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Abstract

An agent-based transport modelling framework is extended to predict the impact of
working from home on future travel demand in Switzerland. This is done by selecting a
proportion of employed persons to work from home and letting them reschedule their daily
mobility choices. The rescheduling includes activity destinations, timings, and transport
modes. The contribution of the presented work is threefold: We introduce (i) individual
preferences towards working from home based on socio-demographic, household, as well as
workplace attributes; (ii) realistic responses of the selected agents to changing commuting
behaviour with a dynamic rescheduling of their daily activity patterns. Lastly, (iii) we
demonstrate the sensitivity of the framework on both individual as well as aggregated
statistics. The sensitivity analysis suggests that people tend to consume less time for
travelling on working from home days, while the number of trips remains constant.
Aggregated results of the model indicate that the passenger distance travelled in trains
drops by 8.3% when working from home increases by 15%, assuming no other behavioural
changes. Once the empirical basis is available, SBB plans to integrate other changes such
as reinvestment of commuting time savings or relocation of households into the model.

Keywords
working from home, post-pandemic commuting, activity-based demand model, agent-based
simulation





        

1 Introduction

Planning for future rail infrastructure, efficient service concepts, as well as rolling stock
considering all possible changes (e.g., in population, policy, or technology) relies on
quantitative forecasts of travel demand. The COVID-19 pandemic has caused a major
disruption in mobility behaviour and poses a key challenge to predict travel demand
(Jain et al., 2022). Swiss Federal Railways (SBB) expect a substantial mid- to long-term
impact (2025 onwards) particularly on commuter flows. The main driver of this change
in commuter mobility is assumed to be working from home (WfH), which has become
increasingly popular and accepted during the pandemic (Erath and Mesaric, 2021). This
means that the pandemic is expected to be a long-term catalyst for a continuing trend
towards more flexible working arrangements (Ravalet and Rérat, 2019).

To predict those kind of changes, SBB applies the modelling landscape SIMBA (Scherr
et al., 2018). SIMBA comprise a wide range of tools to support company-wide investment
decisions (short-, mid-, and long-term). One tool to predict future travel demand in
Switzerland is the agent-based transport model SIMBA MOBi (Scherr et al., 2020a). The
agent-based (or microscopic) model characteristics allow to treat mobility as individual
decisions across many interwoven choice dimensions. Agent-based models like SIMBA
MOBi afford a high-resolution representation of travel behaviour as they simulate each
traveller as an autonomous decision-making unit and consider full consistency in time and
space over a time period (e.g. a 24h-day) for each individual (Rasouli and Timmermans,
2014; Castiglione et al., 2015).

In this paper, SIMBA MOBi is extended and applied to predict the impact of WfH on
mobility behaviour with a particular focus on rail demand. The extension includes a
behavioural model for WfH, which computes the relative likelihood of having the possibility
to WfH based on individual preferences for each agent. Then, an overall probability for
WfH is introduced to select a proportion of employed agents who are not intending to
travel to the workplace on the simulated day. For the selected agents who are planning to
WfH, the activity-based demand model MOBi.plans then reschedules their daily mobility
choices. Finally, the updated mobility schedules are simulated using the agent-based
transport simulation MATSim software (Horni et al., 2016). The results allow to quantify
the impact of WfH on decisions about the number of trips, secondary destinations as well
as modes of transportation. Also, we can demonstrate the strength of the agent-based
modelling approach by analysing model sensitivities on both individual as well as on
aggregated levels. This helps SBB to have a picture of a future with much uncertainty as
well as with rapidly changing trends and assumptions.





        

The paper is structured as follows; First, a brief review of recent approaches to model
WfH behaviour especially in combination of activity-based demand models is given. Next,
we introduce the methodology, including the behavioural model to simulate decisions
about WfH as well as the integration of those decision into the SIMBA MOBi modelling
pipeline. This framework is then applied to Switzerland scenario of the year 2050. Finally,
the impact of WfH on several individual and aggregated statistics is presented.

2 Background

The main motivation driving the transition from traditional aggregated models to micro-
scopic or activity-based demand models has been stated to be the lack of behavioural
realism in the traditional approach, which does not allow for forecasting new policies such
as congesting pricing, teleworking and ride-sharing incentives (Rasouli and Timmermans,
2014). The implication is that activity-based models are well suited to predict teleworking
behaviour. Early approaches to microscopic travel demand modelling were proposed in the
1990s (Axhausen and Gärling, 1992). For a more detailed overview of later advances in
activity-based transport modelling, we direct the reader to reviews provided by Bowman
(2009) and Castiglione et al. (2015).

