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Abstract

Safety is still the main issue of autonomous driving, and in order to be globally deployed,
they need to predict pedestrians’ motions sufficiently in advance. While there is a lot
of research on coarse-grained (human center prediction) and fine-grained predictions
(human body keypoints prediction), we focus on 3D bounding boxes, which are reasonable
estimates of humans without modeling complex motion details for autonomous vehicles.
This gives the flexibility to predict in longer horizons in real-world settings. We suggest
this new problem and present a simple yet effective model for pedestrians’ 3D bounding
box prediction. This method follows an encoder-decoder architecture based on recurrent
neural networks, and our experiments show its effectiveness in both the synthetic (JTA)
and real-world (NuScenes) datasets. The learned representation has useful information to
enhance the performance of other tasks, such as action anticipation. Our code is available
online. 1
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1 Introduction

Predicting the future location of a pedestrian is key to safe-decision making for autonomous
vehicles (AVs). It is a non-trivial task for AVs because humans can choose complex paths
and move at non-uniform speeds. Furthermore, AVs should predict a pedestrian’s location
sufficiently in advance to react accordingly. Consider a scenario where a self-driving car
identifies a person standing on the sidewalk near an intersection. If the vehicle can predict
the pedestrian’s future locations, it can better decide when to stop to ensure pedestrian
safety and not be too conservative. In the application of AVs, there are different levels of
pedestrian motion prediction (coarse or fine-grained).

Predicting a sequence of future center positions (x-y coordinates) given a set of observed
positions were widely studied in the literature by model-based approaches Helbing and
Molnar (1995); Pellegrini et al. (2009) and data-driven approaches Kothari et al. (2021);
Saadatnejad et al. (2022); Bahari et al. (2021); Mohamed et al. (2020) to name a few.
However, the coarse-grained information is insufficient for an AV to make a safe planning
decision without unnecessary cautions. Some works predict fine-grained human motions
such as body keypoints. Indeed, instead of predicting 1 point per pedestrian, they predict
17 or more keypoints Parsaeifard et al. (2021); Cao et al. (2020); Wang et al. (2020).
Considering this high-dimensional complex data, it is hard for the predictor to accurately
forecast for long periods in real-world settings. Note that in most real-world applications,
human keypoints would not be readily available but would need to be estimated by another
model first, which could be noisy. Another line of research predicts future center locations
(x, y) along with the width and height (w, h) of humans given the past information. We
refer to this task as the bounding box prediction Bhattacharyya et al. (2018); Styles et al.
(2020); Bouhsain et al. (2020). It provides a strong high-level intermediate representation
of human motions without modeling unnecessary details for AVs. Thus, it can be used for
longer prediction horizons in the real world. Note that it is easier and more accurate to
estimate bounding boxes Park et al. (2021).

Most of the research in predicting pedestrian motions is in two dimensions (2D), which
is likely due to the abundance of datasets that provide comprehensive 2D annotations
of pedestrians in the wild. For instance, the 2D Joint Attention in Autonomous Driving
(JAAD) dataset provides bounding box annotations from the vehicle’s egocentric view
Rasouli et al. (2017). 3D information can capture more complexities of human motion and
provide better estimates of pedestrian location and size for AVs, however, it requires more
costs compared to 2D. Recently, with the advancements in devices and data collection, few
datasets with full 3D annotations of pedestrians in real-world scenarios became accessible





     

Caesar et al. (2020); Kim et al. (2019). In addition, we can benefit from some simulated
synthetic 3D datasets, as they provide 100% accurate annotations. They use simulated
environments to provide 3D annotations automatically Fabbri et al. (2018).

This project tackles the problem of predicting pedestrian 3D bounding boxes (x, y, z, w, h, d).
We propose a simple yet effective encoder-decoder Long-Short Term Memory (LSTM)
network that has two encoders and two decoders similar to Bouhsain et al. (2020), both
of which are components proven to be effective for multiple computer vision tasks. The
encoder comprises two parallel LSTMs to process 3D bounding box locations and velocities,
and the decoder has two LSTM, one for future 3D bounding box prediction and the
other for attribute detection. We demonstrate the effectiveness of the model in both
synthetic and real-world datasets and the usefulness of the learned representation in action
anticipation. With this research, we encourage the community to conduct more research
in human 3D bounding box prediction.

2 Method

The proposed network is a sequence to sequence LSTM model called the Position-Velocity
LSTM (PV-LSTM), as it encodes both the position and the velocity of the 3D pedestrian
bounding box, see Figure 1. The input to the network is the observed speed and position
of the 3D bounding box center along with its weight, height, and depth. The output is
the predicted speed of the 3D bounding box elements, which can then be converted into
a corresponding absolute position. The network consists of LSTM encoder-decoders for
position and speed, followed by a fully connected layer. Given a sequence of bounding
boxes of a single pedestrian (pt−Tobs+1, ..., pt) corresponding to the time-steps or frames
(t− Tobs +1, ..., t) in a video sequence, the network outputs the next sequence of bounding
boxes (pt+1, ..., pt+Tpred

) at the following time-steps (t+ 1, ..., t+ Tpred). The 3D bounding
box that encompasses a pedestrian at time step t is represented by the coordinates of its
center and its width, height, and depth pt = (xt, yt, zt, wt, ht, dt).





