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Abstract

Understanding the choices of passengers and preferences in public transport has been
traditionally done through surveys. Global Positioning Systems (GPS) tracking data is
a low-cost and efficient alternative to those surveys. New technologies allow automatic
collection of data that significantly reduce the burden placed on users, with low battery
usage, satisfactory spatio-temporal precision and restricted (or absent) user interaction
in the form of manual inputs. Passive tracking can capture the long-term behaviour of
passengers’ trips, but with such unprecedented levels of data, it is pivotal to extract
relevant information that ensures a dynamic response from the service providers, especially
in multimodal networks, where the route options of users can be infinitely many. A
significant part of passengers’ trips are commuting trips from home to work and vice-
versa, therefore, understanding passengers’ behaviour in commuting trips is a key factor
to enhance urban transport planning. This paper uses unlabelled GPS tracking data
collected by a smartphone application (ETH-IVT Travel Diary) to explore strategies for
unsupervised classification of work and home activities and, based on the imputed labels,
understand behavioural aspects of passengers on commuting trips. Disparities in the
recurrence of routes and times are studied, suggesting important differences between non-
commuting and commuting trips, as well as home-work and work-home trips. Passengers’
willingness to walk and to make transfers and the impact of disruptions are also investigated
based on the perspective of recurrent behaviour in commuting trips.
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1 Introduction

Identifying commuting patterns is a key element for enhancing urban networks, as they
reflect the long-term behaviour of individuals and have a considerable impact on human
mobility (Kung et al., 2014). In particular, efficient and reliable Public Transport (PT) is
an effective tool to mitigate traffic congestion and alleviate emissions, while significantly
reducing car dependency (Ma et al., 2017) and the pressure on scarce road space. While
high-quality PT links to employment centres are shown to encourage switches away from
car commuting (Clark et al., 2016), to stay an attractive alternative to the population,
PT planners and operators must identify opportunities and keep up to speed with
transit commuting behaviour on an individual level. PT behavioural studies have been
traditionally done through surveys, either stated preference (SP) or revealed preference
(RP). In terms of intermodal travel, for which many possible alternatives of routes exist,
these methods based on surveys may produce biased results: in SP because the user
is not experiencing the trip himself (and daily mobility is usually inferred based on a
reference day) and, in RP, because the path sampling process is very complex, causing the
few surveys reported to be useful only for long-distance travel situations as highlighted
by de Freitas et al. (2019). Nevertheless, these surveys are costly, time-consuming and
frequently result in low sampling rates (Ma et al., 2017).

Recent developments in technologies to acquire data, as well as emerging statistical meth-
ods for the analysis of such data, allow better investigation of the individual commuting
behaviour, which is crucial for the purpose of achieving the full potential of intelligent
transportation systems, a challenge that is central to creating environmentally sustainable
cities. Global Positioning Systems (GPS) tracking data is a low-cost and efficient alter-
native to traditionally used travel surveys. New technologies allow collecting such data
automatically, for instance through smartphone applications that significantly reduce the
burden placed on users, with low battery usage, satisfactory spatio-temporal precision
and restricted (or absent) user interaction in the form of manual inputs (Marra et al.,
2019). In times of unprecedented data availability and global competitiveness, it is pivotal
to extract relevant information to ensure an in-depth understanding of the passengers’
behaviour and dynamic response from the service providers. In this sense, a key element
in understanding the route choices of users is to know which alternatives are available to
them as well as their behavioural characteristics.

Multimodal networks are a reality in many big cities worldwide. The route options of
users can be infinitely many, as different transport modes options may be available within
the same path. Travelling in such an intermodal manner can help mitigate the effects of a





         

potentially saturated transport infrastructure, however, it poses an additional burden both

on the users, which will likely have to deal with transfers and the uncertainty associated

with them, and on the urban tra�c planners, as route and mode choice behaviour of

travellers have to be anticipated. In fact, these approaches have been traditionally modelled

separately, with route choice models tending to focus on unimodal paths, and mode choice

models not modelling the route in detail (de Freitaset al., 2019). Nevertheless, intermodal

travel requires that both route and mode are considered simultaneously, so that feasible

alternatives can be extracted from the multimodal network. For simplicity, the term route

choice will be used herein, where it is assumed that the mode choice is implicit in the route

chosen by the traveller. Another assumption is that intermodal trips are considered in

their broader de�nition, so any trip involving at least one mode of transport is considered

as a trip.