The combination of WfH and transport planning appears in a number of articles in the
literature. Already in the earlier days of the internet, Salomon (1986) investigates the
interactions between telecommunication technologies and travelling. The work concludes
that the net effect of the technology may be neutral. There are social and psychological
reasons (e.g., the need for fact-to-face interactions or rebound effects such as more leisure
trips) for doubting that teleworking will substitute travel. A bit later, Mokhtarian (1991)
sees the need to clarify the term telecommuting. The work groups telecommuting into
clusters based on the attributes commute reduction and remote management. In this
article, we focus on home-based telecommuting for all kind of commuting distances. We
refer to this type of telecommuting as working from home (in short: WfH ).

Ravalet and Rérat (2019) analyse the WfH behaviour as reported in the Swiss mobility
and transport microcensus MTMC (BfS and ARE, 2017). They found that the proportion
of telecommuters was increasing from 2010 to 2015 in Switzerland. Also, they see
dependencies between residential relocation and WfH as it may increase tolerance for long
distance commuting. Overall, WfH may lead to an increase of distance travelled over a





        

working week according to Ravalet and Rérat. A similar analysis has been done by Stiles
and Smart (2021). They investigate the influence of flexible working arrangements in the
United States from 2003 to 2017. Their findings show that WfH on a day only decreases
daily travel duration and increases the likelihood of avoiding peak-hour travel.

Several models to quantify preferences towards WfH have been presented in the literature.
Mannering and Mokhtarian (1995) estimate a multinomial logit model that differentiates
between two levels of telecommuting frequency. The most important variables explaining
the choice of frequency of WfH are the presence of small children in the household, the
number of household members and the number of vehicles in the household. Mokhtarian
and Salomon (1997) introduce a binary logit model of the preference towards WfH. The
explanatory variables in their model include attitudinal (such as personal benefits, family,
stress or workplace interactions) and factual information. They conclude that attitudinal
measures play an important role on the choice of WfH.

Walls et al. (2007) estimate an ordered probit model to predict the frequency of WfH.
They found that telecommuting tends to increase with age of the employee and degree of
education. At the same time, quantitative effects of job characteristics were found to be
at least as important as demographic factors. Singh et al. (2013) analyse the precise count
of telecommuting days per month using an generalised ordered-response model. In their
model, they see the importance of considering the possibility to WfH as well as spatial
or built environment variables. In Switzerland, Danalet et al. (2021) propose a binary
logit model to estimate preferences towards the possibility to WfH. They include variables
such as the sector of the workplace, socio-demographic attributes as well the employment
status. Also, they use the estimated parameters to make predictions about the proportion
of persons who have the possibility to work from home in the years 2030, 2040 and 2050.
Their results show that the proportion may increase from 28% in 2015 to around 38% in
2050. For another comprehensive review of existing models dealing with WfH, we refer to
Asgari and Jin (2015).

The previously mentioned articles did not link their estimated choice models to actual
travel behaviour such as average commuting distances, total daily distance travelled, or
choices about transport modes. In contrast, Choo et al. (2005) quantify the impact of
telecommuting on passenger vehicle-distance travelled. Their models show that WfH
reduces vehicle-distance travelled. Later, Moeckel (2017) presents a conceptual framework
to combine choice dimensions such as telecommute, household relocation as well as
tendency to add non-work trips. The crucial part of the framework are travel time budgets
for every household. E.g., spending less time commuting leads to more time for travelling





        

to leisure activities. Shabanpour et al. (2018) apply a model for WfH within an activity-
based model. The model suggests a significant decrease of vehicle-distance travelled when
doubling the number of employed persons having a flexible working agreement.

The COVID-19 pandemic caused a major increase in WfH (Jain et al., 2022; Erath and
Mesaric, 2021). The lockdowns ordered to prevent the spread of the virus have forced many
employees into flexible working arrangements. Jain et al. (2022) conducted a large survey
to investigate the post-pandemic impact of WfH behaviour. According to their survey, the
preference to WfH in the longer term will be crucially influenced by perceived behavioural
factors such as job type, technology, but also subjective norms such as employer and
family support. Attitudes will only have a weak impact on future intention to WfH, a
finding which contrasts with previous research. They conclude that WfH can be expected
to be 75% higher than before the pandemic. Erath and Mesaric (2021) conducted a survey
during the COVID outbreak for two different institutions. The employees in the first
company report a proportion of work from home of 10% before the pandemic, which is
reported to increase to 30% after the pandemic. The responses of the second company
show an increase of WfH from 6% to 35% after the pandemic given that the employees
have free choice (no restrictions from the employer).