     

Figure 1: The proposed encoder-decoder architecture
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2.1 Bounding box velocity encoder

The bounding box velocity encoder LSTM enc
v encodes the velocity of the observed bounding

boxes. The velocities are represented as the difference between successive pairs of bounding
box centers and sizes, where vt = (∆xt,∆yt,∆zt,∆wt,∆ht,∆dt) = (xt−xt−1, yt−yt−1, zt−
zt−1, wt − wt−1, ht − ht−1, dt − dt−1). Given the observed velocities as input, the LSTM
encoder computes the hidden state of the velocity vt as time t using:

hvt = LSTM enc
v (hvt−1, vt). (1)

2.2 Bounding box position encoder

The bounding box position encoder LSTM enc
p encodes the positions and dimensions of the

observed bounding boxes. It takes the observed bounding box information (pt−Tobs+1, ..., pt)

and outputs the updated position hidden state pt at time t using:

hpt = LSTM enc
p (hpt−1, pt). (2)





     

2.3 Bounding box velocity decoder

The bounding box velocity decoder LSTMdec
v is used to predict the next sequence of

bounding box velocities v̂t+1 = (∆x̂t+1,∆ŷt+1,∆ẑt+1,∆ŵt+1,∆ĥt+1,∆d̂t+1).

First, the hidden position and velocity states are grouped into one hidden state ht which
combines all the features:

hht = hpt ⊕ hvt. (3)

Then, the predicted velocity at time t+ 1 is calculated using:

ĥht+1 = LSTMdec
v (hht, vt),

v̂t+1 = FC(ĥht+1),
(4)

where hht is the initial hidden state, vt is the last observed velocity, and FC represents
the fully connected layer. The following velocities are then found iteratively. Then, it
is straightforward to compute the absolute predicted bounding boxes given the initial
absolute coordinates of the bounding box at time t.

2.4 Attribute decoder

The attribute decoder LSTMdec
a is used to predict the next sequence of attributes

(ât+1, ..., ât+Tpred
). The architecture is similar to the previous decoder except that the

output is passed through a softmax layer. The aim of this decoder is to have accurate
attribute anticipation if labels are provided in the training dataset.





     

3 Experiments

3.1 Datasets

Joint Track Auto (JTA) Fabbri et al. (2018): a synthetic dataset for pedestrian
pose estimation and tracking in urban scenarios made from photo-realistic video game
Grand Theft Auto V (GTA). It includes 512 videos, where 256 were used for training,
128 for validation, and 128 for testing. Each video is 30 seconds long with 30 frames
per second (fps), making it a large dataset. The dataset provides the 3D coordinates of
humans’ keypoints in meters in the camera coordinate system. The 3D bounding box
information was extracted from the 3D joint data for each pedestrian in each frame.

The dataset includes both indoor and outdoor scenes featuring many pedestrians. Most
of the video sequences are recorded with a stationary camera from various locations with
different viewpoints. There are a few sequences recorded with a rapidly moving camera.
The observation length is 0.5 seconds, and the prediction horizons are 0.5 seconds and 2

seconds.

NuScenes Caesar et al. (2020): a large-scale real-world dataset of 1000 driving
scenes collected in the urban cities of Boston and Singapore, each 20 seconds long with 2

fps. 850 scenes were manually annotated for 23 object classes, such as pedestrians and
vehicles, and includes visibility, activity, and pose attributes. These were divided into
a train/validation/test split of 550/150/150 sizes. The other 150 scenes that are not
annotated were not used.

The bounding box information is provided in the coordinate system of that specific camera.
Note that the vehicle is mostly stationary, such as stopped at a traffic light or parked,
during the collection of the scenes, but there can still be minor movements from frame
to frame within each scene. The observation length and prediction horizon are both 2

seconds.





     

3.2 Evaluation Metrics

The Average Displacement Error (ADE) and the Final Displacement Error (FDE) are used
to evaluate the performance of the predicted bounding box center predictions compared to
the ground truth. In addition, to have a better estimate of 3D prediction performance, we
compare the volume of the predicted 3D bounding box and the ground truth and compute
the Average and Final Intersection volume Over Union (AIOU, FIOU) between them.

3.3 Implementation Details

The network was implemented in PyTorch and trained on two NVIDIA GTX-1080-Ti
GPUs. An Adam optimizer was used with a learning rate scheduler with the starting
learning rate of 1e− 3, a reduction factor of 0.1, patience of 10, and a threshold of 1e− 8.
The training is done for 100 epochs with Mean Squared Error (MSE) loss for the 3D
bounding box decoder and cross-entropy loss for the attribute decoder. Our model uses
one-layer LSTMs with hidden layers of size 512 for both the encoder and the decoder.
Other details can be found in the source code.