The willingness to conduct intermodal trips is dependent on the travellers' socioeconomic

characteristics. Intermodal travel patterns are mostly observed when a transit subscription

allows free at the point-of-use public transportation (de Freitaset al., 2019). Previous

research (Marraet al., 2019) has indicated that most users will display similar behaviour

when making decisions on the routes, for instance, by prioritizing routes with shorter times

and a smaller number of connections. Equally important is the task of distinguishing the

traveller's behaviour in the case of service disruptions/disturbances and also according to

the level of disruption. For multimodal networks, a disruption is better de�ned from the

operational perspective, taking into account delays or missed trips, not only failed links for

a certain amount of time, which is usually the de�nition utilised for railway/metro networks

(Marra and Corman, 2020b). For instance, in the case of small disruptions, although most

users may opt for not changing their original plans (Marraet al., 2019), investigating

why some users choose an alternative route may reveal some important behavioural

characteristics, such as willingness to walk or willingness to accept a potential delay.

Such travellers' attitudes and reactions to transport are usually not present in surveys

or microcensus, instead, they must be inferred from observed data. In the literature,

attempts to draw a generic pro�le for intermodal travellers based on the individual's

socioeconomic and socio-demographic characteristics acquired through questionnaires

and microcensus are abundant. de Freitaset al. (2019) summarize some relevant works.

However, although these studies with categorical data exist, they do not exactly reveal

the behaviour of a random user confronted with many possible routes and mode choices.

For example, if a traveller takes the same train to work every day, but a ten-minute delay

on a certain day makes the traveller opt for an alternative route, then the `willingness' to

change the route, even at minimal disturbances, can be considered high. On the contrary,

if the traveller did not opt for an alternative route, it could mean two things: information





         

on the delay was not available to the traveller and/or the traveller decided to stick with

the route even though an alternative route would have led to inferior travel time.

This paper uses travel diaries collected by a smartphone application calledETH-IVT

Travel Diary consisting of 2901 public transport trips of 172 users in the city of Zürich

(Switzerland). The application allowed (continuous) passive tracking, and activities, trips

and modes were identi�ed through a mode detection algorithm, as described in Marra

et al. (2019). In addition, the algorithm could identify the public transport line and

vehicle used, by appropriate matching with Automatic Vehicle Location data (AVL) of

the Zürich public transport network. Hence, for each public transport stage the following

information was detected: the mode (bus, tram or train), the line, the speci�c vehicle of

that line, the user's departure stop and time, the user's arrival stop and time. Next, a

choice set (CS) generation algorithm was proposed and tested for this dataset, as detailed

in Marra and Corman (2020a), to identify the available alternatives to users according

to the timetable and also according to actual (realized) times. A Mixed Path Size Logit

model (an extension of the Multinomial Logit) was used to test the CS algorithm, showing

an accuracy of 94%, i.e. 94% of the times the CS contained the same alternative chosen

by the user, a very high coverage of 2734 trips out of 2909. The good �t of the Mixed

Path Size Logit suggested that a linear utility function was su�cient to explain most of

the observed route choices. Only about 6%, or 175 trips, did not have a match within the

�rst 100 CS trip options.

This paper extends the results in Marraet al. (2019); Marra and Corman (2020a) by

further investigating the GPS tracking data collected, the paths generated by the mode

detection algorithm and also the CS generation algorithm, to determine patterns and

logical reasoning to i) distinguish among commuting (trips from home to work, and

vice-versa) and non-commuting trips; ii) summarize the main behavioural aspects and

characteristics of travellers in commuting trips and, whenever applicable, compare the

di�erences with non-commuting trips; iii) assess the impacts of disruptions in commuting

trips and infer whether online information was available to travellers and; iv) investigate

path choices not identi�ed in the CS. This study is motivated by existing literature (e.g.

Lima et al., 2016; Levinson and Zhu, 2013) supporting that mobility patterns and route

choice behaviour are regular for commuting trips, suggesting that travellers usually opt for

the same few alternatives. Under this hypothesis, it could be assumed that travellers make

conscious and recurrent path choices for their commuting trips, and collecting statistics

on these trips would be a key element for service planners to provide a better service. In

addition, changes in a common behaviour could reveal important users' characteristics

under disruptions.





         

In the case of Zürich, some characteristics of the network may diminish the impacts of

possible service disruptions. For example, Marra and Corman (2020b) show that the

frequency of service can compensate for delays or single failures, making individuals'

willingness to opt for alternative paths to be small. In theory, in a network with high

reliability, where users commonly opt for the same path choices, the low variance inherent

in these commuting trips could make it di�cult for traditional path-based algorithms

to generate distinct route alternatives, which, in turn, would lead to biased parameters

estimates in the route choice models. One of the goals of this work is to investigate, in

the highly reliable network of Zürich, how recurrence patterns are observed for travellers

that rely on public transport for their commuting trips.

2 State of the art

Most previous works on commuting patterns focus on private vehicle tra�c (including

ride-sharing), for which data is more accessible (Zhaoet al., 2019). For example, Zhaoet al.