Overall, a number of models have been introduced to analyse and to quantify preferences
towards WfH. There are only few attempts to predict the mobility behaviour that is induced
by WfH reported in the literature. Also, the literature about the long-term influence of the
COVID-19 pandemic on WfH is vague. Having this wide range of assumptions, outcomes
as well as significant variables, the contribution of this work is the implementation and
application of a flexible, agent-based framework that allows to predict a range of different
WfH scenarios. A range of scenarios is crucial in an unclear future with much uncertainty
and rapidly changing empirical basis. The agent-based approach contributes to realistic
individual responses to changing commuting behaviour, since agents reschedule their daily
activity patterns including activity destinations and timings. This allows to analyse the
model sensitivity on both individual as well as aggregated levels.

3 Modelling working from home behaviour

Our approach to predict the impact of increasing WfH on travel behaviour relies on four
methodically different modelling steps. We need to (i) calculate the relative likelihood





        

of employed persons for WfH based on individual preferences (Section 3.1), (ii) select a
proportion of employees who WfH on the simulated day (Section 3.2), (iii) integrate the
WfH behaviour into the activity-based modelling pipeline to update the daily schedules
(Section 3.3), and (iv) feed the updated mobility schedules into an agent-based network
simulation (Section 3.4).

3.1 Relative likelihood for working from home

In a first step, we calculate the relative likelihood of WfH for employed persons based
on their individual preferences. To achieve this, the likelihood to have the possibility to
WfH is derived from survey data available in Switzerland for each person. As previously
done in Danalet et al. (2021), we introduce a binary logit model to quantify individual
preferences when it comes to having the possibility to WfH.

The model builds on the utility specification as follows: When m is the number of variables
to be estimated, the utility Uij for individual employee i and alternative j is defined as

Uij = βconstant,j +
m∑
k=1

βkj · k(i), (1)

where βconstant,j is a utility constant indicating an overall preference towards a certain
alternative, βkj is the estimated parameter for alternative j and variable k, and k(i) is
the value of variable k for individual i (e.g., the variable k may be age and the value for
individual i may equal 25 ).

By definition of the logistic regression model, the probability to choose alternative j for
individual i can be computed as

pij =
eUij∑
a∈C e

Uia
, (2)

where C is defined as the choice set. In the binary form of the logit model, the choice
set consists of two alternatives (in this case, C = {yes, no}). The resulting individual
probability indicates the relative likelihood that an agent has the possibility to WfH.





        

3.2 Scaling to absolute target

The second modelling step aims at scaling the absolute number of employees who are
WfH on the simulated day to a global target. The target is a model assumption which
will be derived from available empirical basis. We refer to this global target as the control
total E(j) for each alternative j in the choice set.

To scale the results of the binary logit model (Section 3.1), a constant shadow constant
will be added to the utility for each alternative. To derive the shadow constant, we use
the expected value of the statistical probability distribution for each alternative j:∑
i∈I

pij = E(j), (3)

where I is the set of all employed persons and E is the expected value of the probability
distribution for alternative j. Together with Equation 2, Equation 3 can be written as

∑
i∈I

eUij∑
a∈C e

Uia
= E(j). (4)

If we want to achieve a given control total E(j) instead of E(j), this equation can be
extended by an additional utility term xj

∑
i∈I

eUij+xj∑
a∈C e

Uia+xa
= E(j). (5)

Having a control total E(j) for each alternative j, the number of variables xj equals the
number of equations and the solution is unique. This equation system can be solved by an
openly available solver, e.g. the SciPy framework. Finally, the fitting process is completed
by extracting the shadow constants xj for all alternatives j and add them to the utility
function to fit the model to the expected control totals

Uij = xj + βconstant,j +
m∑
k=1

βkj · k(i). (6)





        

3.3 Integration into activity-based demand model

The behavioural model as described in Section 3.1 and 3.2 is used to simulate the decisions
about WfH on the simulated day for each employed agent based on their preferences. The
decisions have a direct impact on the daily mobility patterns of those individuals. To
predict this impact, we integrate the choice model into the activity-based demand model
MOBi.plans, which was introduced by Scherr et al. (2020b). MOBi.plans constructs a
fully time-space consistent daily activity schedule for each agent as part of a synthetic
population based on its socio-demographic attributes, the household location, and the
transport supply. The methodology to generate a synthetic population is provided in
Bodenmann et al. (2019) and goes beyond the scope of this paper.