3.4 Baselines

1. PV-LSTM: the proposed method
2. P-LSTM: excluding the velocity encoder of the proposed method. Indeed, only the

velocities of bounding boxes are fed and predicted.
3. Zero velocity (Zero-Vel): a simple baseline to keep the last observed bounding

box as the prediction for future frames. It has been shown that this baseline is a
hard-to-beat baseline that has outperformed a large number of models in motion
prediction Martinez et al. (2017); Fragkiadaki et al. (2015).

3.5 Results

The qualitative results on the JTA dataset on short and long horizons are presented in
Table 1. It shows the superiority of the proposed method (PV-LSTM) over the baselines





     

with AIOU/FIOU of 0.6410/0.4809 for short and 0.3804/0.1843 for long prediction horizon.
In addition, it shows that excluding the velocity encoder degrades the performance.

Table 1: Quantitative results on JTA dataset. For ADE/FDE, the lower the better and
for AIOU/FIOU, the higher the better.

prediction horizon = 0.5 sec prediction horizon = 2 sec

Model ADE FDE AIOU FIOU ADE FDE AIOU FIOU

Zero-Vel 0.6168 1.1327 0.3306 0.1792 1.8364 3.5263 0.2268 0.1778
P-LSTM 0.2436 0.4440 0.5762 0.4063 0.6409 1.2468 0.3281 0.1431

PV-LSTM 0.2187 0.4015 0.6410 0.4809 0.5942 1.1705 0.3804 0.1843

Qualitatively, the predicted bounding boxes tend to be close to the ground truth bounding
boxes, as shown in Figure 2. The network can predict accurately when a pedestrian
is standing. However, it sometimes misinterprets the speed at which the pedestrian is
moving, causing the predicted bounding boxes to either lead or lag the ground truth.

Figure 2: Qualitative results on JTA dataset. From left to right, every 4 frames of
predictions are depicted. The green is the ground truth and the red is the predicted
bounding box.

The performance of the model on the NuScenes dataset is shown in Table 2. AIOU and
FIOU scores are lower compared to the JTA dataset, and it may be caused by fewer





     

observations (only 4 frames) compared to the JTA dataset. For example, the network
seems to have more difficulties predicting the bounding boxes of pedestrians that are
further away from the camera.

Table 2: Quantitative results on NuScenes dataset. For ADE/FDE, the lower the better
and for AIOU/FIOU, the higher the better.

prediction horizon = 2 sec

Model ADE FDE AIOU FIOU

Zero-Vel 4.3645 6.9420 0.0843 0.0652
P-LSTM 1.0944 1.9851 0.2515 0.1100

PV-LSTM 0.9945 1.8116 0.3059 0.1588

Figure 3: Qualitative results on NuScenes dataset. From left to right, all predictions are
depicted. The green is the ground truth and the red is the predicted bounding box.

Qualitative results show that the network successfully tracks the location of pedestrians in
many instances. The network usually accurately predicts the locations of people, as shown
in rows 1-3 in Figure 3. One unsuccessful example is shown in the last row of Figure 3
where the predicted 3D bounding boxes tend to drift far away from the ground truth.

On the NuScenes dataset, there are annotations for human actions. Specifically, attribute
labels indicate whether a pedestrian is moving, standing, or sitting/lying down. To





     

validate our claim that the learned representation is also useful for other tasks, we predict
the 3D bounding box along with action (multi-task PV-LSTM) and compare it with the
network when there is no 3D bounding box prediction decoder (single-task PV-LSTM).
We balanced the data for better training, and the network was penalized only by the final
prediction. The results are in Table 3. The multi-task model has more than 2% higher
accuracy in action anticipation.

Table 3: Action anticipation accuracy on NuScenes dataset.

Model action prediction

single-task PV-LSTM 80.8%
multi-task PV-LSTM 82.9%

4 Conclusion and Future Work

Predicting pedestrian motion and actions in the wild continues to be an essential topic for
the advancement and widespread adoption of autonomous vehicles. Most research in this
area is focused on 2D predictions using trajectories, pose keypoints, or bounding boxes.
However, data in 3D can provide more information on the pedestrians for autonomous
vehicles. Here, we proposed an encoder-decoder LSTM network for 3D human bounding
box predictions. It can provide a wealth of information on pedestrian location and size in
the near future in 3D so that autonomous vehicles can make better and safer decisions.
We showed that the learned representation is also helpful for action anticipation.

With the emergence of more 3D datasets for various autonomous driving tasks and more
annotations, the usefulness of the learned representation on other tasks such as pedestrian
crossing intention detection can be investigated. This framework can also be extended to
other agents such as vehicles on the road and other datasets in future work. In addition,
modeling the camera movement explicitly and excluding it from human motions are left
for future studies.
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