(2019); Honget al. (2020) use automatic vehicle identi�cation (AVI) and automatic license

plate recognition (ALPR) data, respectively, to investigate the commuting behaviour

of private vehicle travel in di�erent cities in China. Mobile phone data, such as call

detail records (CDRs), is also reported as a comprehensive and versatile data source for

studying large-scale human mobility (see, e.g., Kunget al. (2014)), although it is usually

�car-heavy�.

In terms of PT, automated fare collection (AFC) data and GPS records are amongst the

most reported data types for studying commuting behaviour, although, as highlighted by

Ma et al. (2017), many works on transit behavioural studies de�ne commuting only in

terms of repeatability of temporal activities (e.g. users travelling four days or more per

week are considered commuters). Only a few works model commuting behaviour both in

terms of spatial and temporal regularity. Maet al. (2013) use DBSCAN, a density-based

clustering algorithm, to investigate spatial and temporal travel patterns in Beijing, and

then utilise a K-means++ algorithm and a Rough Set based approach to measure travel

regularity. Still investigating travel patterns in Beijing, Ma et al. (2017) propose a series of

data mining methods using smartcard data, and �nd out that the majority of commuters

depart around morning peak hours (7:00-9:00) and return during evening peak hours

(17:00-19:00), whereas a clear pattern is not observed for noncommuters. Commuters also

have an associated high number of travelling days, with a mode of 21 days (approximately





         

the number of weekdays in a typical month), whereas 90% of noncommuters travel below

10 days. Lastly, they conclude that when the distance between residence and workplace is

far, commuters are less likely to opt for PT.

Goulet-Langlois et al. (2016) use smartcard data combined with socio-demographic

information to identify clusters of users with similar activity sequence structures. Their

main �nding related to commuting behaviour is that, while conventional working days are

an important element of structure for many passengers, they do not structure the activity

sequence of over 40% of frequent users, which could have implications on the usual `typical

commuter' modelling pro�le. Ortega-Tong (2013) also explores the similarity in travel

patterns from riders with smartcards combined with socio-demographic characteristics to

identify clusters with similar structures. Two clusters are identi�ed as being composed of

commuters, with the �rst corresponding to a group mostly composed of students and, the

second, of workers. Two important distinctions among these two clusters of commuters

refer to students having shorter school days and their preference for bus trips due to lower

fares.

Zhou et al. (2014) study commuting e�ciency along with the bus network in the Beijing

metropolitan area by combining smartcard and travel survey data. They use linear

programming to compute the minimised mean commuting costs and calculate the excess

commuting (surplus travel time from people that do not take the optimal route to work).

They conclude that easy access to work is one of the key factors involved in bus commuting

(over car). Kusakabe and Asakura (2014) also use smartcard data but with the aim of

analysing behavioural features to classify trip purpose by utilising a naïve Bayes classi�er.

An interesting �nding is related to changes in the commuting pattern during holiday

seasons, in which commuters signi�cantly reduce their trip frequency, thus a�ecting the

total number of trips.

To the best of the authors' knowledge, longitudinal studies on commuting trips based

solely on GPS tracking data, that also investigate the e�ects of possible disruptions to

infer behavioural characteristics of the travellers, are yet to be published, so this paper

aims to �ll this research gap. While both GPS tracking and AFC enable collecting

disaggregated data on passenger boarding and alighting and, thus, studying spatial and

temporal regularity, AFC data has the obvious drawback of lacking the information on

the actual origin and destination of the trip, so that, for instance, the exact location of

residence and workplace is not known, unless this information is otherwise made available

by the smartcard owner. In this sense, GPS tracking data, nowadays mostly acquired

through smartphone applications (Cottrill et al., 2013), is a low-cost and a more e�cient





         

alternative as it can capture all the user's movements throughout the day. While most of

the available smartphone applications use a prompted recall approach, requiring the user

to manually add some trip details, such as mode, transit fare and trip purpose (e.g. Cottrill

et al., 2013; Molloyet al., 2020, 2021), the problem of manually annotating trips places a

signi�cant hurdle on data collection Marra et al. (2019). One of the goals of theETH-IVT

Travel Diary survey was to be completely based on passive GPS tracking (no user inputs

on trips) and, by placing a very low burden on users, to capture long-term behaviour,

thus allowing a better understanding of day-to-day variability and the user's response

to potential disruptions in public transport. After acquiring the data and according to

the methodology proposed by Marraet al. (2019), the problem of mode detection can be

divided into four main tasks, as follows:

1. Data cleaning: consists of identifying erroneous, incomplete or irrelevant information

or records in a database and modifying/deleting these records to obtain a consistent

database. In the case of raw GPS data, �ltering and smoothing are the two main

techniques used for the purpose of data cleaning, where the �ltering removes data

that do not represent the user's real position and smoothing reduces the random

noise present in the data.