MOBi.plans1 applies the sequence of choice models as depicted in Figure 1. The information
of the decisions made in the upper level choice models (i.e. long-term decisions) are fed
into the following lower level choice models (i.e. daily mobility choices) to make the
schedules as consistent as possible. The following long-term decisions are included:

• Mobility tools: Multinomial logit models for the ownership of mobility tools on
individual (driving license and public transport subscription) and household level
(number of cars) as proposed by Hillel et al. (2020). The models consider various
socio-demographic attributes, household composition as well as network indicators
such as parking cost and accessibility.

• Long-term locations : Nested mode and location choice model as described in Scherr
et al. (2020b) for the decision about locations like workplace and school. The model
considers mobility tools and a number of service indicators such as travel times,
service frequency, waiting times or parking availability.

Daily mobility choices include:

• Activity generation: Multinomial logit models for the number and type of activities
as well as how they are bundled into tours. All models depend on all long-term
choices and various socio-demographic attributes.

• Secondary destinations: Nested mode and location choice model (see long-term
locations) with a rubberbanding methodology. The model considers long-term
decisions, activity type, socio-demographic attributes as well as service indicators.

• Trip modes : Tour-based mode choice model.
• Activity timing and durations : Data-driven decisions about activity start times and

1software is published under https://github.com/SchweizerischeBundesbahnen/abm-in-visum
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durations. The decisions depend on activity type, number of activities as well as
socio-demographic attributes.

Figure 1: The decision sequence in the activity-based demand model MOBi.plans.

Work from home

Mobility tools
Long-term 

locations (work/ 
school)

Activity 
generation and 
tour bundling

Secondary
destinations

Trip modes
Activity timings
and durations

Long-term decisions Daily mobility choices

In this work, we extend MOBi.plans by the additional binary logit model including the
scaling procedure for the decision about WfH (see Figure 1). We insert the modelling step
after the decision about the long-term locations and before all following daily mobility
choices. This means that WfH is partly a long-term decision (does an employee have the
possibility to WfH as part of its lifestyle?) and party a daily choice (does an agent actually
WfH on the simulated day?). Methodically, we reset the workplace to the home location for
all agents who decide to WfH on the simulated day. Doing so, the agents do not lose any
time to move from the home to the work activity. This allows the daily mobility choices
to react accordingly, e.g. performing more or longer activities or adjusting secondary
destinations (e.g., it is unlikely that a person WfH eats lunch at the workplace).

3.4 Agent-based network simulation

The resulting mobility schedules from Section 3.3 are simulated using the agent-based
simulation software MATSim (Horni et al., 2016). The network simulation in MATSim is
a spatially fully disaggregate and multimodal assignment, where each single car and public
transport vehicle is simulated throughout the network and where they are interacting
with each other. Depending on the network conditions, agents can iteratively adapt
route, mode of trips and duration of activities. This so-called co-evolutionary algorithm
converges to an equilibrium, where the mean plan utility across all agents stabilises. The
use of MATSim in SIMBA MOBi is described in more detail in Scherr et al. (2020a).





        

4 Calibration of behavioural preferences

This section demonstrates the application of the behavioural model for WfH as introduced
in Section 3.1. First, the data sets which were used for calibration and for validation are
described (Section 4.1). Second, the behavioural preferences towards WfH are quantified
in Section 4.2 and validated in Section 4.3.

4.1 Data

The preferences towards WfH are estimated using the survey data available in the Swiss
mobility and transport microcensus MTMC (BfS and ARE, 2017). The computer-assisted
telephone survey (CATI) takes place every 5 years, the most recent available data is from
2015. It contains a representative sample of 57’090 respondents from all over Switzerland.
The persons report about a large number of socio-demographic attributes, household and
workplace characteristics as well as mobility behaviour on one specific day.

About a third of all respondents were interviewed about their options regarding WfH.
They answered three questions, (i) WfH possibility (“ do you have the possibility to
carry out parts of your work at home? “), (ii) WfH percentage (“ What percentage of
your professional activity do you WfH? “), and (iii) WfH reason (“ What is the main for
reason for WfH? “). In this work, we focus on the responses to Question (i). The answer
comprises three options; yes, partly, and no. We group yes and partly into one option,
which makes to model binary (yes/no). First, a data cleaning procedure is applied to
exclude all interviews with incomplete or invalid responses. After this, 7’631 observations
remain in the data set. In the MTMC of 2015, 30.7% of those observations report that
they have the possibility to WfH.

