of the last link. We use the bird distance covered by the GPS points since
the beginning of Ep to determine if the vehicle might have cruised the whole link.
Let Qp0 the first point matched by Ep and L (Ep) the length of Ep. If the following
condition holds,

i−1∑
k=p0

de (Qk, Qk+1) > αL (Ep) (2)

then we assume that the vehicle has reached the destination of Ep. A problem arises
if a vehicle perform a u-turn in the middle of a long link. The parameter α = 0.5 is
introduced for that reason.

Let FS (Ep) be the set of downstream links from Ep (forward star). If the condition
(2) holds, a new path PFS

k is created for each of the link in FS (Ep). These children
paths differ from their ancestor since they have one more link: Ek

p+1 ∈ FS (Ep)
where Ek

p+1 is the last link of path PFS
k . The children paths are initialized with the

last point so that δip+1 = 1. The path creation mechanism is represented on Figure
2 where a vehicle is driving from O to D. At the intersection A, three children
paths are created (P1, P2, P3). Clearly the first points close to A do not allow
to discriminate which direction has been taken. Indeed, the first points suggests
AC was the chosen direction. Obviously, the direction was AD but the network
description was not accurate enough to describe the curvature of the road section.
Initially, the score of P3 is better than that of P2. However, as more points are
added, the score of P2 will dominate P3 and P1 in the end.
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Figure 2: Path creation at intersections
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3.6 Maintaining a set of candidate paths

Children paths are inserted into the sorted set V and ranked according to their
score. Consequently, V has more elements than S. When Qi is processed, S is
emptied and only the N best elements of V are inserted into S. This avoids that
the sorted set S grows indefinitely. In practice, the branching and the path creation
can happen for a range of different Qi as soon as the condition (2) is met. The range
depends on α. Therefore, there are generally several instances of paths P1, P2, P3

in the S, depending on the point Qi when the branching occurred. Eventually, the
less efficient paths are discarded. The sorted set S has to be large enough to keep
track of unlikely trajectories that might turn to be correct ultimately as illustrated
on the previous example. Intuitively, the number of candidate paths to maintain is
a function of the resolution of the coded network.

When the last point Qi is processed, the best path from S is kept as the result of
the map-matching process. Similarly, when the route is broken and a new path has
to be started, only the best path from S is kept as the best matching part for the
previous GPS points. The flow-chart of the whole algorithm is presented on Figure
3. It depends on two parameters: α and the size of the set of candidates N .

4 Results

Three vehicles were equipped with GPS data loggers to monitor speed in the Zurich
area. The drivers were given pre-defined routes supposed to cover most of the major
roads and drove for three weeks. The routes include motorway sections as well as
urban streets. About 2.5 millions of GPS data points were collected. Two coded
networks were available for the map-matching process: a low resolution network
(4.5k nodes and 11k links) used by the local transport agency for road planning
and a high resolution network (166k nodes and 411k links with polylines) bought
from Navtech. The latter contains about every single street of the studied area.
The algorithm was coded in Java and run on a PC equipped with an Intel Pentium
4 processor clocked at 2.5Ghz.

4.1 Computational speed

A first experiment is performed on a single vehicle tracking which accounts for about
10% of the data (231k GPS points). The algorithm decomposed the whole journey
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Figure 3: Flow-chart of the map-matching algorithm
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Table 1: Performance of the algorithm for the high (H) and low (L) resolution
networks.. The first accuracy is the score for the overall route. The second accu-
racy corresponds to the number of points whose distance is bigger than twice the
maximum accuracy achievable on the corresponding network (resp. 10m/pt and
50m/pt). The real-time ratio (RTR) is computed as the CPU time divided by the
acquisition time (1pt/s).

N Accuracy [m/pt] Accuracy [%] CPU time [s] RTR [k]
H L H L H L H L

10 435.8 56.8 55.2 8.5 56 12 4.2 19.5
15 15.9 53.2 18.2 8.5 58 14 4.0 16.8
20 13.1 50.0 10.9 4.4 62 18 3.8 13.0
30 11.3 49.8 4.5 4.4 70 21 3.4 11.2
40 10.6 49.8 3.6 4.4 78 31 3.0 7.6
50 10.5 49.8 3.3 4.4 85 37 2.8 6.3

100 10.3 49.8 3.3 4.4 122 72 1.9 3.2

in 84 paths. Results reported in Table 1 show that N = 30 yields reasonable results
in short computing times in both cases. Increasing N further improves the quality
of the matching but marginally. The computation time is roughly proportional to
log (N). This is consistent with the time required to sort the candidate paths in the
sets S and V . Moreover, the algorithm scales very well with the size of the network.
The computational performances are such that it takes approximately one second
of CPU time to process a one hour journey even with the high resolution network.
Therefore, the algorithm is suitable for processing entire databases consisting of
thousands of trips in acceptable wall clock times.