2. Trip/activity identi�cation: a user's day can be described by alternating trips and

activities, where a trip (walk or ride) is de�ned by a sequence of points located apart

from each other, indicating movements, whereas an activity is de�ned by a sequence

of points next to each other, indicating that the user is in the same place for some

period.

3. Trip segmentation: after identifying the trips, these can be segmented �rst into

walk-stages or other-stages, where walk-stages are simply the paths that the user

walked, and other-stages represent all the other means of transport (car, bus, train

or other vehicles).

4. Mode detection: a mode detection algorithm matches the exact public transport

vehicle used by the traveller based on GPS tracking data and AVL data. By doing so,

it is possible to classify the trips into public (bus/train/tram) or private (bike/car)

modes of transport.

Mode detection is a fundamental input to consider when examining the passenger's choice

in a route choice problem, which aims to understand and make inferences regarding the

chosen path of the passenger in a transport network. However, to understand passenger's





         

behaviour, it is also fundamental to know the available alternatives in terms of route choices,

including information regarding possible disturbances. Route choice of the passenger

is usually tackled in literature from two perspectives: the choice model, which aims to

determine the actual chosen route out of a small set of options (also known as the choice

set, CS), and the choice set (CS) generation, which focuses on identifying all the relevant

alternatives to passengers (Bovyet al., 2008). Regarding the latter, �nding all alternatives

available to the users may be computationally prohibitive, whereas restricting the size of

the CS may a�ect the coverage precision. Moreover, de�ning the relevant alternatives,

or paths, is not a straightforward task, as it involves an attempt to model an assumed

behaviour. Most works assume that passengers behave rationally, and always seek to

minimize a certain cost function or, alternatively, to maximize a certain utility function,

which can depend on network attributes and possibly socioeconomic characteristics of

passengers (Zimmermann and Frejinger, 2020). A good model is one that can properly

identify a cost/utility function from a set of observed trajectories.

CS generation algorithms can be deterministic or stochastic. Among the deterministic,

many works identify minimum cost paths, consisting of the shortest paths using di�erent

cost functions. Some other works constrain the generated CS by assuming the user chooses

routes based on some factors, such as the number of transfers (Zimmermann and Frejinger,

2020). The stochastic CS algorithms include a stochastic factor in the generation of each

path. For this paper, the CS generation algorithm applied to theETH-IVT Travel Diary

dataset and described in the work of Marra and Corman (2020a) is used. The model

assumes that passengers are rational and will always choose the route that maximizes

their utility, which is de�ned as a function of travel components, namely transfer times,

walking times and times on PT (bus, tram and train), and also adds a penalty for the

number of transfers and a correction term for overlapping paths (the Path Size cost). The

proposed algorithm is evaluated on another large-scale (labelled) tracking dataset and

achieves high precision both in terms of coverage (over 94%) and model estimation (in

terms of high R2).

The next sections assume that the mode detection algorithm is successfully able to identify

the correct paths taken by each user in theETH-IVT Travel Diary dataset. Moreover,

the path taken by the user is contrasted with the other PT alternatives available, as

identi�ed by two CSs generated with di�erent information provision: a CS assuming the

PT timetable (planned) times and a CS assuming the actual (realized) times for the PT

modes available according to the AVL data available. For more details on both the mode

detection and CS generation algorithm, the reader is referred to Marraet al. (2019); Marra

and Corman (2020a).





         

3 Unsupervised Classi�cation of Activities

A crucial aspect of theETH-IVT Travel Diary application (Marra et al., 2019) was related

to reducing the burden placed on users. An evident downside was that labelled data

(such as user con�rmation of modes of transport and activities for each trip) was not

available. Although information of routes and the relevant modes of transport can be

obtained by appropriately matching GPS time and position data with real-time public

transport information (e.g. AVL data), classifying activities using only spatio-temporal

data is challenging. Even some traditional unsupervised machine learning techniques, such

as clustering, may require information not readily (or ever) available to the analyst for

proper classi�cation of most activities, since they are user-speci�c. For example, a patient

treating a disease may visit a hospital frequently for treatment purposes, whereas a nurse

may commute daily to the hospital for work. Accurately identifying these di�erences is

important for proper design of the transport network, but it is a challenge for unsupervised

learning. Assuming that no other information is available, clustering can be performed

based on spatial and/or time coordinates, grouping together activities that are located close

to each other and/or realized at approximately the same times. One of such algorithms is

DBSCAN (Ester et al., 1996), which uses the GPS coordinates along with thresholds for

maximum distance (or the radius� of the circle formed with a point in its center) and

minimum number of points (`MinPts') to cluster points together. Similar applications

have pointed out good suitability of the method for this purpose (Liuet al., 2019; Bhadane

and Shah, 2020; Xionget al., 2020; Marra, 2021).