To validate the model results, we simulate the decisions for all employed persons in a
synthetic population of Switzerland for the year 2017. The synthetic population2 was
developed by Bodenmann et al. (2019) and is used for the transport models of the Swiss
government and the Swiss Federal Railways. It contains all 8.6 Mio. Swiss residents
as of 2017 including household location and compositions as well as detailed individual
attributes such as age, education status, job rank, or nationality. Additionally, it includes
a full geo-referenced dataset of all businesses in Switzerland with the number of the jobs
and the sector of each individual business.

2Parts of the synthetic population are openly available, see SBB and ARE (2021)





        

4.2 Estimation of preferences for working from home

Having the empirical data from the MTMC (Section 4.1), we can estimate a binary logit
model using Biogeme (Bierlaire, 2020) to quantify the preferences towards having the
possibility to WfH. We tested individual, household, workplace and spatial variables. The
resulting parameter values for all significant variables are depicted in Table 1.

Individual variables include the age as a piecewise variable and the binary variables of being
a student or in a management position. As shown in Walls et al. (2007), the likelihood
of WfH tends to increase with age. Both students and managers have a significantly
higher likelihood for the possibility to WfH compared to the others as already stated in
Danalet et al. (2021). In terms of household compositions, single parents are less likely
to have the possibility, whilst the number of children present in the household linearly
increases the likelihood. This was also observed in Mannering and Mokhtarian (1995).
Mobility tools have a significant influence on the choice. The higher the ratio between
the number of cars that are available in the household and adults with a permit in the
same household, the higher the probability to WfH (Mannering and Mokhtarian, 1995).
The same applies for public transport subscriptions (general and half fare abonnements).
Accessibility (number of jobs and inhabitants within a certain range) is included as a
categorical variable. Persons living in locations with higher accessibility tend to have
higher preference towards the possibility to WfH.

The model contains a detailed representation of the workplace including the commuting
distance, the spatial category (rural) as well as the sector of the workplace. Employees
with long commuting distances (60km and more) have a higher likelihood to have the
possibility to WfH. The implication of this result might be that people only commute
long distances if they can at least partly WfH. The sector of the workplace is highly
relevant as concluded before in Walls et al. (2007). Employees in gastronomy and retail
have the lowest likelihood to have the possibility to WfH. On the other hand, finance and
service are sectors with higher likelihood compared to others. Also, persons working in the
agricultural sector often report to have the possibility to carry out parts of their work at
home (Danalet et al., 2021). However, they may not mean the home-based telecommuting
with their answer since there is no commute reduction (Mokhtarian, 1991).





        

Table 1: Parameter values for the possibility to work from home. All parameters are
significant at 2.5 % level.

Variable Value (Std. err.)

Alternative-specific constants
ASC no possibility to work from home -
ASC possibility to work from home -5.28 (0.29 )

Individual
Age 18–35 (piecewise) 0.07 (0.01 )
Student 0.69 (0.20 )
Management position 1.00 (0.06 )

Household
Single parent -0.40 (0.17 )
Number of children 0.13 (0.03 )

Mobility tools
Car availability in household 0.16 (0.06 )
SBB abonnement 0.62 (0.06 )

Home location
Accessibility <200’000 (ref) -
Accessibility 200’000–900’000 0.23 (0.06 )
Accessibility >900’000 0.40 (0.11 )

Workplace
Commuting distance 0–60km (piecewise) 0.004 (0.00 )
Commuting distance 60–90km (piecewise) 0.041 (0.01 )
Rural workplace 0.24 (0.10 )
Sector gastronomy and retail (ref) -
Sector agriculture 1.40 (0.18 )
Sector production 0.40 (0.12 )
Sector wholesale 0.57 (0.14 )
Sector finance and services 1.22 (0.11 )

Summary statistics

Number of parameters 17
Sample size 7’631
Initial log-likelihood -5’289.41
Final log-likelihood -4’148.19
ρ̄2 0.213
Estimation time (sec) 5.75





        

4.3 Validation of the choice model

For the validation of the presented choice model, the parameter values are applied to
a synthetic population of Switzerland (Section 4.1). The simulated decisions are then
compared to the observations in the Swiss MTMC. Figure 2 demonstrates the results for
selected variables. In general, the simulation on the synthetic population reproduces the
trends as observed in the MTMC well.