4.2 Accuracy

The maximum accuracy that can be achieved for the high resolution network is
about 10 m/pt. This is consistent with the resolution of the GPS device itself.
The accuracy of the 84 individual paths is plotted as a function of the number of
points matched per paths on Figure 4 for different values of N for the high resolution
network. First, the distributions are quite similar for N = 30 and N = 100. Second,
for N ≥ 30, outliers with poor accuracy are mostly short paths with less than two
hundred points (e.g. less than three minutes). Consequently, using N ≥ 30 seems
adequate for a speed monitoring experiment or for the analysis of route choice.

4.3 Resolution

The map-matching is compared for the two networks in Figure 5 on the same area
and with the same GPS stream using N = 30. It can be seen that the path
on the high resolution network captures the whole journey, including u-turns and
stops. On the low-resolution map, the path seems to follow the most likely route.
Whenever some network part is missing, the algorithm sticks to the closest roads
available (see the two circles on the left). However, the algorithm can also miss some
links (see the circle on the right, the GPS points are not covered by a path) when
there is an intermediary stop in some missing part of the network. As one would
expect, the accuracy of the output highly depends on the quality of the network
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Figure 4: Path accuracy as a function of the number of matched points
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description. A practical problem encountered with the low resolution network in
the speed monitoring experiment [2] is that trips initiated and ended at locations
that correspond to traffic zones. As in most planning networks, the zone connectors
are artificial links that do not correspond to physical road segments. The problem
arises if there is not any zone connector in the vicinity of the actual trajectory
of the GPS points. In that case, points are wrongly matched to the “physical”
network and the information about the connection to the traffic zones might be
lost. A potential solution might be to over-connect automatically the traffic zones
to ensure that they can be reach from different directions.

4.4 Limitations

The algorithm depends on two parameters α and N . Running the map-matching
on the whole data set has revealed that the accuracy of the algorithm can be quite
dependent on the number of candidates N so that it is difficult to recommend a
default value. Indeed, it can be seen from Table 1 that the accuracy does not
increase smoothly with N . Figure 6 shows how the matching for N = 11 and
N = 12 can behave quite differently. In the first case, the algorithm obviously
misses its mark while in the second case the matching looks almost perfect. (Note
that the discrepancy at the top of the map is due to the fact that polylines were not
used in the graphical output.) Ideally, N should not be preset but adapted during
the map-matching process. In practice, the algorithm is sufficiently fast and one
can increase N manually after a first run if the accuracy that was achieved was not
good enough. As noted above, increasing N increases the computation time only
logarithmically.

The sensitivity on α has been only briefly tested and will not be reported here since
a potential improvement of the algorithm is to replace equation (2) with a more
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Figure 5: Map-matching with high and low resolution networks. GPS points are
blue solid lines, the matched path is the green dashed line.

(a) Low resolution

(b) High resolution
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realistic condition. In practice, α = 1 constraints the path search too strongly and
causes errors when vehicles perform u-turns in the middle of a road segment. On
the opposite, α ' 0 increases considerably the number of paths that are created.
It also leads to unrealistic numbers of u-turns as GPS points can be alternatively
closer to the left or right side of a given road segment. In practice α = 0.5 yields
reasonable results. Obviously, more elaborated -though slower- strategies can be
implemented to replace equation (2).

5 Conclusion

A new map-matching algorithm has been developed that produces routes that are
fully consistent with the coded transportation network. The core idea of the algo-
rithm is to maintain a set of candidate paths as GPS data are fed in and to update
constantly their matching scores. Despite its relative simplicity, the algorithm has
proved to be very efficient at handling huge volumes of data. Its computational
speed is in the order of magnitude of 1, 000 times faster than the collection time
(2, 000 GPS points/s). This implies that the map-matching of an average car trip
can be performed every second and that entire trip databases could be processed in
reasonable amount of times. Nevertheless, the efficiency of the algorithm depends
on two parameters and is sensible to their variation. Further efforts will be dedi-
cated to improve the robustness of the algorithm in that respect. Turn prohibitions
at intersections could easily be taken into account as well. Finally, it remains to be
tested if the algorithm is transferable to other modes, namely biking and walking
modes which are less constrained by a network representation.
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