DBSCAN is based on the concept of density-connectivity, which e�ciently classi�es points

in clusters of arbitrary shape, without the need to specify an initial number of clusters.

The density of an arbitrary point is de�ned as the number of points within a circle of

radius � from that point. Then, for each point in the formed clusters, the circle of radius

� contains the minimum number of points speci�ed. Two main de�nitions are important

to form the density-based notion of a cluster (Esteret al., 1996): density-reachable and

density-connected points. A pointp is density-reachable from a pointq, with respect to

� and `MinPts', if there is a chain of pointsp1; � � � ; pn , p1 = q, pn = p such that pi +1 is

in the � neighborhood ofpi and the number of points in that neighborhood is greater

of equal than `MinPts' (in this casepi +1 is also called directly density-reachable frompi

and pi is a core point). If there is a pointo such that both p and q are density-reachable

from o with respect to � and `MinPts', then p and q are said to be density-connected with

respect to� and `MinPts'. Density-connectivity is a symmetric relation, so that two points

(called borders points) can belong to the same cluster even without sharing a common

core point, but then it must be the case that there exists a common core point from which





         

these borders points are density-reachable.

Although DBSCAN automatically de�nes the number of clusters based on the speci�ed

inputs � and `MinPts', one of its biggest drawbacks lies in the fact that all the clusters

are based solely on these two parameters, so if the data has points forming clusters of

varying densities, the resulting clusters may be meaningless. In this case, a trade-o�

between accuracy and detail of activities is necessary for the application on GPS Tracking

data. This trade-o� entails the unknown nature of the activities, but assumes some

common behavioural patterns, such as the ones involving home and work locations. A

simple rule of thumb is to de�ne the cluster representing `home' as the one with the

most points (i.e. location with the highest number of activities), the cluster representing

`work' as the second most visited one, and all other clusters just being assigned the label

`other'. Temporal information can also be included, as in Marra (2021), where `home'

and `work' (or `school' in case of students) classi�cations were constrained to the clusters

with the highest number of activities during nighttime and daytime, respectively, and

only on weekdays. With respect to the other activities, clearly, even in the absence of

labelled data, better classi�cation could be pursued. For example, matching of GPS

coordinates with locations of commercial buildings, such as gyms and groceries stores,

could shed light on some behavioural characteristics of the users. The aforementioned

trade-o� comes into evidence in this problem, as aiming for a better classi�cation (more

labels) of activities comes at the cost of losing accuracy (i.e. the algorithm detects

more activities, but also makes more mistakes). Clearly, even the rule-of-thumb-based

approach is subject to inaccuracies, for example if the user's mobility behaviour does not

correspond to the assumed one (e.g. a high frequency of `home o�ce' activity may cause

the actual work location not to be properly identi�ed as such). Hence, if more labels

of activities are needed, the analyst has to deal with the inaccuracies that inevitably

appear. For the purpose of this paper, the three-level classi�cation was considered enough

to capture routine behaviours of travellers in terms of recurrent trips between home and

work locations. Before studying such behavioural aspects, a comparison between clusters

formed by di�erent parametrizations is discussed. More speci�cally, the choice of the

distance parameter� and the consideration of time variables such as `day of the week' and

`activity time'.

The distance parameter� plays an important role in the DBSCAN algorithm since it

de�nes a maximum distance threshold for activities to be considered in the same location

(hence, classi�ed as the same activity). Intuitively, this threshold should be high enough

to accommodate possible GPS location errors as well as locations big in size, but not too

high so that it does not include neighbouring locations corresponding to other activities,





         

which could cause, for instance, a supermarket in the neighbourhood to be labelled as

`home'. However, this naive type of reasoning may cause important data loss. Considering

again the supermarket example, it may be the case that, occasionally, instead of going

from work to home directly, the individual goes �rst to the neighbourhood supermarket

and, then, home. Depending on the parametrized clustering distance, this trip may not

be classi�ed as `work-home' (and, therefore, excluded for further analysis), although the

same patterns of times and routes de�ning common `work-home' trips are likely observed.