Figure 2: Validation of the likelihood of having the possibility to work from home as
simulated in a synthetic population compared to the Swiss MTMC.
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(d) Sector of workplace

Employees with a management role have a higher likelihood to have the WfH possibility,
which is well captured in the simulation (Figure 2(a)). The likelihood depending on the
number of children present in the household (Figure 2(b)) is slightly underestimated in
the simulation. On the other hand, the commuter distance has a significant influence on
the possibility to WfH (Figure 2(c)). Over 80km, the likelihood is twice as high compared
to the commuting distances below 60km. Lastly, the working sector plays an important
role in the model and the effects are well represented in the simulation (Figure 2(d)).
Retail and gastronomy are the sectors with the lowest probabilities to WfH. Besides the





        

special case of the agricultural sector (Section 4.2), the financial and service sector tend
to have more possibilities to WfH.

5 Simulation of induced mobility behaviour

The impact of WfH on mobility behaviour is derived from an integration of the quantified
preferences (Section 4.2) into the SIMBA MOBi modelling pipeline. First, a sensitivity
analysis is conducted to demonstrate the differences in mobility behaviour between a
WfH day and an office day for two different individuals (Section 5.1). Then, the scenarios
including the different levels of overall WfH proportions are introduced (Section 5.2).
Finally, the aggregated statistics (e.g., commuting distances, modal splits, or rail demand)
of the agent-based simulation are presented (Section 5.3).

5.1 Sensitivity analysis on individual level

The simulation of WfH behaviour relies on an activity-based demand model that is
responsive to changes in individual commuting behaviour. To analyse the sensitivity of our
demand model MOBi.plans, we simulate a distribution of daily schedules for two different
individuals for both an office day and a WfH day. Distribution means a simulation of
schedules using a number of different random seeds for the same agent. In our case, the
result includes 100’000 different schedules for an intended office day and 100’000 schedules
for a WfH day for one specific agent. Both distributions are analysed to investigate the
influence of planning a WfH day on key mobility statistics.

In the presented sensitivity analysis, we generate the distributions for two different agents.
They have the following characteristics:

1. Public transport-oriented person: Household location in the city of Bern, workplace
in Zurich, age is 50 years, has a car available, has a full public transport subscription
(GA3), 100% employment rate, and kids are present in the household.

2. Car-oriented person: Household location in Muensingen, workplace in Zollikofen,
age is 59 years, has a car available, has no public transport subscription, 95%

3around 4000$ per year to use all public transport means in Switzerland





        

employment rate, and no kids are present in the household.

The pt-oriented person is a typical inter-city traveller in Switzerland. Having full public
transport subscription allows to commute between the city of Bern and Zurich in a bit
more than 1 hour. The car-oriented person has a more rural home and workplace. Both
Muensingen and Zollikofen are smaller cities (10’000 inhabitants) around Bern. Public
transport is available, but taking the car is the fastest option (20 minutes to commute).

Table 2 presents several key behavioural statistics for the two agents for an office day
versus a WfH day. Note that even if the agents are planning an office day, they are
allowed to not perform a work activity on the simulated day (e.g. because of being sick
or on leave). The pt-oriented person has at least one work activity in three quarters of
all schedules. The likelihood to have at least one (short) work activity is slightly higher
when WfH. On an office day, the person is more likely to bundle the activities in less
out-of-home tours, meaning that the person returns home less often during the day. The
average number of trips remains fairly constant. The total time spent at home (WfH not
included) is higher on a WfH day. This can be explained by the time spent to commute,
which is substantially higher on an office day (average of 4 hours travelling on an office
day versus 1.4 hours on a WfH day). However, it is interesting that the additional time
spent at home on a WfH day does not equal the time saved due to less commuting. This
means that the person also extends the performing time of out-of-home activities. The
car-oriented person has a slightly lower probability to perform at least one work activity
(95% employment rate). Compared to the pt-oriented person, the average number of
out-of-home tours is higher, but the average number of trips is lower. Wfh increases the
average number of trips by 4% for the car-oriented person. On the other hand, the impact
of WfH on the time spent at home and the total daily travel times is less significant
compared to the pt-oriented person.

Table 2: Statistics from a simulation of 100’000 daily schedules for an office day versus a
WfH day of two individuals.