Therefore, the distance parameters should not be arbitrarily de�ned, instead chosen based

on the purpose of the study and, possibly, data-speci�c. To illustrate this choice based

on the distance parameter only, and without any consideration of time variables, Fig. 1

depicts two scenarios for the activities of one of the tracked users: on the left panel,

DBSCAN with � (eps) set to 500m and, on the right panel,� (eps) was set to 100m. The

red dots correspond to the tracked activities and the activities which do not belong to

either the `home' nor the `work' clusters are labelled with a number according to the

cluster assigned by DBSCAN (notice that some activities belong to the same cluster, so

some labels appear more than once). The activities belonging to the `work' cluster are

shown inside of the red circle, whereas activities belonging to the `home' cluster are shown

within the blue circle.
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Fig. 1 puts into evidence the problem surrounding the choice of the distance parameter for

unsupervised learning applications. While the clustering with� = 100m (right panel) seems

to be doing fairly good in determining the densest clusters for `home' and `work' locations,

some activities nearby these locations are left behind and classi�ed in single clusters (e.g.

cluster 41 in the surroundings of `home' and clusters 2 and 13 in the surroundings of

`work'). Although these seem to be, in fact, di�erent locations, they could still serve as

data for the purpose of identifying route patterns of the individual commuting through

these locations, as they are still close in distance. Another interesting observation comes

from the activities in clusters 2 and 4 when DBSCAN is applied with� = 500m (left panel).

While these two clusters are well-de�ned and separated from others in the left panel,

these same activities are classi�ed in many di�erent (isolated) clusters in the right panel.

Although the di�erent activities in cluster 4 seem to correspond to di�erent locations

surrounding Zurich's main station, the di�erent activities in cluster 2 correspond to the

same location: a city park. This means that setting� = 100m potentially misclassi�es

`home' and `work' activities if these places are big in dimension.

Introducing two time variables, namely the day of the week and the activity time, as

suggested in Marra (2021), leads to a di�erent clustering con�guration. After implementing

DBSCAN for a given � , the time variables are considered. `Home' is the cluster with the

highest number of activities (weighted by their duration) during weekdays, between 23:00

and 06:00, whereas `work' is the cluster with the highest number of activities (weighted

by their duration) during weekdays, between 09:00-12:00 and 13:00-17:00. Table 1 shows

a comparison, for di�erent values of the parameter� , of the number of activities, from a

total of 15265, classi�ed in the home and work clusters for the strategy considering only

the (spatial) distance variable and also for the strategy described in Marra (2021), that

utilises both distance and time parameters.

Table 1: Comparison between clustering based on distance parameters only and clustering
based on distance and time parameters for di�erent values of DBSCAN� parameter.

� [m] 50 100 150 200 250 300 350 400 450 500 1000 1500

Number of Work activities - distance only 2300 2524 2652 2707 2781 2825 2935 2976 3039 3111 2986 2816

Number of Home activities - distance only 4526 4827 4948 5031 5120 5226 5348 5482 5584 5738 7586 8797

Number of Work activities - distance and time 1966 2121 2273 2314 2375 2391 2486 2514 2552 2611 2490 2111

Number of Home activities - distance and time 4189 4526 4658 4743 4822 4923 5045 5162 5269 5382 7021 8291

Number of IsMatch Work 1506 1672 1728 1670 1708 1739 1788 1779 1804 1808 1408 1234

% IsMatch Work 65% 66% 65% 62% 61% 62% 61% 60% 59% 58% 47% 44%

Number of IsMatch Home 3931 4281 4403 4433 4531 4648 4707 4815 4877 4930 6437 7815

% IsMatch Home 87% 89% 89% 88% 88% 89% 88% 88% 87% 86% 85% 89%





         

Table 1 reveals that, as expected, the number of activities classi�ed in each cluster (home

or work), in general, slightly increases as the distance parameter� increases from 50m until

about 500m. More interestingly, however, is to observe that in the clustering obtained by

using only the distance parameter (�rst two rows), for which the most visited location was

considered as home and the second most visited location was considered as work, there is

a tipping point somewhere between� = 500m and� = 1000m, where activities classi�ed

as work move to the home cluster, i.e. the home cluster starts to absorb activities that

were before classi�ed as work, or other. In fact, for a total of 15265 activities, when� is

set to 1000m, roughly 50% of the activities are classi�ed as home, and this percentage

increases to 58% when� = 1500m is considered (versus20% and 18%, respectively, for

work activities). Moreover, the number of activities classi�ed as home increases 27% from

� = 50m to � = 500m, and work activities, for the same� interval, increase about 35%.

However, from� = 500m to � = 1500m, home activities increase 53% (a total increase

of 94% from� = 50m to � = 1500m), whereas work activities decrease by 9% (although

still keeping a positive total increase of 22% in the whole interval from� = 50m to � =

1500m). This suggests some behavioural patterns of the individuals, the most prominent

one being that individuals tend to choose locations for their activities that are close to

where they live. The same does not seem to be true for work locations, for which the

number of activities increase slightly every 50m, indicating that there are a few activities

locations close to work that the user may visit, but when� is big enough (indicating

locations that are not within walkable distance) the cluster starts to lose activities for

the home cluster, or it can even become part of the home cluster, in which case another

activity will be mistakenly classi�ed as work. Of course, this type of analysis involving

changes in categories does not o�er the full details of what happens at an individual level.

As mentioned, it could happen, for instance, that the work location is very close to the

home location, and increasing the distance parameter by a few meters would cause home

and work to be classi�ed together as home, which, in turn, causes another activity to be

mistakenly classi�ed as work.

The results of the inclusion of the two time variables (time of the activity and day of

the week) in the clustering analysis, as suggested by Marra (2021), are presented in rows

three and four in Table 1. For this analysis, it is important to mention that the number of

activities considered is still the same, and the clusters still come from DBSCAN applied

with the same parameters. The di�erence here is that home and work are not taken to

be the �rst and second, respectively, most occurring activities. Instead, a subset of the

obtained clusters, �ltered by weekdays, is considered. The cluster with the highest number

of activities that were realized between 23:00 and 06:00 in this subset is classi�ed as home,

and the cluster with the highest number of activities, excluding home activities, that were





         

realized between 09:00-12:00 and 13:00-17:00 is classi�ed as work. Notice that an activity

that was assigned a cluster number by DBSCAN, say 1, regardless of its realization time,

may still be considered as home if the other activities that were also assigned the number

1 by DBSCAN still form the majority of activities realized between 23:00 and 06:00.

For this type of clustering strategy, the numbers are di�erent from the previous strategy,

although the pattern of the changes (as measured by the sign and amplitudes of the

percentages) behaves similarly. In particular, the number of home activities increases 28%

from � = 50m to � = 500m, and then 54% from� = 500m to � = 1500m (a total increase

of 98% in the interval from� = 50m to � = 1500m). The percentages for work are 33%,

-19%, 7%, meaning that the two extremes� for work activities lead approximately to the

same number of activities. At� = 1000m, about 46% of the activities are classi�ed as

home, and this percentage increases to 54% when� = 1500m is considered (versus16%

and 14%, respectively, for work activities), which is close to what was obtained with the

distance-only strategy. However, more interesting than comparing the percentages is to

compare the percentages for activities whose classi�cation matches in both strategies.

The percentages shown in rows '% IsMatch Work' and '% IsMatch Home' represent the

percentages of agreement between the activities that are classi�ed in the same cluster in

both strategies over the number of activities in the cluster according to the �rst strategy

(distance only). The agreement for work activities starts at around 65% and slowly

decreases to 44% as� increases, and, for home, the percentages of agreement are stable

(and high) throughout the whole interval considered, ranging from about 85% to 89% (it

reaches its maximum when� is set to 1500m). Hence, the percentages for home reveal

a good agreement, and it improves as the distance parameter gets bigger or, in other

words, when the home cluster is broader. The same does not occur for the cluster of work

activities, for which the agreement is higher under lower distances or under more compact

clusters. In other words, constraining the activities to a certain time interval and to be at

weekdays a�ects the classi�cation of work activities more than it does to home activities,

when compared to the clustering obtained solely with the distance parameter.

Putting this into another perspective, it means that home, which is taken as the most

visited location, is more robust against variations of distance and time parameters than

work from a clustering perspective, i.e., it is easier to classify a set of activities that includes

the actual home location than it is to classify work correctly. Aside from the assumption

that an individual will visit home the most, this also reveals a bias for individuals towards

choosing locations for activities that are nearby their homes, forming a dense cluster

around home location. On the other hand, correct classi�cation of work activities may be

tied to the correctness of the chosen distance and time interval for the population under





         

study, although this relationship is not clear and can only be assumed in the absence

of labelled data. For example, in this study, the �rst strategy assumed work as the

second most visited location, and then the second strategy assumed work as the most

visited location during weekdays and at a speci�c daytime window. However, as shown,

the agreement of these two clustering strategies was low, re�ecting a lack of an obvious

spatiotemporal clustering strategy for identifying work locations.

Upon results of both strategies, the crucial question still remains: which strategy (distance-

only or distance and time) is best suitable for the purpose of unsupervised clustering of

work and home activities? In fact, two more experiments are conducted, both involving

changes in the time variables constraints. In the �rst one, the interval for home activities

is modi�ed from 19:00 to 07:00 instead of 23:00 to 06:00. In the second one, the original

intervals are kept for both work and home, but now all days of the week (and not only

weekdays) are considered. No changes are made to the time intervals for work activities,

�rst to avoid possible intersections with the time interval for home and, second, because

other time intervals do not make practical sense considering the population under study.

Fig. 2 depicts the results of all strategies in terms of the percentages of agreements when

compared to the distance-only strategy.

Figure 2: % of agreement with distance-only strategy

Fig. 2 shows that di�erent strategies involving inclusion of time variables lead to similar





         

results in terms of percentages of agreement with the original (distance-only) strategy.