Pt-oriented person Car-oriented person
office wfh office wfh

Min. one work activity [%] 76.4 78.6 71.3 74.1
Avg. number of tours [ ] 1.47 1.56 1.54 1.63
Avg. number of trips [ ] 4.24 4.26 3.96 4.12
Avg. time at home1 [h] 13.46 14.72 15.37 15.45
Avg. time travelling [h] 4.03 1.39 1.53 1.11
1: working from home not included





        

A more individual insight into the daily schedules is given in Figures 3 and 4. From
the 100’000 simulated schedules, they show the activity behaviour over a full day for 10
randomly selected schedules. In general, it is clearly visible that there is a high variety
in schedule structures. This comes from the wide spectrum of choice dimensions (e.g.,
activity frequency, locations, timings, durations).

Figure 3(a) shows the pt-oriented person on office days. 8 schedules contain a work (red)
activity, which comes with a long travel episode (dark grey). Commuting and working
consumes a high proportion of the day, the time left for performing secondary activties
(e.g., leisure or shopping) is relatively short. On a WfH day (Figure 3(b)), the person is
more flexible in scheduling work timings and secondary activities. For example, there is
more time to perform accompany (orange) activities (e.g., bring the kids to school). The
behavioural differences of the car-oriented person between an office day (Figure 4(a)) and
a WfH day (Figure 3(b)) are considerable smaller compared to the pt-oriented person
with its long-distance commutes. On WfH days, there are more home activities between
working (e.g., eating lunch at home), whilst this only appears once on office days.

Figure 3: Public transport-oriented person: selection of 10 random daily schedules.
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(b) WfH day





        

Figure 4: Car-oriented person: selection of 10 random daily schedules.
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(b) WfH day

Figure 5 demonstrates the behavioural differences between WfH and commuting to the
office on a map. The circle sizes indicate the absolute difference of number of secondary
activities (all activities besides work and home) between an office day and a WfH day.
The colours show the relative deltas, the lighter the smaller the relative delta. Red means
less secondary activities on a WfH day compared to an office day. In contrast, violet
means more secondary activities on a WfH day. The pt-oriented person (Figure 5(a))
performs many secondary activities around the workplace in Zurich on an office day. On
a WfH day, the activity space is much more locally distributed around Bern. Similar
behaviour is shown by the car-oriented person (Figure 5(b)). The secondary activities
around the workplace are only scheduled on an office day. The radius of movement on a
WfH day is smaller and much more concentrated on the home location.

5.2 Scenario range

In this study, we use the SIMBA MOBi scenario of Switzerland for the year 2050 as a
case study. Based on latest estimations of the Swiss Federal Office for Statistics (BfS,





        

Figure 5: Differences in secondary activity space between office and WfH days.

(a) Pt-oriented person (b) Car-oriented person

2020), the scenario contains 10.46 million permanent residents, which means 22% more
than in the year 2017. Additionally, there are commuters and tourists travelling to and
from locations abroad. As the society in 2050 will be older in average than today (the
number of residents older than 64 years increases by 73% from 2017 to 2050) and the
percentage of employed persons remains fairly constant, mobility patterns shift somewhat
away from today’s commuter-dominated patterns.

In the base case, WfH will only be present in today’s form, with a linear extrapolation
of the existing behaviour. This means that the WfH as introduced in Section 3.1 is
not applied in the base case. In the WfH case, an increase of 15% in flexible working
arrangements is assumed. The total increase of 15% is divided into a 11.25% increase
in actual WfH and a 3.75% in flexible work timings. This scaling assumption has been
derived after conducting an extensive internal survey amongst stakeholders during Summer
and Fall 2021.

5.3 Aggregated results of agent-based simulation

The results are derived from a simulation of the full SIMBA MOBi modelling pipeline for
both the base case and the WfH case. The modelling pipeline includes a full activity-based
demand model (see Figure 1) as well as a fully disaggregated network simulation using
the MATSim software (Horni et al., 2016). Comparing the results of both cases, we can
analyse key mobility statistics like average commuter distances, modal shifts, or changes





        

rail demand.

Table 3 depicts several aggregated statistics for Swiss residents (commuters from abroad
and tourists not included). First, the scaling utility term (xWfH, see Equation 6) is
determined to select 11.25% additional employed residents (in total 584’337 persons) to
WfH on the simulated day based on individual preferences. xWfH resulted in −1.22 for the
WfH case. In the base case, the WfH model is not applied and no additional employed
residents are selected.

Table 3: Statistics of base case versus WfH case for Swiss residents in the year 2050.