The agreement is always higher for home activities (mean of 87.9%, standard deviation of

2.15%) with a slight increase towards the end when� is greater than 1000m. For work

activities, the agreement is poor (mean of 58.1%, standard deviation of 6.85%), and the

percentages decrease with the increase of� , a e�ect that is more pronounced when� is

greater than 500m. In particular, when comparing across strategies, the lowest rates of

agreement are obtained for work activities when relaxing the constraint on time to all

days (the light blue line below all other curves), instead of only weekdays, even though the

interval between 09:00-12:00 and 13:00-17:00 remains the same. In practice, this analysis

reveals that, especially when the clustering radius� is high, adding a time constraint

causes the cluster not to correspond to the second most visited location (according to

the distance-only strategy) nearly about half of the time. Moreover, the agreement with

the second most visited location is higher when constraining to weekdays in a particular

time interval, versusall days in the same time interval. Hence, when time variables are

considered, the new clusters many times do not re�ect the second most visited location,

especially if all days are considered. From another perspective, if the clustering strategy

using distance, a time interval and weekdays only is taken as the most accurate for

classifying home and work, then activities labelled as work will correspond to nearly

65% of the second most visited location when� = 50m and 45% when� = 1500m. If

the restriction on weekdays is removed, but the time interval between 09:00-12:00 and

13:00-17:00 is kept, then the percentages drop slightly to 62% and 39%, respectively,

showing that the variable time interval plays a bigger role than the variable days of the

week in the classi�cation strategy. Therefore, for a lot of travellers, there seems to be

a mismatch between the second most visited location and the location that is the most

visited during weekdays at the time interval 09:00-12:00 and 13:00-17:00, which is labelled

as work in the second strategy. One example could be the gym activity: an active person

could easily go to the gym 6-7 times a week, and go to work 5 times a week (and say

that the work schedule is �exible). When restricting the work to be at a given time

interval from 09:00-12:00 and 13:00-17:00, even if not all �ve days are within this interval,

the algorithm correctly captures the work activity. However, if all days are considered

(whether in the time interval or not), then going to the gym could be a more frequent

activity than work. To further compare the scenarios, some statistics are presented in

Table 2, as follows:





         

Table 2: Comparison between clustering based on distance parameters only and clustering
based on distance and time parameters for di�erent strategies.

Minimum Mean Maximum Std. Dev. C.V.

Clustering Strategy Work Home Work Home Work Home Work Home Work Home

Distance-only 2300 4526 2804 5684 3111 8797 233 1245 0.08 0.22

Distance and time (Marra et al. (2020)) 1966 4189 2350 5336 2611 8291 200 1164 0.09 0.22

Distance and time (Nighttime from 19:00 to 7:00) 1926 4136 2339 5314 2647 8488 229 1254 0.1 0.24

Distance and time (all days) 1808 4301 2144 5431 2434 8567 198 1233 0.09 0.23

Table 2 shows that, on average, using the distance-only strategy leads to a higher number

of activities classi�ed as work and home for di�erent values of� . By adding two time

variables, and restricting the analysis to weekdays in a particular time interval for home

and another interval for work (rows 2 and 3), the average number of activities classi�ed

in these two clusters decreases, and the numbers do not di�er much if the time interval

considered for home increases from 23:00-6:00 to 19:00-7:00, although the variability is

slightly superior for the second interval. If the restriction on weekdays is relaxed, and only

the original time intervals are considered (row 4), the average number of work activities

and their variability decrease in comparison to the strategies with both variables, but the

same is not observed for home, which ends up absorbing slightly more activities. Again,

the observed statistics corroborate with the conclusion that the time interval has a greater

e�ect than day of the week in determining the location of the work cluster. Moreover, by

comparing the strategies including time variables (rows 2-4) with the strategy including

only the distance variable (row 1), the coe�cient of variation (CV), which is a statistical

measure of the relative dispersion around the mean, are all very close. The results for

this analysis show that inclusion of the two time variables, although not likely to have a

big e�ect on the correct assignment of home (or surroundings) locations, has a signi�cant

impact on the work cluster.

In the complete absence of labels, the choice of a proper clustering strategy needs to be

linked to behavioural assumptions or relied upon information gathered through surveys, e.g.

socioeconomic questionnaires that prompt for the usual work schedule. Hence, for example,

if it is assumed that workers do not go to the workplace during weekends, then adding

the constraint on weekdays will lead to better accuracy for work activities classi�cation.

On an individual level, if, for instance, the user was prompted to enter a usual work

schedule, then this information could serve as input for the classi�cation algorithm. Hence,

restrictions on time variables could improve the accuracy of the classi�cation, although

they are still linked to behavioural assumptions or, in the best-case scenario, attached to

known information about travellers' daily routines, which must then be available.
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