Base case WfH case Delta

Preferences
Scaling utility term [ ] - -1.22

Trip behaviour
Avg. trips per capita [ ] 3.58 3.52 -1.6%
Avg. work trips per capita [ ] 0.71 0.64 -10.3%
Total trips [106] 35.31 34.73 -1.6%
Avg. distance per trip [km] 8.24 7.99 -3.0%
Avg. work trip distance [km] 12.35 11.66 -5.6%
Total distance travelled [106 km] 290.98 277.58 -4.6%

Modal split - trips
Individual motorised [%] 38.6 38.8 +0.2%
Non-motorised [%] 42.0 42.1 +0.1%
Public transport [%] 19.4 19.1 -0.3%

Thereof rail1 [%] 7.2 6.9 -0.3%

Modal split - distance
Individual motorised [%] 55.0 55.8 +0.8%
Non-motorised [%] 8.5 8.7 +0.2%
Public transport [%] 36.5 35.5 -1.0%

Thereof rail1 [%] 27.0 26.0 -1.0%
1: includes trips with at least one rail leg

The trip behaviour presented in Table 3 shows several interesting differences between the
WfH case and the base case. The average number of trips per capita does change only
marginally (-1.6%), even though the average number of trips to the workplace drops by
10.3% from 0.71 to 0.64. This finding in line with the results of the sensitivity analysis
(Section 5.1), which shows a fairly constant number of trips between office days and WfH
days. The average trip distance in 2050 decreases by 3% and the average commuting
distance decreases by 5.6% from 12.35km in the base case to 11.66km in the WfH case.
As a result, the total distance travelled (-4.6%) decreases over-proportionally compared to





        

the number of trips (-1.6%).

The modal split experiences a shift from public transport to individual (both motorised
and non-motorised) transport. Motorised individual transport modes include car as a
driver or passenger as well as automated vehicles. Non-motorised transport modes include
walking and cycling. The share of trips with public transport decreases by 0.3%, and the
share of rail trips proportionally decreases by 0.3% as well. In contrast, both motorised
and non-motorised transport gain in modal shares. The effects have the same sign for
modal shares in distance travelled. The share of distance travelled of trips including at
least one rail leg drops from 27% to 26%.

The decrease in rail trips is also observed on a map in Figure 6. It shows the impact
of the introduced WfH case on rail demand in Switzerland. The impact shows a clear
heterogeneity across the country. Typical commuter lines (e.g., between Genève and
Lausanne or Zurich and Bern) lose more passengers compared to more touristic connections
(e.g., the north-south line through the Gotthard tunnel).

Figure 6: Relative delta of rail demand (long-distance trains only) between Wfh and base
case in Switzerland.
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6 Conclusion and outlook

In this work, we demonstrate the integration of WfH predictions into our agent-based model
SIMBA MOBi. Based on individual preferences, we select a proportion of employed agents
to WfH on the simulated day. The preferences consider various individual, household,
spatial attributes as well as commuting distance and the sector of the workplace. The
selected agents then reschedule their mobility behaviour and adapt their secondary
activities destinations and timings.

The approach allows to quantify the impact of WfH on aggregated statistics such as
modal split or rail demand. In this work, we introduce a WfH case with 15% additional
flexible working arrangements in the year 2050 and compare it to a baseline scenario
in 2050. When increasing WfH by 15% without introducing other behavioural changes,
the average commuting distance goes down by 5.6%. The model results suggest that
the modal share of distance travelled by public transport on workdays decreases from
36.5% (baseline scenario) to 35.5% (WfH case). This shift in modal share leads to an 8.3%
decrease in the total passenger distance travelled on trains. The model does not consider
compensatory effects such as reinvestment of commuting time savings or relocation of
households as reported in Ravalet and Rérat (2019). SBB plans to investigate the impact
of those additional behavioural changes in future work.

The results give valuable insights into a future with great uncertainty and rapidly changing
assumptions. This helps SBB to develop strategic directions, for example adjusting the
commuter-oriented rail service and product line (e.g., subscriptions). Also, new incentives
for people may be found to enjoy trains more often for leisure-oriented activities (e.g., more
capacity on weekends). Furthermore, SBB has a broader view about future commuter
behaviour and is rethinking the extension of the term working from home to the next level
of work anywhere. Work anywhere does not limit teleworking to home-based teleworking
and allows for more flexibility in the choice of the workplace. As a result, work anywhere
may stimulate the combination of working and leisure activities concentrated around
recreational areas. Gathering more empirical evidence about this type of telecommuting
is part of future work as well.
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